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AbstratStandard generalized materials are desribed by an elasti energy densityand a dissipation potential. The latter gives rise to the evolution equation (�owlaw) for the internal variables. The energeti formulation provides a very weak,derivative-free form of this �ow law. It is based on a global stability onditionand an energy balane. Using time-inremental minimization problems, whihallow for the usage of the rih theory in the diret method of the alulus ofvariations, it is possible to establish general, abstrat existene results as wellas onvergene for numerial approximations. Appliations to shape-memorymaterials and to magnetostritive or piezoeletri materials are surveyed.1 IntrodutionOn the mehanial side the theory of standard generalized materials was developedin the early 1970s, see [28, 64, 69, 81℄. The mathematis for these models wasstudied in parallel, but was mostly restrited to the ase of onvex potentials withappliations in small-strain elastoplastiity, f. [31, 65℄.The theory of rate-independent hysteresis operators advaned muh further, see [11,35, 36, 80℄, mainly in the �eld of salar-valued hysteresis operators. In parallel, themathematial theory of solid mehanis had major breakthroughs in the treatmentof �nite-strain elastostatis [6, 13℄ and in the study of mirostrutures in modernmaterials [7, 67℄.The theory presented here is loated in a triangle that has its orners in the riharea of existing engineering models, in the theory of hysteresis models, and in themethods of alulus of variations that were derived for nononvex material models.The major fat is that rate independene is still so lose to statis that very similarmethods an be employed. Nevertheless it allows us to study evolutionary e�etson slow timesales.In Set. 2 we will present the theory of standard generalized materials and will showhow these models are linked to the so-alled energeti formulation. In Set. 3 wesummarize the existene theory for energeti solutions developed in a quite abstratsetting, see [22, 43, 49℄.In Set. 4 we disuss the question of approximation of the energeti formulation.Based on abstrat Γ-onvergene ideas it is possible to derive onvergent results fornumerial approximations via �nite-element methods, see [37, 55℄. Moreover, ho-mogenization results are established, see [63℄. Finally, a relaxation result is presentedthat is due to [37, 57℄. 1



The �nal setion is devoted to a list of several appliations. The whole work wasinitiated through the need for a better understanding of the hystereti evolutionof mirostruture in shape-memory alloys [58, 60℄. In the Sets. 5.1 to 5.4 we re-port on the development of the analysis of di�erent models sine then. Furtherappliations our in damage [20, 56℄, in delamination [34℄ and in brittle frature[12, 15, 21℄. The modeling of ferroeletri and magnetostriitive materials also �tsinto this framework, see Sets. 5.5 and 5.6. Moreover, the theory of elastoplastiityshould be mentioned, sine it is one of the major driving fores of the theory ofrate-independent proesses. The reent advanes in this topi will be surveyed inanother artile of this volume, see [46℄.2 Modeling Materials with Internal Variables2.1 Standard Generalized MaterialsThis theory was developed in [28, 81℄ and has established a entral r�le in the areaof material modeling on the phenomenologial level, see [23, 26, 45℄ for some reentreferenes.We onsider an elasti body with referene domain Ω ⊂ Rd . The deformation
ϕ : Ω → Rd gives rise to the strain tensor F = ∇ϕ. We assume that the statein a material point x ∈ Ω is desribed by F ∈ Rd×d and a further variable z ∈ Zwhih is often alled internal variable. Here z may denote plasti variables, damage,magnetization, polarization or some phase indiator. The admissible set Z is ingeneral a submanifold (with boundary) of Rm for some m ∈ N.The material behavior is desribed by two onstitutive funtions, the stored-energydensity W = Ŵ (x, F, z) (also alled elasti potential) and the dissipation potential
R = R̂(x, z, ż). While W is the potential for the stress-strain relation, R is thepotential for the dissipational fores versus the rate ż, viz.,

T = ∂
∂F
Ŵ (x, F, z) and fdiss = − ∂

∂ż
R̂(x, z, ż) .The time evolution of the material is now desribed by the quasistati elasti equi-librium

−div
(

∂
∂F
Ŵ (x,∇ϕ, z)

)
= fext plus bound. ond.and by the �ow law for the internal variable whih involves the thermodynamiallyonjugated driving fore XZ = − ∂

∂z
Ŵ (x, F, z), viz.,

−(fdiss +Xz) = 0 = ∂
∂ż
R̂(x, z, ż) + ∂

∂z
Ŵ (x,∇ϕ, z) .Rate independene means that R̂(x, z, ·) is homogeneous of degree 1. Then, ∂

∂ż
R̂has to be understood as the multi-valued subdi�erential of onvex analysis

∂żR̂(x, z, v) = { η ∈ T∗
zZ | ∀w ∈ TzZ: R̂(x, z, w) ≥ R̂(x, z, v)+〈η, w−v〉 } .2



To provide a mathematial framework we introdue F as the set of admissible de-formations, whih is typially an a�ne subspae of some Sobolev spae W1,p(Ω,Rd)due to the Dirihlet boundary onditions. Moreover, we let Z = L1(Ω, Z) for thefuntion spae of admissible internal states. For the state spae Q = F × Z we set
q = (ϕ, z) and

E(t, q) =
∫
Ω
Ŵ (x,∇ϕ, z) Dz −

∫
Ω
fext(t, x)·ϕ(x) Dx ,

R(z, ż) =
∫
Ω
R̂(t, z(x), ż(x)) Dx .Hene, the evolutionary problem takes the form

DϕE(t, ϕ(t), z(t)) = 0,

0 ∈ ∂żR(z(t), ż(t)) + DzE(t, ϕ(t), z(t)) .
(1)2.2 The Energeti FormulationIn general the manifold Z ⊂ Rm might be ompliated and the de�nition of żmight be nontrivial. Moreover, in rate-independent systems it is to be expeted thatsolutions develop jumps. Hene, it is desirable to �nd a weaker formulation avoidingderivatives. For this we introdue the dissipation distane D(x, ·, ·) : Z×Z → [0,∞]whih is assoiated with the Finslerian dissipation metri R̂(x, ·, ·) : TZ → [0,∞],viz.,

D(x, z0, z1) = inf{
∫ 1

0
R̂(x, z̃(s), ˙̃z(s))Ds | z̃∈C1([0,1], Z), z̃(0)=z0, z̃(1)=z1 } .On Z this indues the distane D with D(z0, z1) =

∫
Ω
D(x, z0(x), z1(x)) Dx, and weare able to de�ne the dissipation along an arbitrary path z : [0, T ] → Z via

DissD(z, [s, t]) = sup{
N∑

j=1

D(z(tj−1), z(tj)) | N ∈ N, s ≤ t0 < t1 < · · · tN ≤ t } .For smooth paths is ompatible with the lassial dissipation
DissD(z, [s, t]) =

∫ t

s
R(z(τ), ż(τ)) Dτ =

∫ t

s

∫
Ω
R̂(x, z(τ, x), ż(τ, x)) DxDτ .Our weak form of (1) is the energeti formulation involving the stability ondition(S) and the energy balane (E). A proess q = (ϕ, z) : [0, T ] → F ×Z = Q is alledenergeti solution for (E ,D), if for all t ∈ [0, T ] we have(S) q(t) ∈ S(t)

def
= { q∈Q | E(t,q)<∞, ∀ q̃∈Q: E(t,q) ≤ E(t,q̃)+D(q,q̃) }(E) E(t, q(t)) + DissD(q, [0, t]) = E(0, q(0)) +

∫ t

0
∂sE(s, q(s)) Ds .Here ∂sE(s, q(s)) = ∂

∂s
E(s, q(s)) is alled the power of the external fores and weimpliitly assume that t 7→ ∂tE(t, q(t)) lies in L1((0, T )).In the ase that Q is a Banah spae, that E and R are Gateaux di�erentiableand that the energeti solution q lies in W1,1([0, T ],Q) it is easy to see that (S)3



implies DϕE(t, ϕ(t), z(t)) = 0 and O ∈ ∂żR(z(t), 0) + DzE(t, ϕ(t), z(t)). Moreover,di�erentiating (E) with respet to time yields DzE(t, ϕ(t), z(t))[ż(t)]+R(z(t), ż(t)) =
0 . This is exatly (1). In the ase that E(t, ·) is stritly onvex on the Banah spae
Q and that R does not depend on z, it is shown in [59℄ that (1) is in fat equivalentto (S) & (E). See also [19, 52℄ for more general results on this equivalene.However, as we are mostly interested in nononvex models we will mainly fous onthe energeti formulation (S) & (E). Note that a signi�ant simpli�ation oursdue to the fat that (S) is a purely stati ondition.2.3 Formulations that Minimize LoallyA major drawbak of the energeti formulation is that (S) involves a global stabilityondition, while loal stability would be more physial. However, the word �loal�means that we need to speify a topology in whih neighborhoods will be de�ned.One physial way of doing this is to onsider systems with small visosity and tostudy the limit of vanishing visosity,

0 = εA1ϕ̇+ DϕE(t, ϕ, z) ,

0 ∈ ∂R(z, ż) + εA2ż + DzE(t, ϕ, z) .A mathematial way of approahing the same problem is that of doing loal mini-mization in the assoiated time-inremental problem(IP)δloc qk ∈ Argmin{ E(tk, q̃) + D(qk−1, q̃) | q̃ ∈ Q, ‖qk−1−q̃‖ ≤ δ } ,where ‖·‖ denotes a suitable norm.It is shown in [18℄ that for the smooth �nite-dimensional situation the assoiatedsolutions onverge, after an arlength parameterization, to solutions of the followinglimit problem
0 ∈ ∂R‖·‖(z

′(s)) + DzE(t(s), z(s)) and 1 = t′(s) + ‖z′(s)‖ ,where R‖·‖(v) = R(v) for ‖v‖ ≤ 1 and ∞ else. Generalizations of this idea to thein�nite dimensional setting will be disussed in [53℄.3 Analysis of the Energeti Formulation3.1 The Basi Abstrat AssumptionsOur state spae Q = F × Z is onsidered to be the produt of two topologialspaes F and Z, both of whih are assumed to be Hausdor�sh. Throughout alltopologial notions like ompatness, losedness and (semi-)ontinuity are meant inthe sequential sense. For onvergene we write Q→, F→ and Z→, respetively.4



We start with the assumptions on D : Z × Z → [0,∞]:
∀ z1, z2, z3 ∈ Z : D(z1, z3) ≤ D(z1, z2) + D(z2, z3) . (2)
D : Z × Z → [0,∞] is lower semi-ontinuous . (3)For ompat K ⊂ Z and (zk)k∈N ⊂ K we have:
min{D(zk, z),D(z, zk)} → 0 =⇒ zk

Z→ z .
(4)For appliations in ontinuum mehanis it is essential to allow D to attain the value

+∞ and to be unsymmetri, i.e., in general D(z1, z2) 6= D(z2, z1).An important abstrat tool is a suitable generalization of Helly's seletion prin-iple, f. [43℄. If the funtions zk : [0, T ] → K ⊂ Z with K ompat satisfy
DissD(zk, [0, T ]) ≤ C < ∞, then there exists a subsequene (kj)j∈N and a limitfuntion z : [0, T ] → K ⊂ Z, suh that for all t ∈ [0, T ] we have zkj

(t)
Z→ z(t) and

DissD(z, [0, T ]) ≤ lim infk→∞ DissD(zk, [0, T ]).For the energy funtional E the following assumptions proved to be useful:
∀ t ∈ [0, T ] ∀E ∈ R : { q ∈ Q | E(t, q) ≤ E } is ompat ; (5)
∃ cE0 ∈ R ∃ cE1 > 0 ∀ (t, q) ∈ [0, T ] ×Q with E(t, q) <∞ :

E(·, q) ∈ C1([0, T ],R) and |∂tE(s, q)| ≤ cE1 (E(s, q)+cE0 ) on [0, T ] ;
(6)

∀ ε > 0 ∀E ∈ R ∃ δ > 0 ∀ q with E(0, q) ≤ E :

|t1 − t2| ≤ δ =⇒ |∂tE(t1, q)−∂tE(t1, q)| ≤ ε ;
(7)

(
qk ∈ S(t), sup

k∈N

E(t, qk)<∞, qk
Q→ q

)
=⇒ ∂tE(t, qk) → ∂tE(t, q) . (8)The standard ondition (5) implies lower semi-ontinuity and relative ompatnessof in�mizing sequenes. The other onditions onern the power of external fores

∂tE . Assumption (6) says that we are able to ontrol the work of the externalfores via the energy itself. The assumptions (7) and (8) onern ontinuity in
t and q. They are easily heked in the Banah spae setting if E has the form
E(t, q) = E0(q) − 〈ℓ(t), q〉 with ℓ ∈ C1([0, T ],Q∗).The �nal and ruial assumption ontrols the interplay of E and D:

∀ t ∈ [0, T ] : S(t) is losed in Q . (9)In most appliations of the present theory, the major work goes into establishing (9).There are a few abstrat results that establish (9). For instane, if D is ontinuouson Z, then (9) an be easily derived using (5).The following lemma provides a more general ondition. We refer to [43, 55, 57℄ formore disussion on ways to establish losedness of the stable set.5



Lemma 3.1. If for eah sequene (qk)k∈N in S(t) with qk Q→ q and eah q̃ ∈ Q̃ thereexists a reovery sequene (q̃k)k∈N with q̃k Q→ q̃ suh that
lim sup

k→∞

(
E(t, q̃k) + D(qk, q̃k) − E(t, qk)

)
≤ E(t, q̃) + D(q, q̃) − E(t, q)holds, then S(t) is losed.Proof: We start from qk ∈ S(t) with qk → q and have to show q ∈ S(t). Let q̃be an arbitrary test funtion. Then, by the assumption of the lemma there exist

q̃k, k ∈ N, with q̃k Q→ q̃. From qk ∈ S(t) we know 0 ≤ E(t, q̃k) + D(qk, q̃k) − E(t, qk)and hene the lim supk→∞ is nonnegative. We onlude E(t, q̃)+D(q, q̃)−E(t, q) ≥ 0and obtain q ∈ S(t).3.2 The Existene ResultWe approah the time-ontinuous formulation (S) & (E) by the following time-inremental problem (IP). For a partition Π = {0 = t0 < t1 < · · · < tN = T} and agiven initial value q0 ∈ Q we let(IP)Π Find q1, q2, . . . , qn suh that
qk ∈ Argmin{ E(tk, q̃) + E(qk−1, q̃) | q̃ ∈ Q } .By assumption (3) and (5) it is immediate that (IP)Π is solvable and we are able tode�ne the pieewise onstant interpolant

qΠ : [0, T ] → Q with qΠ(t) =

{
qj−1 for t ∈ [tj−1, tj) ,
qN for t = T .It is not di�ult to see that the inremental solution satis�es qΠ(tj) ∈ S(tj) for

j = 1, . . . , N and
E(tj, q

Π(tj)) + DissD(qΠ, [0, tj]) ≤ E(0, qΠ(0)) +
∫ tj
0
∂sE(s, qΠ(s)) Ds .From this it is then possible to derive a priori estimates independent of Π for

E(t, qΠ(t)) and DissD(qΠ, [0, T ]). Helly's seletion priniple for the z-omponentand the ompatness of the sublevels of E allow us then to onstrut a onvergingsubsequene and to pass to the limit. The �nal result reads as follows. We refer to[22, 43, 49℄ for the proof.Theorem 3.2. Let Πk = {0 = tk0 < tk1 < · · · < tkNk
= T}, k ∈ N, be a sequene ofpartitions suh that φ(Πk) = max{tkj −tkj−1 | j = 1, . . . , Nk} tends to 0. Let q0 ∈ S(0)be an initial ondition and qΠk : [0, T ] → Q be pieewise onstant interpolants ofthe solution of (IP)Πk

. Then there exists a subsequene qn = qΠkn and an energetisolution q : [0, T ] → Q of (S) & (E) with q(0) = q0 suh that for all t ∈ [0, T ] thefollowing holds 6



(i) zn(t)
Z→ z(t) ,(ii) E(t, qn(t)) → E(t, q(t)) ,(iii) DissD(qn, [0, t]) → DissD(q, [0, T ]) ,(iv) ∃ subsequene (N t

l )l∈N: ϕNt
l
(t)

F→ ϕ(t) for l → ∞ .Moreover, ∂tE(·, qn(·)) ∗
⇀ ∂tE(·, q(·)) in L∞((0, T )).The onvergene of the ϕ-omponent ours only on t-dependent subsequenes

(N t
l )l∈N. Hene, in general, we annot guarantee the measurability of the map-ping ϕ : [0, T ] → F . However, in [41, 42℄ it is shown that measurability an alsobe obtained by applying suitable results for measurable seletions of multi-valuedmappings.3.3 Results Based on ConvexityThe abstrat result of the previous setion an be improved if additional propertiesare available. We now assume thatQ is a Banah spae, suh that onvexity methodsan be used. In general, one should distinguish three di�erent spaes X, Y and Z.The spae Z is the one that provides oerivity of the dissipation distane, i.e.,

∀ q0, q1 ∈ Q : D(q0, q1) ≥ ‖q1 − q0‖Z . (10)The spae Y measures the uniform onvexity of Jt,q : q̃ 7→ E(t, q̃)+D(q, q̃):
∀ q0, q1 ∈ Q : Jt,q

(
1
2
(q0+q1)

)
≤ 1

2
(Jt,q(q0)+Jt,q(q1)) − α

2
‖q0−q1‖2

Y (11)for some α > 0. Finally, X relates to the oerivity of E , i.e.,
∀ q ∈ Q : E(t, q) ≥ g(‖q‖X) (12)for some g ∈ C0([0,∞),R) with g(t) → ∞ for t→ ∞.The abstrat results of Set. 3.2 immediately imply that any solution of (S) & (E)satis�es

q = (ϕ, z) ∈ L∞([0, T ], X) and z ∈ BV([0, T ], Z) .For a proof of the following result we refer to Theorem 3.4 in [49℄.Proposition 3.3. Assume that E and D satisfy the joint onvexity ondition (11)for some α > 0 and that there exists CY > 0 suh that
∀ t ∈ [0, T ] ∀ q0, q1 ∈ Q : |∂tE(t, q0)−∂tE(t, q1)| ≤ CY ‖q0−q1‖Y .Then, every solution q of (S) & (E) satis�es

∀ t1, t2 ∈ [0, T ] : ‖q(t1)−q(t2)‖Y ≤ CY

α
|t1−t2| .7



As a typial example we onsider the ase Q = Z = X with
X = H1(Ω) , D(z0, z1) =

∫
Ω
|z0(x) − z1(x)|Dx ,

E(t, z) =
∫
Ω
W (∇z(x)) + α

2
|z(x)|2 − fext(t, x)z(x) Dx ,with α > 0, fext ∈ C1([0, T ],L2(Ω)) and W : Rd → [0,∞), where W is onvex andoerive, i.e., W (A) ≥ c|A|2 − C for some C, c > 0 and all A ∈ Rd. Then, we mayhoose Z = L1(Ω) and Y = L2(Ω).In suh situations it is possible to de�ne q̇(t) almost everywhere, sine jumps, whihare allowed in the energeti formulation, an no longer our. Hene, it is possibleto study the loal subdi�erential formulation (1) instead. Using q = (ϕ, z) ∈ X = Qand R(z, v) = limε→0

1
ε
D(z, z + εv) we write (1) in the ompat form

X∗ ∋ 0 ∈ ∂vR(q(t), q̇(t)) + ∂qE(t, q(t)) a.e. on [0, T ] . (13)This equation is alled a doubly nonlinear equation and it relates to evolutionaryquasi-variational inequalities (f. [10℄). We refer to [52, 59℄ for exat onditionswhih guarantee the equivalene between (S) & (E) and (13).The latter work ontains also a general existene result for Lipshitz ontinuoussolutions to (13). Under quite severe additional assumptions it is even possibleto prove uniqueness, see [10, 52, 59℄. However, these assumptions are rarely metin material models exept for very simple ases like linearized elastoplastiity withquadrati hardening, see [29, 31, 65℄. Other uniqueness results are disussed in[61, 62℄ for piezoeletriity and in [4℄ for an isotropi model for shape-memory alloys,see also Set. 5.4 Approximation, Γ-Limits and RelaxationIn several irumstanes it is desirable to onsider sequenes of funtionals (Ek)k∈Nand (Dk)k∈N whih onverge to limit funtionals E∞ and D∞, respetively, in asuitable sense. The main question is whih type of onvergene guarantees thatlimits q : [0, T ] → Q of solutions qk : [0, T ] → Q for (Ek,Dk) are solutions for
(E∞,D∞).Typial appliations of this idea our for

• numerial approximations with Ek(t, q) = E∞(t, q) for q ∈ Qk ⊂ Q and ∞otherwise, where eah Qk is a �nite-dimensional subspae of Q suh that Qk ⊂
Qk+1 and ⋃

k∈N
Qk is dense in Q.

• problems with singular perturbations (like sharp interfae models) or withpenalization terms
• onstant sequenes Ek = E1,Dk = D1, where E1(t, ·) and D1(·, ·) are not lowersemi-ontinuous and di�er from their Γ-limits E∞ and D∞.8



The latter point relates to relaxations of rate-independent evolution whih is animportant topi in material modeling. It is a tool for deriving evolution equationsfor mirostrutures. We refer to [14, 48, 51, 60, 79℄ for disussions of this topi.Here we present the theory originating from [37℄. In [57℄ the abstrat version wasdeveloped and in [55℄ it is applied to numerial approximation in several materialmodels. The following version is a simpli�ed version of the one developed in [57℄.4.1 Γ-Convergene of Rate-Independent SystemsWe let N∞ := N ∪ {∞} and state �rst the onditions on the dissipation distanes
(Dk)k∈N∞

. Eah Dk, k ∈ N∞, is a pseudo distane on Z, i.e.,
∀ zj ∈ Z : Dk(z1, z1) = 0 and Dk(z1, z3) ≤ Dk(z1, z2) + Dk(z2, z3) . (14)To obtain solutions of inremental problems we impose that

∀ k ∈ N∞ : Dk : Z × Z → [0,∞] is lower semi-ontinuous . (15)The limit distane D∞ must be positive in the following senseFor ompat K ⊂ Z and (zk)k∈N ⊂ K we have:
min{D∞(zk, z),D∞(z, zk)} → 0 =⇒ zk

Z→ z .
(16)Finally, D∞ must be bounded from above by the Γ-liminf of (Dk)k∈N, i.e.,

(
zk

Z→ z and z̃k
Z→ z̃

)
=⇒ D∞(z, z̃) ≤ lim inf

k→∞
Dk(zk, z̃k) . (17)Next we state the onditions on the energy funtionals. We start with the ompat-ness of the sublevels:

∀ t ∈ [0, T ] ∀E ∈ R :(i) ∀ k ∈ N∞ : { q ∈ Q | Ek(t, q) ≤ E } is ompat ,(ii) ⋃
k∈N

{ q ∈ Q | Ek(t, q) ≤ E } is relatively ompat . (18)The next three onditions provide suitable ontinuity properties of the powers ∂tEk(·, ·)of the external fores.
∃ c0, c1 > 0 ∀ k ∈ N∞ ∀ (t, q) ∈ [0, T ] ×Q with Ek(t, q) <∞ :

Ek(·, q) ∈ C1([0, T ]) and |∂tEk(s, q)| ≤ c1(Ek(s, q)+c0) on [0, T ] ;
(19)

∀ ε > 0 ∀E > 0 ∃ δ > 0 ∀ k ∈ N∞ ∀ q ∈ Q with Ek(0, q) ≤ E :

|t1−t2| ≤ δ =⇒ |∂tEk(t1, q)−∂tEk(t2, q)| ≤ ε ;
(20)

(
qk

Q→ q and sup
k∈N

Ek(t, qk) <∞
)

=⇒ ∂tEk(t, qk) → ∂tE(t, q) . (21)9



The �nal ondition on (Ek)k∈N∞
onerns the Γ-liminf, namely

qk
Q→ q =⇒ E∞(t, q) ≤ lim inf

k→∞
Ek(t, qk) . (22)The ruial ondition that onnets the onvergenes of Dk to D∞ and Ek to E∞involves the sets of stable states. For k ∈ N∞ we have

Sk(t)
def
= { q ∈ Q | Ek(t, q) <∞ and ∀ q̃ ∈ Q : Ek(t, q) ≤ Ek(t, q̃) + Dk(q, q̃) }and ask for the upper semi-ontinuity Limsupk→∞ Sk(t) ⊂ S∞(t), i.e.,

(
qkℓ

∈ Skℓ
(t) and qkℓ

Q→ q for kℓ → ∞
)

=⇒ q ∈ S∞(t) . (23)In typial appliations in ontinuums mehanis it is hard to establish this ondition.On the abstrat level it is possible to provide su�ient onditions. For instane, wesay that E∞ is the Γ-limit of (Ek)k∈N if (22) holds and if for all q̃ ∈ Q there exists areovery sequene (q̃k)k∈N suh that
q̃k

Q→ q̃ and E∞(t, q̃) ≥ lim sup
k→∞

Ek(t, q̃k) . (24)A similar notion of Γ-limit holds for (Dk)k∈N.It is shown in [57℄ that in general (23) does not hold if Ek Γ-onverges to E∞ and
Dk Γ-onverges to D∞. Even more, the following theorem may be false. The nextlemma gives a positive result.Lemma 4.1. If E∞ = Γ-limk→∞Ek, i.e., (22) and (24) hold, and if Dk onvergesontinuously to D∞, i.e.,

(
zk

Z→ z and z̃k
Z→ z̃

)
=⇒ Dk(zk, z̃k) → D∞(z, z̃) , (25)then (23) holds.Proof: Let qk = (ϕk, zk) ∈ Sk(t) be given suh that qkℓ

Q→ q. Moreover, let q̃ bearbitrary. Then there exists a reovery sequene q̃k = (ϕ̃k, z̃k) satisfying (24). Using(25) we onlude
E∞(t, q) ≤ lim infℓ→∞ Ekℓ

(t, qkℓ
)

≤ lim infℓ→∞

(
Ekℓ

(t, q̃kℓ
)+Dkℓ

(qkℓ
, q̃kℓ

)
)

= E∞(t, q̃) + D∞(q, q̃) .Here we use �rst (22), next qk ∈ Sk(t) and last (24) and (25). Sine q̃ ∈ Q wasarbitrary, we have q ∈ S∞(t).The following result is onerned with the so-alled inremental problem (IP)k. Forthis hoose a sequene (Πk)k∈N of partitions with Πk = {0 = tk0 < tk1 < . . . < tkNk
=

T} and �neness φ(Πk) = max{ tkj − tkj−1 | j = 1, . . . , Nk }:10



(IP)k Given qk
0 ∈ Q, �nd iteratively

qk
j ∈ Argmin{ Ek(t

k
j , q̃) + Dk(q

k
j−1, q̃) | q̃ ∈ Q }.Existene of solutions follows easily from (15) and (18). We de�ne the onstantinterpolants qk : [0, T ] → Q via

qk(t) = qk
j−1 for t ∈ [tkj−1, t

k
j ) and qk(T ) = qk

Nk
.Theorem 4.2. Let the onditions (14) to (23) hold and let the partitions Πk, k ∈ N,satisfy φ(Πk) → 0 for k → ∞. Moreover, assume

qk
0 ∈ Sk(0), qk

0
Q→ q0, and Ek(0, q

k
0) → E∞(0, q0) .Choose any sequene (qk)k∈N of onstant interpolants of solutions to (IP)k. Then,there exists a solution q : [0, T ] → Q of (S) & (E) assoiated with (E∞,D∞) and

q(0) = q0 and a subsequene (qkℓ
)ℓ∈N suh that for all t ∈ [0, T ] the following holds:(i) Ekℓ

(t, qkℓ
(t)) → E∞(t, q(t)),(ii) DissDkℓ

(qkℓ
, [0, t]) → DissD∞

(q, [0, t]),(iii) zkℓ
(t)

Z→ z(t),(iv) ∃ subsequenes (Kt
n)n∈N of (kℓ)ℓ∈N : ϕKt

n
(t)

F→ ϕ(t) for n→ ∞.Moreover, we have ∂tEkℓ
(·, qkℓ

(·)) ∗
⇀ ∂tE∞(·, q(·)) in L∞([0, T ]).4.2 Relaxation in Case of Missing Lower Semi-ContinuityIn appliations it may our that for mehanially given funtionals E and D it isnot possible to hoose a spae Q, suh that the sublevels of E are ompat. Inpartiular, the time-inremental problems (IP)Π may not be solvable beause of themissing lower semi-ontinuity, whih has its mehanial ounterpart in the formationof mirostruture. In suh situations it is desirable to �nd suitable relaxations,whih allow for the alulation of suitable e�etive quantities assoiated with thesemirostrutures. For rate-independent systems this question was �rst addressed in[60℄, where the separate relaxation E∞ = Γ-limE and D∞ = Γ-limD, and furtherdeveloped in [14, 20, 48, 57, 79℄. Of ourse, in the ase of a onstant sequene the

Γ-limit is simply the lower semi-ontinuous hull.In [48, 57, 60℄ it is suggested to study the approximate inremental problem(AIP)Π,α

Given q0 ∈ Q, �nd iteratively q1, q2, . . . , qN suh that
E(tj, qj) + D(qj−1, qj)

≤ (tj−tj−1)α + infeq∈Q E(tj, q̃)+D(qj−1, q̃).For α > 0 this problem always has solutions and the question arises as to how thesolutions behave for α → 0 and for smaller and smaller time steps.11



Choose sequene (Πk)k∈N and (αk)k∈N with 0 < αk → 0 and φ(Πk) → 0. Then,wor eah k ∈ N a solution of (AIP)Πk ,αk
exists and de�nes a pieewise onstantinterpolant qk : [0, T ] → Q. In [57℄ it is shown under general abstrat onditionsthat the interpolants ontain a onvergent subsequene in the sense above and thatthe limit q : [0, T ] → Q is an energeti solution for the Γ-limit potentials E∞ and

D∞. One simple su�ient ondition is that D is already ontinuous, whih implies
D∞ = D.Another abstrat relaxation result is derived in [51℄. It uses a kind of ellipti regu-larization of the subdi�erential inlusion (13). We onsider a sequene of funtionals

Ik,δ(q) =
∫ T

0
E−t/δ(Rk(q̇(t)) + 1

δ
Ek(t, q(t))) Dt ,where again eah Rk : Q→ [0,∞] is onvex, lower semi-ontinuous and 1- homoge-neous. If Rk and Ek were smooth, the Euler-Lagrange equation reads

δD2Rk(q̇)[q̈] = DRk(q̇) + DqEk(t, q) ,whih in the formal limit δ → 0 onverges to (13).Using the 1-homogeneity of Rk it is proved in [51℄ that minimizers q : [0, T ] → Q of
Ik,δ satisfy the δ-independent energy balane

Ek(t, q(t)) +
∫ t

0
Rk(Dq) = Ek(0, q(0)) +

∫ t

0
∂sEk(s, q(s)) Ds .As in Set. 3.2 this implies a priori bounds independent of δ > 0 and of k, if (19) isused. Fixing δ > 0 and letting k → ∞, we obtain a Γ-limit I∞,δ in the form

I∞,δ(q) =
∫ T

0
E
−t/δ

(
R∞(q̇(t)) + 1

δ
E∞(t, q(t))

)
Dt ,if E∞ = Γ-limk→∞ Ek and Rk onverges ontinuously to R∞. Finally, under theseassumptions it is shown that for minimizers qk,δ : [0, T ] → Q the aumulationpoints for k → ∞ and δ → 0 are in fat solutions of the energeti formulation (S)and (E) assoiated with E∞ and D∞ : (q, q̃) 7→ R∞(q̃ − q).4.3 Numerial Spae DisretizationWe indiate one of the main appliations of the Γ-onvergene results. Consider are�exive Banah spae Q equipped with its weak topology. This spae is approxi-mated by a nested sequene (Qk)k∈N of �nite-dimensional subspaes suh that theirunion is dense, viz., Qk ⊂ Qk+1 ⊂ Q and ∪k∈NQk = Q. Finally, assume that thefuntionals E∞ = [0, T ]×Q → R∞ is strongly ontinuous and D∞ : Q×Q → [0,∞]is weakly ontinuous in addition to the assumption (2) to (9). Now de�ne the�nite-dimensional (spae) approximations via

Ek(t, q) =

{
E∞(t, q) for q ∈ Qk ,

∞ otherwise , Dk(q, q̃) =

{
D∞(q, q̃) for q, q̃ ∈ Qk ,

∞ otherwise .12



Then it is easy to see that the assumptions (14) to (22) are satis�ed. To establishthe upper semi-ontinuity of the stable sets we proeed as follows. Starting from
qk ∈ Sk(t) with qk ⇀ q we need to show q ∈ S∞(t). For q̃ ∈ Q we hoose q̃k ∈ Qkwith q̃k → q (strongly). Then we have

0 ≤ Ek(t, q̃k) + Dk(qk, q̃k) − Ek(t, qk) = E(t, q̃k) + D(qk, q̃k) − E(t, qk) .Using strong ontinuity for E , weak ontinuity for D and weak lower semi-ontinuityfor E we take the limsup of the last expression and �nd
0 ≤ lim sup

k→∞

(
E(t, q̃k)+D(qk, q̃k)−E(t, qk)

)
≤ E(t, q̃)+D(q, q̃)−E(t, q) ,whih is the desired stability result, sine q̃ is arbitrary.This theory is the basis for treating spatial disretizations of energeti formulations.In partiular, Theorem 4.2 guarantees that eah limit point of the joint spae-timedisretization provides a true solution of (S) and (E).In [37℄ this numerial theory was developed for a model involving gradient Youngmeasures to desribe mirostrutures in shape-memory alloys. A more systematitreatment of di�erent aspets of numerial spae disretizations as well as penal-izations or relaxations is given in [55℄. Using more regularity and onvexity as-sumptions full onvergene results, without hoosing subsequenes, are establishedin [4℄. This is loser to the highly developed theory in linearized elastoplastiity, see[1, 29, 31, 78℄.5 Appliations to Material ModelsThe theory of rate-independent proesses �nds appliations in many areas. Thisinludes the theory of superondutivity [68, 76℄, dry frition on surfaes [2, 44, 75℄,delamination [34℄, damage [56℄ and brittle frature [12, 15, 21℄. The latter threeareas involve appliations where the internal variable is ative only on submanifoldsof the elasti body. Here we restrit ourselves to those situations where the internalvariable z is distributed throughout the body.The original driving fore of this theory was the dynami problem of linearizedelastoplastiity, however, nowadays many other appliations our in phase trans-formations in shape-memory materials, in magnetostrition, in piezo- or ferroele-triity, and in damage. Finite-strain elastoplastiity is another very ative area forrate-independent modeling. This will be surveyed in [46℄ of this volume.5.1 Shape-Memory MaterialsWe onsider an elasti body Ω ⊂ R

d in its referene on�guration, whih we assumeto have a Lipshitz boundary. The deformation ϕ : Ω → Rd desribes the elasti13
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2
(∇u+ ∇u⊤), respetively.Sine the shape-memory e�et relies on the fat that these materials have severalphases, the orresponding stored-energy density (also alled stress potential) has amulti-well struture, whih is usually given in the form

W (x,∇ϕ) = min{Wj(x,∇ϕ) | j = 1, . . . , N } .Here N is the number of (variants of) phases inluding the austenite and the marten-sites. Eah Wj(x, ·) : Rd×d → [0,∞] is assumed to behave niely in terms of lowersemi-ontinuity and oerivity.However, W (x, ·) is in general not rank-one onvex, and hene formation of mi-rostrutures is to be expeted. This is ompatible with the physis, sine theshape-memory e�et relies heavily on formation of martensiti laminates (also alled�twinning�), see Fig. 1. We refer to [9, 71℄ for surveys on the mathematial modelingof mirostrutures in shape-memory alloys.To desribe this mathematially it is advantageous to use gradient Young measures,see [7, 9, 38, 39, 66℄ for the stati ase and see [3, 27, 37, 48, 54, 71℄ for the evolutionof mirostrutures. We will survey this work next. After that we will disuss severalmodels whih do not resolve the mirostruture but keep ertain volume frationsor e�etive properties, see [23, 24, 25, 42, 58, 60, 77℄. Finally, we will indiatehow these models may be generalized to inlude the temperature as an additionalexternal parameter.5.2 Models Using Gradient Young MeasuresA gradient Young measure is a funtion over the physial domain Ω whih takesvalues in the set of probability measures on the set Rd×d of deformation gradients,namely
Prob(Rd×d) := { µ ∈ M(Rd×d) | µ ≥ 0,

∫
Rd×d 1µ(DA) = 1 } .14



However, the addition �gradient� means that only those measures are onsidered,that an be generated via a sequene of gradients of deformations.We say that a bounded sequene (ϕk)k∈N in W1,p(Ω,Rd) generates the gradientYoung measure µ : Ω → Prob(Rd×d) and write ∇ϕk
YM→ µ, if for all ψ ∈ C0

c(Ω×Rd×d)we have, for k → ∞,
∫
Ω
ψ(x,∇ϕk(x)) Dx→

∫
Ω

∫
Rd×d ψ(x,A)µ(x,DA) Dx .Suh µ have the additional property ∫

Ω

∫
Rd×d(1+|A|)pµ(x,DA) Dx < ∞, and wedenote the set of all these measures by

Gp(Ω) = p-integrable gradient Young measures .To model the hystereti behavior in shape-memory materials with the energetiformulation disussed in Set. 3 we need to introdue a phase indiator z : Ω → ZNwhere ZN is usually taken as the Gibbs simplex
ZN = { z ∈ R

N | zi ≥ 0,
∑N

i=1 zi = 1 } .The omponents zi of z ∈ ZN measure the volume fration of phase i in a represen-tative volume element. For gradient Young measures we extrat the phase frationsvia a ontinuous mapping
ζ : Ω × R

d×d → ZNsuh that ζ(x,A) = ej (unit vetor in RN), if W (x,A) = Wj(x,A) ≤ Wk(x,A) − δfor k 6= j. Here δ > 0 is a suitable onstant whih is assumed to be muh smallerthan the depth of the wells.Finally we introdue a dissipation distane D : ZN × ZN → [0,∞). It su�es topresribe the values κj→k = D(ej, ek) > 0, suh that the triangle inequality holds,i.e., κj→ℓ ≤ κj→k + κk→ℓ. Here κj→k denotes the energeti loss when the materialjumps from a phase ej into another phase ek. Then, D : ZN × ZN → [0,∞) isde�ned via the optimal transport problem
D(z, z̃) = min

{ N∑
j,k=1

mjkκj→k

∣∣ mjk ≥ 0,
N∑

k=1

mjkej = z̃,
N∑

j=1

mjkek = z
}
.It is shown in Proposition 4.7 in [60℄, that there exists a onvex, 1-homogeneous

R : RN → [0,∞) suh that D(z, z̃) = R(z̃ − z).With these notations we now formulate the funtion spaes and the funtionals.We assume that Ω ⊂ Rd is a bounded domain with Lipshitz boundary ∂Ω andthat ΓDir ⊂ ∂Ω is a set of positive surfae measure on whih we desribe Dirihletboundary data. We let
F = { ϕ ∈ W1,p(Ω,Rd) | ϕ|ΓDir = ΦDir } × Gp(Ω) and Z = L1(Ω, ZN) .The state spae is Q = F × Z and a state onsists of a triple q = (ϕ, µ, z). Wefurther let Q0 = { (ϕ, µ, z) ∈ Q | ∇ϕ = id•µ, z = ζ•µ }, where �•� denotes the15



ontration over A ∈ R
d×d but not over x ∈ Ω, i.e., (id•µ)(x) =

∫
Rd×d Aµ(x,DA)and (ζ•µ)(x) =

∫
Rd×d ζ(x,A)µ(x,DA). With the presribed external volume andsurfae loadings

〈ℓ(t), ϕ〉 =
∫
Ω
fext(t, x)·ϕ(x) Dx+

∫
ΓNeu

gext(t, x)·ϕ(x) Da(x)we de�ne the energy-storage funtional
E(t, q) =

∫
Ω

∫
Rd×d

W (x,A)µ(x,DA) + ρ
2
|∇αz|2 Dx− 〈ℓ(t), q〉 for q ∈ Q0 (26)and E(t, q) = +∞ for q = (ϕ, µ, z) ∈ Q\Q0. Here ρ > 0 and ∇αz, α > 0, denotes a(frational) derivative, for instane for α ∈ (0, 1) we have

∫
Ω
|∇αz|2 Dx =

∫
Ω

∫
Ω

|z(x)−z(ex)|2

|x−ex|d+2α DxDx̃ .This regularizing term allows us to hoose the strong topology in L1(Ω, ZN ) as thisspae is ompatly embedded into Wα,2(Ω,RN) for α > 0. Nevertheless, for α < 1/2the funtions in Wα,2(Ω,RN) may have jumps along smooth interfaes suh as thehabit plane between austenite and martensite.The dissipation distane is de�ned as
D(z, z̃) =

∫
Ω
D(x, z(x), z̃(x)) Dx =

∫
Ω
R(x, z̃(x)−z(x)) Dx . (27)Sine D is (strongly) ontinuous on Z the ruial losedness ondition (9) of thestable sets is easily obtained via Lemma 3.1 by taking q̃k = q̃.The following existene theorem is established in [37℄. The earlier version in [54℄ wasbased on the muh stronger assumption that E(t, (·, ·, z)) has a unique minimizer, butthis ondition is no longer needed beause of the abstrat developments in [22, 49℄.Theorem 5.1. Let p ∈ (1,∞), α ∈ (0, 1), and ρ > 0. Assume that there exists

C > 0 suh that for j = 1, . . . , N , we have
∀A ∈ R

d×d : 1
C
|A|P − C ≤Wj(x,A) ≤ C|A|P + C . (28)Further assume ℓ ∈ C1([0, T ],W1,p(Ω,Rd)∗) and that q0 ∈ S(0). Then, the energetiformulation (S) and (E) assoiated with E and D from (26) and (27), respetively,has a solution q : [0, T ] → Q0.The theory of Γ-onvergene disussed in Set. 4.1 an also be used to show thatspae-time disretizations of the energeti formulation ontain subsequenes whihonverge to energeti solutions. For this we use triangulations Th of Ω. Moreover,we approximate gradient Young measures by sequential laminates of order κ ∈ N,see [3, 8, 38, 72℄ and Set. 5.4 in [48℄ for an introdution. Fixing κ ∈ N we de�ne

Qh
κ as the spae of funtions q = (ϕ, µ, z) ∈ Q for whih ∇ϕ, µ and z are onstanton eah simplex and µ is a laminate of order at most κ. Using the penalizationparameter ε > 0 we let

Eh,ε(t, q) = E(t, q) + 1
ε

∫
Ω
|z−ζ•µ|2 Dx for q ∈ Qn

κ with ∇ϕ = id•µ16
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0
∂sE(s, q(s)) Dsand Eh,ε(t, q) = +∞ otherwise on Q.In [37℄ a funtion H : (0,∞) → (0,∞) with H(ε) → 0 for ε ց 0 is onstrutedsuh that the following holds: If (Πk)k∈N is a sequene of partitions of [0, T ] with

φ(Πk) → 0, if (Thk
) is a sequene of triangulations of Ω and if εk → 0 with hk ≤

H(εk), then the inremental solutions qk assoiated with (Ehk,εk
,D) on Qh

κ have asubsequene whih onverges to an energeti solution q : [0, T ] → Q for (E ,D).Figures 2 and 3 show results from a numerial simulation from [37℄ for a sampleof 4×4×9mm single-rystal alloy of CuAlNi. It has a ubi-to-orthorhombi phasetransition with one austenite and 6 variants of a martensite (i.e., N = 7).All phases are modelled by a Saint-Venant-Kirhho� materialWj(x,A) = 1
2
(A⊤A−

Cj) : Cj : (A⊤A−Cj) + dj, where Cj ∈ R3×3
sym, Cj ∈ Lin(R3×3

sym), and dj are the exper-imentally measured values for eah j ∈ {1, . . . , 7} at a �xed temperature of 312K.The dissipation onstants D(ej , eℓ) are hosen to be 0.5MPa for transformationsbetween martensite and austenite or vie versa. Transformations between di�erentvariants of austenite are assumed to have muh lower dissipation thresholds.The disretization involves 180 tetrahedrons and seond-order laminates. This leadsto 20 degrees of freedom in eah element, whih lie in a nonlinear manifold withboundary (box onstraints). The minimization tehnique for solving the highlynononvex inremental problem is desribed in Set. 6.3 in [37℄.A mirosopi model that does not allow for mirostruture and uses only purephases is developed and analyzed in [41, 42℄. It is based on the usage of an interfae17



energy that is proportional to the surfae of the interfaes. We denote the set ofpure phases by PN = {e1, . . . , eN} ⊂ ZN ∈ RN and let Zpure = L1(Ω, PN ) equippedwith the strong L1-topology. The spae F of admissible deformations remains asabove, whereas the energy funtional E : [0, T ] ×Q → R∞ takes the form
E(t, ϕ, z) =

∫
Ω
Wj(x)(x,∇ϕ(x)) Dx+ ρ

∫
Ω
|Dz| − 〈ℓ(t), ϕ〉 ,where j(x) = k ⇔ z(x) = ek and where ∫

Ω
|dz| denotes the total variation

∫
Ω
|Dz| def= sup{

∫
Ω
z·divψDx | ψ ∈ C1(Ω,Rn×d), |||ψ(x)||| ≤ 1 on Ω } .The norm ||| · ||| on RN×d an be adjusted to anisotropies in Ω ⊂ Rd and to di�erentweights for the interfaes between phases j and k, see [41, 42℄ for the details and forgeneralizations.Using the same dissipation distane D as above an existene theory as in Theorem5.1 an be derived, sine BV(Ω) embeds ompatly into L1(Ω). The solution q =

(ϕ, z) : [0, T ] → Q now satis�es
ϕ ∈ L∞([0, T ],W1,p(Ω,Rd)) and
z ∈ BV([0, T ],L1(Ω, PN)) ∩ L∞

weak([0, T ],BV(Ω,RN )) .5.3 Mesosopi ModelsOften it is not desirable or prohibitly ostly to alulate the evolution of the mi-rostruture during the hystereti evolution proess. If these details are not neededand if volume frations or other e�etive quantities are su�ient, then simpler mod-els may be used.If we only are about volume frations, then the mixture funtion an be used todesribe the e�etive behavior of phase mixtures. Let Wj(x, ·) be given as above for
j = 1, . . . , N . For z ∈ ZN and A ∈ Rd×d we let

W(x,A, z) = inf
{ ∫

(0,1)d

WJ(y)(x,A+∇ψ(y)) Dy
∣∣∣ J ∈ L1((0, 1)d, {1, ..., N}),

∫
(0,1)d

eJ(y) Dy = z, ψ ∈ W1,∞
0 ((0, 1)d,Rd)

}where (0, 1)d is a mirosopi representative volume element, J a mirosopi phaseindiator, and ∇ψ mirosopi �utuation of the gradient. In [40℄ W is also alledross-quasionvexi�ation and in [25℄ the free energy of mixing.Unfortunately, in general situations it is almost impossible to alulate W expliitly.Nevertheless W is ross-quasionvex and hene, for eah x ∈ Ω and A ∈ Rd×d, thefuntion W(x,A, ·) : ZN → [0,∞) is onvex and, for eah x ∈ Ω and z ∈ ZN ,the funtion W(x, ·, z) : Rd×d → [0,∞) is quasionvex. Expliit formulas are only18



available in dimension d = 1 or if eah Wj is quadrati with an elasti tensorindependent of j, viz.,
Wj(x,A) = 1

2
(ε(A) − εj(x)) : C(x) : (ε(A) − εj(x)) + dj(x)where ε(A) = 1

2
(A + A⊤ − 2I). Then,

W(x,A, z) =
∑N

j=1 zjWj(x,A) + wmix(x, z) ,where wmix(x, ek) = 0 and wmix(x, ·) : ZN → R is onvex. See [25, 47℄ for aseswhere wmix an be alulated or estimated e�iently.The advantage of the mixture theory is that we are not fored to work with qua-sionvexity. We are able to use polyonvexity as well. Hene it is possible to useenergy densities that take the value +∞, as for instane in �nite-strain elasti-ity where W (x,A) = +∞ for detA ≤ 0. Instead of ross-quasionvexity we mayuse ross-polyonvexity, namely W(x, ·, ·) : Rd×d × ZN → [0,∞] is alled ross-polyonvex, if there exists a funtion g(x, ·) : Rmd+N → [0,∞] that is onvex, lowersemi-ontinuous and satis�es
W(x,A, z) = g(x,M(A), z) ,where M(A) ∈ R

md is the set of all minors.We now de�ne the state spae Q = F × Z for lassial funtions ϕ only, namely
F = { ϕ ∈ W1,p(Ω,Rd) | ϕ|ΓDir

= id } ⊂ W1,p(Ω,Rd)equipped with the weak topology. The stored-energy funtional takes the form
E(t, ϕ, z) =

∫
Ω

W(x,∇ϕ(x), z(x)) + ρ
2
|∇αz|2 Dx− 〈ℓ(t), ϕ〉 . (29)For ρ > 0 and α > 0 we take Z = L1(Ω, ZN) equipped with the strong topology.Under suitable oerivity and (poly)quasionvexity assumptions on W(x, ·, z) it anthen be shown that the sublevels of E(t, ·) are ompat in Q, whih is our basiondition (5). In the ase ρ = 0, this is more di�ult, sine Z then has to beequipped with the weak topology. Then, ross-(poly)quasionvexity is neessaryfor weak lower semi-ontinuity of E . However, for the ase without regularization

(ρ = 0) the best we an hope for is that solutions for the inremental problem (IP)Πexist. The passage to the limit of vanishing time inrementals strongly relies on thelosedness ondition (9) for the stable sets whih, so far, annot be established inases without regularization.The following result is a slight variant of the existene results in [22, 41, 49℄.Theorem 5.2. Let p ∈ (1,∞), α, ρ > 0 and ℓ ∈ C1([0, T ],W1,p(Ω,Rd)∗). Moreover,let D be given as in Set. 5.2 and assume that E in (29) has ompat sublevelsin Q ⊂ W1,p(Ω,Rd)weak × L1(Ω, ZN )strong. Then, for eah stable initial state q0 =
(ϕ0, z0) ∈ Q there exists an energeti solution q = (ϕ, z) : [0, T ] → Q for (E ,D) with
ϕ ∈ L∞([0, T ],W1,p(Ω,Rd)) and z ∈ BV([0, T ],L1(Ω, ZN)) ∩ L∞([0, T ],Hα(Ω,RN)).19



The assoiated numerial onvergene results are disussed in [55℄. But all the abovemodels have the disadvantage that the solutions are not unique. Hene, it is notpossible to show that numerial solutions onverge.The next model goes bak to [77℄ and was further developed in [4, 5℄. This modelis based on the linearized strain tensor ε(u) = 1
2
(∇u + ∇u⊤) and the mesosopitransformation strain z ∈ Z = { A ∈ Rd×d | A = A⊤, trA = 0 }. The dissipation issimply a multiple of the L1-norm:

D(z, z̃) = R(z̃−z) =
∫
Ω
cd|z̃(x)−z(x)|Dx .The energy funtional takes the form

E(t, u, z) =
∫
Ω
W (x, ε(u), z) + h(|z|) + ρ

2
|∇αz|2 Dx− 〈ℓ(t), u〉 ,withW (x, ε, z) = 1

2
(ε−z):C:(ε−z). Again, the lassial model has no regularization,i.e., ρ = 0. The hardening funtion h : [0,∞) → [0,∞] equals
h(r) =

{
c1
√
δ2 + r2 + c2r

2 for r ∈ [0, r∗] ,
∞ otherwise ,in [5℄ and has δ = 0 in [77℄. In these ases it is easy to solve the inrementalproblems (IP)Π in the spae Q = H1(Ω,Rd) × Hα(Ω, Z), for all α ≥ 0. However,for obtaining energeti solutions we again need ρ and α stritly positive, to make Dweakly ontinuous on Z = Hα(Ω, Z).A further variation is onsidered in [4℄, where h is replaed by a smooth, onvexfuntion taking �nite values and growing at most quadratially, e.g.,

h(r) = c1
√
δ2 + r2 + c2r

2 + c3
δ

max{0,r−r∗}4

r2
∗
+r2 .Then, for α ≥ d/6 it an be shown that E(t, ·) : H1(Ω,Rd) × Hα(Ω, Z) → R isthree-times di�erentiable and uniformly onvex. Hene, the theory of Set. 7 in[59℄ is appliable. This allows us to onlude uniqueness of the solutions as wellas strong onvergene of the solutions of the inremental problem. In fat, theonvergene rate is (φ(Πk))

1/2. In [4℄ also the onvergene of spatial disretizationwill be disussed.5.4 Temperature-Indued Phase TransformationThe original shape-memory e�et is based on ooling and heating to swith betweenmartensite ourring in several variants and the single austenite phase. So far theenergeti formulation is only available for the isothermal ase and thus is suited forstress-indued phase transformations only.There is at least one nonisothermal ase that an be treated via the energeti for-mulation as well, namely if the temperature �eld is given a priori independent of the20



solution to be alulated. This means that the deformation and phase transforma-tion proess is so slow that all latent heat whih is either onsumed or generated viaphase transformation an be transported via heat ondution into the environment.Thus, our model is based on a temperature dependent stored-energy densityW (x,A, z, θ)whih is assumed to satisfy
∃ cW3 ∈ R ∃ cW4 > 0 ∀x ∈ Ω ∀A ∈ Rd×d ∀ z ∈ ZN ∀ θ > 0 :

|∂θW (x,A, z, θ)| ≤ cW4 (W (x,A, z, θ)+cW3 ) .
(30)The given temperature pro�le θ should satisfy (log θ) ∈ C1([0, T ] × Ω), then theenergy potential, whih for simpliity is now without external foring, takes theform

E(t, ϕ, z) =
∫

Ω
W (x,∇ϕ(x), z(x), θ(t, x)) Dxand the power assoiated to the temperature hanges is

∂tE(t, ϕ, z) =
∫
Ω
∂θW (x,∇ϕ(x), z(x), θ(t, x))∂tθ(t, x) Dx .Using (30) it is easy to establish the ondition (6) and, under suitable additionalassumptions, the onditions (7) and (8) hold as well. In [50℄ we will provide thedetailed assumptions for a full existene theory.5.5 Poling Indued PiezoeletriityMultifuntional materials derive their funtionality from the ombination of severalproperties suh as elastiity, polarizability, and magnetizability. For suh materialsthe polarization p or the magnetization m may be onsidered as the variable z usedabove. However, in addition we have to take the relevant version of the Maxwellequation into aount.In the quasi-stati setting either the eletri or the magneti �eld vanishes suhthat we obtain two learly distinguished ases, whih are dual in a ertain sense.Throughout we will restrit to the ase of small strains, sine otherwise the Maxwellequations have to be solved in the deformed on�guraton, see the referenes at thebeginning of Set. 5.6.The eletri �eld E and the dieletri displaement D are de�ned on all of Rdwhereas the polarization P : Ω → Rd on the body only. These �elds are related bythe onstitutive relation

D = ε0E + P in Ω and D = ε0E in R
d\Ω .The redued Maxwell equations are

divD = 0 and curl(E − Eext(t, ·)) = 0 in R
d , (31)where curl Ẽ = ∇Ẽ − (∇Ẽ)⊤. We will implement these equations as part of theenergeti formulation. 21



We onsider the displaement u : Ω → R
d and the dieletri displaement D asvariables in the spae

F = H1
ΓDir

(Ω,Rd) × L2
div(R

d,Rd)with L2
div(R

d,Rd) = {D ∈ L2(Rd,Rd) | divD = 0 } .The internal variable p ∈ Z = H1(Ω,Rd) is the remanent polarization. For q =
(u,D, p) ∈ Q = F × Z and t ∈ [0, T ] the energy potential E is de�ned via

E(t, q) =
∫

Ω
W (x, ε(u), p)− 1

ε0
D·P (x, ε(u), p)+ρ

2
|∇p|2 Dx

+
∫

Rd
1

2ε0
|D|2 Dx− 〈ℓ(t), (u,D)〉where the external foring ours via mehanial volume and surfae loadings andvia an external eletri �eld

〈ℓ(t), (u,D)〉 =
∫
Ω
fext(t)·uDx+

∫
ΓNeu

gext(t)·uDa+
∫

Rd Eext(t)·DDx .The eletri �eld is the dual variable to the dieletri displaement D, i.e.,
E = 1

ε0
(D−P (x, ε(u), p)) in Ω and E = 1

ε0
D in Rd\Ω . (32)The polarization is given as a onstitutive funtion and poling indued piezoele-triity means that the piezoeletri tensor ∂εP does not vanish.Following [32, 70℄ the dissipation distane is the Legendre transform of the so-alledswithing funtion, namely

D(p, p̃) = R(p̃− p) =
∫
Ω
R(x, p̃(x) − p(x)) Dxfor some Caratheodory funtion R : Ω × Rd → [0,∞) with R(x, ·) being onvexand 1-homogeneous. Under the assumption that W (x, ·, ·, p) : Rd×d

sym × Rd → R isonvex and that W satis�es suitable upper and lower bounds, it is now straightforward to prove the existene of energeti solutions (u,D, p) : [0, T ] → Q with
(u,D) ∈ L∞([0, T ],F) and p ∈ BV([0, T ],L1(Ω,Rd)) ∩ L∞([0, T ], H1(Ω,Rd)).To see the ompatibility with the Maxwell equations (31) we note that the stabilityondition (S) implies that for all t ∈ [0, T ] we have

DDE(t, u(t), D(t), p(t))[D̂] = 0 for all D̂ ∈ L2
div(R

d,Rd) .In Proposition 2.1 of [61℄ it is shown that the latter relation is equivalent to theMaxwell equations (31), if the de�nition (32) is used.Moreover, in that work additional onditions are disussed whih imply also unique-ness of solutions. For this the uniqueness theory of Set. 7 in [59℄ is employed.However, the resulting onditions seem very restritive.
22



5.6 Magnetostritive MaterialsWe summarize the theory of [17℄ whih is based on small-strain elastiity, see also[55℄. For the muh more ompliated onstitutive theory in the ase of �nite-strainelastiity we refer to [16, 30℄ and for some analysis for the stati problem withseond-order regularization of the deformation we refer to [74℄. For small strain-models inluding mirostruture via Young measure (like in Set. 5.2) we refer to[72, 73℄.In analogy to the ase of polarizable materials we use the magnetizationm : Ω → Rdas an internal variable. Usually the saturation assumption |m(x)| = msat > 0 isadded whih we impose by letting Z = { m ∈ Rd | |m| = msat }. The magnetiindution B : Rd → Rd and the magneti �eld H : Rd → Rd are related via theonstitutive law
B = µ0(H +m) in Ω and B = µ0H in R

d\Ω .In this quasistati setting Maxwell's equation redues to
divB = 0 and curlH = 0 in R

d . (33)We hoose F = H1
ΓDir

(Ω,Rd) × L2
div(R

d,Rd) equipped with the weak topology and
Z = L1(Ω, Z) with the strong topology. The energy potential reads

E(t, u, B,m) =
∫
Ω
W (x, ε(u), m)−B·m+ρ

2
|∇m|2 Dx

+
∫

Rd
1

2µ0
|B|2 Dx− 〈ℓ(t), (u,B)〉with an external foring of the form

〈ℓ(t), (u,B)〉 =
∫
Ω
fext(t)·uDx+

∫
ΓNeu

gext(t)·uDa+
∫

Rd Hext(t)·BDx .The parameter √ρ relates to the exhange length, whih determines the salings forthe width of domain walls. The dissipation distane may be hosen via an arbitrarydistane D(x, ·, ·) on Z = msatS
d−1, e.g.,

D(x,m, m̃) = c1 arccos
(

m· em
m2

sat

)
+ c2|ê·(m−m̃)|where ê is an �easy� axis and c2 = 0 in the isotropi ase. We let D(m, m̃) =∫

Ω
D(x,m(x), m̃(x)) Dx.Using the standard oerivity assumptions onW : Ω×Rd×d

sym×Z → [0,∞), onvexityin ε(u) and ontinuity in m ∈ Z it is standard to show that E(t, ·) : Q = F ×Z → Ris lower semi-ontinuous with ompat sublevels. Moreover D : Z × Z → [0,∞) isontinuous in the strong L1-topology (or in the weak H1-topology). Thus, existeneof energeti solutions for (E ,D) an be easily obtained from Theorem 3.2.Sine the magneti �eld H is the dual variable to B,
DBE(t, u(t), B(t), m(t))[B̂] = 0 for all B̂ ∈ L2

div(R
d,Rd)23



is equivalent to (33) in the form
divB = 0 and curl( 1

µ0
B −Hext − χΩm) = 0 in Rd .It is more ommon to formulate the problem of magnetostrition in terms of thepotential U of the magneti �eld H , i.e., H = ∇U . In the above formulation wemay then replae B via

B = µ0(∇U +Hext(t) + χΩm) (34)in the energy E to arrive at
Ẽ(t, u, U,m) =

∫
Ω
W (x, ε(u), m)−µ0

2
|m|2−m·Hext(t) Dx

+
∫

Rd

µ0

2
|∇U |2−µ0

2
|Hext(t)|2 Dx− 〈ℓmech(t), u〉 .Note that the Euler-Lagrange equation for U does not supply the desired Maxwellequation

div(∇U +Hext(t, ·) + χΩm) = 0 in R
d . (35)Thus, to derive an energeti formulation in this situation the variable U has to betaken as a funtion of m ∈ L1(Ω, Z) and t ∈ [0, T ] via Hext(t, ·), namely U = U(t,m)being the solution of (35).Instead of simply replaing B by the orresponding variable, we might as well per-form a partial Legendre transform suh that W̃ (f, x, ε(u), B,m) is replaed by

Ŵ (t, x, ε,H,m) = W̃ (t, x, ε, B,m) − B·∂BW̃ (t, x, ε, B,m)where B is again eliminated using (34). The orresponding energy Ê then ontainsthe negative de�nite term−
∫

Rd

µ0

2
|∇U |2 Dx. Thus, we may use DU Ê(t, u, U,m)[Û ] =

0 to obtain (35), but the saddle point struture of Ê does not allow us to introduea stability ondition in terms of (u, U,m). Thus, it is not possible to derive anenergeti formulation either.6 ConlusionsThe energeti formulation of rate-independent proesses was developed muh fur-ther via the abstrat approahes desribed in [22, 43, 49℄. The major improvementourred through �nding abstrat versions of the ideas in [15℄ for treating a rate-independent model for rak growth. Now it is possible to deal with problems wherethe energy E(t, ·, z) : F → R∞ is non-onvex. In general, the abstrat theory is avail-able in topologial spaes without any linear struture. Thus, it is possible to treat�nite-strain elastiity (f. [22, 33℄) as well as internal variables whih lie in generalnononvex sets suh as in magnetism (f. Set. 5.6) or in �nite-strain plastiity, see[46℄. Moreover, it is possible to inlude Young measure into the state spae as well[37, 54℄. 24



Further developments inlude the abstrat theory of Γ-onvergene and relaxationsof the energeti formulation. This allows us, for instane, to treat numerial approx-imations, see [4, 37, 55℄. However, the numerial analysis and e�ient simulationsstill need a lot of further developments.The major drawbak of the energeti formulation is that there are only very fewresults on the uniqueness of solutions, see [10, 52, 59℄. Another de�ieny onernsthe fat that the stability ondition (S) involves a global stability ondition. For abetter physial modeling and for numerial implementation it would be desirable toreplae this ondition by a suitable loal stability ondition. First attempts are givenin [18, 53℄, but a reasonable general theory is not yet developed. This is losely tothe general problem how these rate-independent models an be embedded into moregeneral dynamial problems, for instane inluding rate-dependent heat ondution,visous e�ets or even kineti terms.On the side of material modeling there is now quite a variety of models for shape-memory materials. It is possible to desribe models on many di�erent length sales.However, the question of upsaling and deriving e�etive models on larger salesneeds further investigations. The relaxations and Γ-onvergene results in Set. 4will be a good basis for doing this, see also [57℄. A �rst step in two-sale homogeniza-tion will be developed in [63℄. Moreover, evolutionary models for mirostruturesand textures will ertainly be important future areas where the energeti formulationan be helpful.The strength of the energeti formulation is that it an model the statis extremelywell by adjusting the energy-storage funtional E aording to experiments, see, e.g.,[37℄. However, the modeling of the dissipation distanes, whih ontains the onlyinformation on the dynamis, is not supported very well by experiments. In thissense, the energeti formulation provides a �rst mathematial step to well-posedevolutionary models for omplex material behavior.Aknowledgments. The researh was supported by DFG within the CollaborativeResearh Center SFB404 Multi�eld Problems in Fluid and Solid Mehanis, sub-projet C7. Further support by the European Union under HPRN-CT-2002-00284Smart Systems: New Materials, Adaptive Systems and their Nonlinearities and bythe DFG Researh Center Matheon, subprojet C18. The author is grateful to G.Franfort, A. Mainik, C. Miehe, M. Ortiz, R. Rossi, T. Roubí£ek, U. Stefanelli forstimulating disussions.Referenes[1℄ J. Alberty and C. Carstensen. Numerial analysis of time-depending primalelastoplastiity with hardening. SIAM J. Numer. Anal., 37:1271�1294 (ele-troni), 2000. 25
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