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Abstract

We consider the dispersive evolution of a single pulse in a nonlinear oscillator
chain embedded in a background field. We assume that each atom of the chain
interacts pairwise with an arbitrary but finite number of neighbours. The pulse
is modeled as a macroscopic modulation of the exact spatiotemporally periodic
solutions of the linearized model. The scaling of amplitude, space and time is
chosen in such a way that we can describe how the envelope changes in time due to
dispersive effects. By this multiscale ansatz we find that the macroscopic evolution
of the amplitude is given by the nonlinear Schrödinger equation. The main part of
the work is focused on the justification of the formally derived equation: We show
that solutions which have initially the form of the assumed ansatz preserve this
form over time-intervals with a positive macroscopic length. The proof is based on
a normal form transformation constructed in Fourier space, and the results depend
on the validity of suitable nonresonance conditions.

1 Introduction

A major topic in the area of multiscale problems is the derivation of macroscopic, con-
tinuum models from microscopic, discrete ones. Since the prototype of a discrete model
is a lattice (modeling, e.g., a crystal), it is natural that starting with the seminal work of
Fermi, Pasta and Ulam [FPU55], a lot of interest and work is attracted to the simplest,
one-dimensional representant, viz. the monoatomic, infinite oscillator chain:

ẍj =
M∑
m=1

[V ′
m(xj+m−xj) − V ′

m(xj−xj−m)]−W ′(xj), j ∈ Z, (1.1)

where xj(t) ∈ R is the deviation of an atom from its rest position j ∈ Z at time t ≥ 0,
due to the interaction potentials Vm with itsm-th neighbours and an on-site potential W ,
coupling the atoms to a background field.

Here, we are interested in the macroscopic limit which is obtained by choosing well-
prepared initial conditions: We choose the initial data in a specified class of functions
and want to obtain an evolution equation within this function class, which we call the
macroscopic limit problem. This approach is motivated by the theory of modulation
equations which evolved in the late 1960’s for problems in fluid mechanics (see [Mie02] for a
survey on this subject). If the linearized model has a space-time periodic solution one asks
how initial modulations of this pattern evolve in time. The modulations occur on much
larger spatial and temporal scales, such that the modulation equation is a macroscopic
equation.
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This is only one among a huge variety of possible approaches for investigating the oscillator
chain and deriving macroscopic limits, which reflect different viewpoints and aims. Apart
from methods and results in the framework of nonequilibrium statistical mechanics (cf.
for a survey e.g. [Spo91, Bol96]), in a more deterministic setting we would like to mention
the following groups of questions: First, one can focus on completely integrable systems
like the Toda lattices (with M = 1, V (y) = ey and W ≡ 0, see, e.g., [DKKZ96, DKV95]).
Second, a big body of work is concentrated on the dynamics of special types of solutions
like solitons, breathers or wave trains [FrW94, MaA94, Kon96, FrP99, Ioo00, IoK00,
FrM02, FrP02, Jam03, FrP04a, FrP04b, IoJ05]. Third, one can be interested in the
response of the oscillator chain to a simple initial disturbance [BCS01] or to Riemann
initial data [DKKZ96, DKV95].

Our paper is embedded in that body of work which is focused on the derivation and
rigorous justification of partial differential equations as macroscopic limits describing the
dynamics of a discrete lattice. In the framework of harmonic lattices [Mie05] considers
general polyatomic crystals in any dimension. It is shown that the weak continuum limit
describing the macroscopic evolution of displacements and velocities is the equation of
linear elastodynamics, and that the weak limit of the local energy density can be described
by Wigner-Husimi measures, satisfying a transport equation. Here, the macroscopic space
and time variables are modeled as y = εj and τ = εt, respectively. In the nonlinear,
anharmonic setting the same hyperboling scaling is used in [FiV99, DHM05, Her04],
where for W ≡ 0 the modulations of large-amplitude travelling waves are considered, and
the derived macroscopic limit is the so-called Whitham modulation equation. Supported
by numerical investigations in [Her04], the validity of this equation is discussed in detail
and for special cases it is rigorously justified in [DHM05]. A similar modulation ansatz
has been used in [HLM94] for the discrete nonlinear Schrödinger equation iȦj+c1(Aj−1−
2Aj + Aj+1) + c2|Aj|2Aj = 0 with Aj(t) ∈ C.

However, closest to our work is the justification of the Korteweg-de Vries equation as
the long wave-length limit in [Kal89, FrP99, ScW00]. There, for W ≡ 0 small-amplitude
solutions of the form xj(t) = ε

2U(ε3t, ε(x−ct))+O(ε4) are studied, and it is justified that
U satisfies the KdV equation ∂τU + κ1U∂ξU + κ2∂

3
ξU = 0.

Like [GiM04] the present work is concerned with modulations of the form

xj(t) = εA(ε
2t, ε(j−cgrt))e

i(ωt+ϑ0j) + c.c.+O(ε2),

where (c.c. abbreviates “conjugate complex” and) A satisfies the nonlinear Schrödinger
equation i∂τA = γ1∂

2
ξA + γ2|A|2A. Our aim is to generalize [GiM04] in two directions.

First, we allow for general interaction potentials leading to quadratic terms in the non-
linearities. Second, we allow for pair interaction potentials between 1 to M neighbours.
To be more specific, we consider potentials of the form

Vm(d) :=
αm,1

2
d2+

αm,2

3
d3+

αm,3

4
d4+O(d5), W (x) :=

β1

2
x2+

β2

3
x3+

β3

4
x4+O(x5) (1.2)

for m = 1, . . . ,M . (In particular, [GiM04] relates to the case M = 1 and α1,2 = 0 = β2,
which leads to a much simpler analysis.) We investigate solutions which are microscopi-
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cally periodic in space and time. The linearized model is given by

ẍj = Lj(x) :=
M∑
m=1

αm,1(xj+m−2xj+xj−m)− β1xj. (1.3)

It has the basic solutions xj(t) = ei(eωt+ϑj), where the wave number ϑ and the frequency ω̃
have to satisfy the dispersion relation ω̃2 = ω2(ϑ) with

ω2(ϑ) := 2
M∑

m=1

αm,1[1− cos(mϑ)]+β1, ϑ ∈ (−π, π]. (DR)

Throughout, we require that a stability condition holds:

ω2(ϑ) > 0 for all ϑ ∈ (−π, π], (SC)

and we take ω(ϑ) > 0. In the case of interactions only between nearest neighbours
(M = 1, V := V1, αk := α1,k) (SC) is equivalent to min{β1, 4α1+β1} > 0 (cf. (2.14)). In
the following, we consider always a fixed wave number ϑ0 ∈ (−π, π], and write shortly ω,
ω′, ω′′ to denote ω(ϑ0), ω

′(ϑ0), ω
′′(ϑ0), respectively. The associated basic mode E(t, j) :=

ei(ωt+ϑ0j) is considered to be the microscopic pattern of reference.

Our aim is to understand the macroscopic evolution of solutions, which are modulations
of the microscopic pattern, given by a modulation function A : [0,∞)×R → C:

xj(t) = (XA
ε )j(t) +O(ε2) with (XA

ε )j(t) := εA(ε
2t, ε(j−cgrt))E(t, j) + c.c. (1.4)

with ε ≤ ε0 for some ε0 > 0. We let τ = ε2t and ξ = ε(j−cgrt) for the macroscopic time
and space variable, respectively. Since the solutions given through (1.4) are small, they
lead to dynamics which are close to the linear one. Only the extremely long time scale
enables us to see how the amplitude A changes due to dispersive effects. In the hyperbolic
scaling τ = εt with ξ = εj one only sees hyperbolic transport effects, but no dispersion.

Inserting such an ansatz into (1.1), it turns out that this provides a useful approximation
for solutions of (1.1) only if the group velocity cgr equals −ω′, and A satisfies the associated
nonlinear Schrödinger equation (NLSE)

2iω∂τA = ωω′′∂2
ξA + ρ|A|2A, (1.5)

where ρ can be calculated explicitly (cf. (2.12)). A formal derivation of (1.5) is obtained
by assuming that solutions in the form (1.4) exist (cf. Section 2).

The mathematical justification is carried out in section 4: We show that solutions t 
→
(xj(t))j∈Z which start at t = 0 in the form of the ansatz (1.4) stay in this form over
intervals [0, τ0/ε

2] of positive macroscopic length τ0 > 0. More precisely, Theorem 4.1
states the following: Given a sufficiently smooth solution A of NLSE (1.5), τ0 > 0 and
d > 0, there exist ε0 > 0 and C > 0 such that for all ε ≤ ε0 any solution x of (1.1) with

‖(x(0), ẋ(0))− (XA
ε (0), Ẋ

A
ε (0))‖�2×�2 ≤ dε3/2

satisfies the estimate

‖(x(t), ẋ(t))− (XA
ε (t), Ẋ

A
ε (t))‖�2×�2 ≤ Cε3/2 for t ∈ [0, τ0/ε

2].
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We prove this result in principle by the same approach we used in our previous paper
[GiM04] on this subject. There, we considered the situation of only nearest-neighbour
interactions and restricted the justification of the NLSE on the case of cubic leading
terms of the nonlinearity in (1.1) (i.e. V ′′′(0) = 0 = W ′′′(0) or, equivalently, α2 = 0 = β2),
since exactly this assumption enabled us to use the method developed in [KSM92], relying
on a Gronwall type argument. Thus, in the general case of quadratic leading terms treated
here, this Gronwall type argument can not be used directly. We circumvent this difficulty
by a method which was developed in [Sch98] for hyperbolic PDEs.

The idea is to apply to the system ˙̃x = L̃x̃+ Q̃(x̃, x̃)+M̃ (x̃) (corresponding to our micro-
scopic model (1.1)) a suitable normal form transformation (near-identity transformation)

F : x̃ 
→ ỹ = F (x̃), such that the transformed system ˙̃y = L̃ỹ+N(ỹ) has a nonlinearity N
with cubic leading terms. Then, we prove for the transformed system a result equivalent
to Theorem 4.1, by using the Gronwall type argument mentioned above. Transforming
this result back into the variable x̃, we obtain Theorem 4.1.

The construction of the normal form transform F is carried out in Fourier space (Section
3). An essential condition in normal-form theory is a nonresonance condition of third
order on our fixed ϑ0 ∈ (−π, π]:

∃ CNR
ϑ0
> 0 : inf

s,t=1,2; θ∈(−π,π]

∣∣ω(ϑ0)+(−1)sω(θ)+(−1)tω(ϑ0−θ)
∣∣ ≥ CNR

ϑ0
> 0. (NR3)ϑ0

Our first result is Theorem 4.1 which is proved under a strengthened version of (NR3)ϑ0 ,
which we call uniform nonresonance condition

∃ CNR
unif > 0 : inf

s,t=1,2; ϑ,θ∈(−π,π]

∣∣ω(ϑ)+(−1)sω(θ)+(−1)tω(ϑ−θ)∣∣ ≥ CNR
unif > 0. (NR3)unif

In the case of nearest-neighbour interactions (NR3)unif holds if and only if the coefficients
α1, β1 of the harmonic parts of the potentials V,W satisfy min{β1, (16/3)α1+β1} > 0 (cf.
(2.17) ), which is slightly sharper than the stability condition (SC) min{β1, 4α1+β1} > 0.
However, for α1 ≥ 0, both conditions reduce to β1 = W

′′(0) > 0.

Under the more general condition (NR3)ϑ0 the analysis is more subtle. We obtain an
analogous justification result by using the higher-order approximation

XA,2
ε := εAE+ ε2

(
β2

δ0
|A|2+A2,1E+

a

δ2
A2E2

)
+ c.c., (1.6)

with δn := n2ω2(ϑ0)−ω2(nϑ0) and a := 4i
∑M

m=1 αm,2 sin(mϑ0)[1− cos(mϑ0)]+β2, where
A solves the NLSE (1.5) for τ ∈ [0, τ0] and A2,1 : [0, τ0]× R → C solves the equation

2iω∂τA2,1 = ωω
′′∂2

ξA2,1+ρ(2|A|2A2,1+A
2A2,1)−2ω′∂τ∂ξA− i

6
(ω2)′′′∂3

ξA+2e|A|2∂ξA (1.7)

where again e can be given explicitly (cf. (2.13)). This equation is obtained formally in
the course of the formal derivation of the NLSE by increasing the order of considered
scales εk to k = 4 (cf. Section 2). Clearly, by increasing the order of our approximation
we consider estimates for the error with respect to an original solution which are also of
higher order, namely εα with α ∈ (2, 5/2]. The precise result is proven in Section 4.3.
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2 The formal derivation of the NLSE

The formal derivation of the NLSE as a modulation equation for the oscillator chain model
(1.1) with M = 1 has been presented in full detail in [GiM04, Section 2]. There, sort
of a step-by-step method was used, which was restricted to the concrete situation. More
general situations are treated in [Kon96].

Here, since we want to derive the NLSE in the case of generalized interaction potentials
(M > 1) and especially since we need to consider also additional modulation equations
(cf. (1.7)), we take the opportunity to present the formal derivation in a more general way,
culminating in the equation system (2.11), which can be used in some sense algorithmically
in order to determine the functions Ak,n of an approximation XA,p

ε (cf. (2.1)) for arbitrary
p ∈ N.

Since we want to study the macroscopic evolution of modulated solutions of the form (1.4),
it is naturally to insert such an ansatz into our microscopic model (1.1) in order to derive
an evolution equation for the macroscopic modulation function A : [0,∞)×R → C. But,
inserting such an ansatz into the nonlinear problem (1.1) will generate higher harmonic
terms (with factors En) having scaling parameters εk, k ∈ N. Hence, we insert into (1.1)
the multiple scale ansatz

XA,p
ε :=

p∑
k=1

εk
k∑

n=−k
Ak,nE

n (2.1)

with Ak,n = Ak,n(τ, ξ) ∈ C and Ak,−n = Ak,n where τ = ε2t, ξ = ε(j−cgrt) for j ∈ Z,
t ≥ 0. Obviously, A1,1 = A.

The idea is now to expand the left- and right-hand side of the equation

(ẌA,p
ε )j =

M∑
m=1

{V ′
m[(X

A,p
ε )j+m−(XA,p

ε )j]− V ′
m[(X

A,p
ε )j−(XA,p

ε )j−m]} −W ′[(XA,p
ε )j] (2.2)

in terms of εkEn. Then, by equating the left- and right-hand side coefficients of each
of these terms for k = 1, . . . , p, n = 0, . . . , k separately, we will obtain an hierarchy of
equations for the functions Ak,n.

Since
d2

dt2
(Ak,nE

n) = [inω(ϑ0) + ε(−cgr)∂ξ + ε
2∂τ ]

2Ak,nE
n,

we obtain for the left hand side

ẌA,p
ε =

p∑
k=1

εk
k∑

q=1

q∑
n=−q

∑
µ+2ν=k−q

cnµν∂
ν
τ ∂

µ
ξAq,nE

n + εp+1rD,pε (2.3)

with

εp+1rD,pε :=

p+4∑
k=p+1

εk
p∑

q=1

q∑
n=−q

∑
µ+2ν=k−q

cnµν∂
ν
τ ∂

µ
ξAq,nE

n, (2.4)
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where µ, ν ∈ N0 and

cnµν = γµν [inω(ϑ0)]
2−µ−ν(−cgr)

µ with γµν =


0 for µ+ ν > 2,

2 for µ+ ν ≤ 2 and µ = 1 or ν = 1,

1 else.

We introduce for convenience the expression

∂±mj XA,p
ε := ±[(XA,p

ε )j±m−(XA,p
ε )j] = ±

p∑
k=1

εk
k∑

n=−k
[Ak,n(τ, ξ±εm)e±imnϑ0−Ak,n]E

n

By Taylor expansion we obtain

∂±mj XA,p
ε = ±

2p∑
k=1

εk
min{k,p}∑

q=max{1,k−p}

q∑
n=−q

f±mq(k−q)nE
n (2.5)

with

f±mq0n = (e±imnϑ0−1)Aq,n, f±mqrn = e±imnϑ0
(±m)r

r!
∂rξAq,n for r = 1, . . . , p−1,

f±mqpn = e±imnϑ0
(±m)p

p!
∂pξAq,n(τ, ξ±θ±εmpqn εm) with θ±εmpqn ∈ (0, 1).

Using
M∑
m=1

αm,1(f
+m
k0n+f

−m
k0n )− β1Ak,n = −ω2(nϑ0)Ak,n

and

M∑
m=1

αm,1(f
+m
qrn+f

−m
qrn ) =

(−i)r+2

r!

drω2(ϑ)

dϑr

∣∣∣∣
ϑ=nϑ0

∂rξAq,n for r = 1, . . . , p−1,

we obtain for the linear part of the right hand side

LjX
A,p
ε =

M∑
m=1

αm,1(∂
+m
j XA,p

ε −∂−mj XA,p
ε )− β1(X

A,p
ε )j

=

p∑
k=1

εk
k∑

q=1

q∑
n=−q

(−i)k−q+2

(k−q)!
dk−qω2(ϑ)

dϑk−q

∣∣∣∣
ϑ=nϑ0

∂k−qξ Aq,nE
n + εp+1rL,pε (2.6)

with

εp+1rL,pε :=

2p∑
k=p+1

εk
p∑

q=k−p

q∑
n=−q

M∑
m=1

αm,1(f
+m
q(k−q)n+f

−m
q(k−q)n)E

n (2.7)

Splitting ∂±mj XA,p
ε = ∂±mj XA,≤p

ε + ∂±mj XA,>p
ε with

∂±mj XA,≤p
ε := ±

p∑
k=1

εk
k∑

q=1

q∑
n=−q

f±mq(k−q)nE
n,
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the nonlinear part of the right hand side of equation (2.2) reads

Nj(X
A,p
ε ) =

p∑
s=2

{
M∑
m=1

αm,s[(∂
+m
j XA,≤p

ε )s − (∂−mj XA,≤p
ε )s]− βs(XA,p

ε )sj}

+

p∑
s=2

M∑
m=1

αm,s

s∑
σ=1

( s
σ

)
[(∂+m

j XA,≤p
ε )s−σ(∂+m

j XA,>p
ε )σ

− (∂−mj XA,≤p
ε )s−σ(∂−mj XA,>p

ε )σ]

+

M∑
m=1

[vm,p(∂
+m
j XA,p

ε )− vm,p(∂
−m
j XA,p

ε )]−wp[(XA,p
ε )j]

with

vm,p(d) := V
′
m(d) −

p∑
s=1

αm,sd
s, wp(x) :=W

′(x)−
p∑

s=1

βsx
s (2.8)

In the following we use the general formula

p∑
s=2

(

p∑
k=1

εkak)
s =

p∑
k=2

εk
k∑

s=2

∑
|(i)s|=k

a(i)s +

p2∑
k=p+1

εk
k∑

s=[(k−1)/p]+1

∑
|(i)s|=k

a(i)s,

where (i)s := (i1, . . . , is) with it ∈ {1, . . . , p}, |(i)s| :=
∑s

t=1 it and a(i)s :=
∏s

t=1 ait.

Applying this formula on ak :=
∑k

n=−k Ak,nE
n, we obtain

p∑
s=2

βs(X
A,p
ε )s =

p∑
k=2

εk
k∑

n=−k

k∑
s=2

βs
∑

|(i,ν)s|=(k,n),
(|ν|)s≤(i)s

A(i,ν)sE
n +

p2∑
k=p+1

εk
k∑

s=[(k−1)/p]+1

βs
∑

|(i)s|=k
a(i)s

with |(i, ν)s| = (k, n) :⇔ (
∑s

t=1 it=k and
∑s

t=1 νt=n) and (|ν|)s ≤ (i)s :⇔ |νt| ≤ it. Also,
A(i,ν)s :=

∏s
t=1Ait,νt .

Analogously, since

∂±mj XA,≤p
ε =

p∑
k=1

εk
k∑

n=−k

k∑
q=|n|

d±m(k−q)n∂
k−q
ξ Aq,nE

n

(by
∑k

q=1

∑q
n=−q aqn =

∑k
n=−k

∑k
q=max{1,|n|} aqn) with

d±m0n := ±(e±imnϑ0−1) and d±mrn := ±e±imnϑ0
(±m)r

r!
for r = 1, . . . , p−1,

setting b±mk :=
∑k

n=−k
∑k

q=max{1,|n|} d
±m
(k−q)n∂

k−q
ξ Aq,nE

n, we obtain

p∑
s=2

αm,s(∂
±m
j XA,≤p

ε )s =

p∑
k=2

εk
k∑

n=−k

k∑
s=2

αm,s

∑
|(i,ν)s|=(k,n),

(|ν|)s≤(i)s

∑
(max{1,|ν|})s
≤(q)s≤(i)s

d±m(i−q,ν)s
∂

(i−q)s

ξ A(q,ν)sE
n

+

p2∑
k=p+1

εk
k∑

s=[(k−1)/p]+1

αm,s

∑
|(i)s|=k

b±m(i)s
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with (max{1, |ν|})s := (max{1, |ν1|}, . . . ,max{1, |νs|}), (i−q)s := (i1−q1, . . . , is−qs) and

d±m(r,ν)s
:=

s∏
t=1

d±mrtνt
, ∂

(r)s

ξ A(q,ν)s :=
s∏

t=1

∂rt
ξ Aqt,νt

This leads to

Nj(X
A,p
ε ) =

p∑
k=2

εk
k∑

n=−k

k∑
s=2

∑
|(i,ν)s |=(k,n),

(|ν|)s≤(i)s

∑
(max{1,|ν|})s
≤(q)s≤(i)s

(−1)eM,s
(i−q,ν)s

∂
(i−q)s

ξ A(q,ν)sE
n + εp+1rN,pε

(2.9)

with

eM,s
(r,ν)s

:=


M∑
m=1

αm,s(
s∏
t=1

d−mrtνt
−

s∏
t=1

d+m
rtνt

) for (r)s �= (0)s,

M∑
m=1

αm,s(
s∏
t=1

d−m0νt
−

s∏
t=1

d+m
0νt

) + βs for (r)s = (0)s

and

εp+1rN,pε :=

p2∑
k=p+1

εk
k∑

s=[(k−1)/p]+1

∑
|(i)s|=k

[

M∑
m=1

αm,s(b
+m
(i)s

− b−m(i)s
)− βsa(i)s]

+

p∑
s=2

M∑
m=1

αm,s

s∑
σ=1

( s
σ

)
[(∂+m

j XA,≤p
ε )s−σ(∂+m

j XA,>p
ε )σ

− (∂−mj XA,≤p
ε )s−σ(∂−mj XA,>p

ε )σ]

+

M∑
m=1

[vm,p(∂
+m
j XA,p

ε )− vm,p(∂
−m
j XA,p

ε )]− wp[(XA,p
ε )j ]. (2.10)

Hence, equating the coefficients of the left and right hand side for each term εkEn with
k = 1, . . . , p and n = 0, . . . , k (the terms for n = −k, . . . ,−1 can be ommited since they
are just the complex conjugates of the terms for n = 1, . . . , k), we obtain the equations
that determine the functions Ak,n

δn(ϑ0)Ak,n =
k−1∑

q=max{1,n}
{
∑

µ+2ν=k−q
cnµν∂

ν
τ ∂

µ
ξAq,n +

(−i)k−q

(k−q)!
dk−qω2(ϑ)

dϑk−q

∣∣∣∣
ϑ=nϑ0

∂k−qξ Aq,n}

+

k∑
s=2

∑
|(i,ν)s|=(k,n),

(|ν|)s≤(i)s

∑
(max{1,|ν|})s
≤(q)s≤(i)s

eM,s
(i−q,ν)s

∂
(i−q)s

ξ A(q,ν)s (2.11)

with δn(ϑ0) := n
2ω2(ϑ0)− ω2(nϑ0).

By this formalism we can calculate hierarchically the determining equations for the func-
tions Ak,n of the approximation (2.1) with p = 3 and p = 4 in which we are interested
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here. Note, that it holds A = A1,1, Ak,−n = Ak,n. Thus, for k = 1, n = 0, 1 we obtain only
the equation −ω2(0)A1,0 = 0 which yields A1,0 = 0, since ω2(0) = β1 > 0 by (SC). The
function A = A1,1 remains undetermined. For k = 2, n = 0, 1, 2 we obtain (with A1,0 = 0)

−ω2(0)A2,0 = 2β2|A|2,
0 = 2iω(ϑ0)[cgr+ω

′(ϑ0)]∂ξA,

[4ω2(ϑ0)−ω2(2ϑ0)]A2,2 = aA
2

with a := 4i
∑M

m=1 αm,2 sin(mϑ0)[1− cos(mϑ0)]+β2. The second equation yields cgr =
−ω′(ϑ0), since ω(ϑ0) �= 0 by (SC). The function A2,1 remains undetermined. In the
following we use the abbreviation

γκλµν :=

M∑
m=1

αm,κm
λ{2i sin(mϑ0)}µ{2[1− cos(mϑ0)]}ν.

Hence, a = γ2011+β2. Using the results we obtained until now, the equations for k = 3
read

−ω2(0)A3,0 = 2β2(AA2,1+c.c.)− 2γ2101(A∂ξA+c.c.),

0 = 2iω(ϑ0)∂τA− ω(ϑ0)ω
′′(ϑ0)∂

2
ξA− ρA|A|2

[4ω2(ϑ0)−ω2(2ϑ0)]A3,2 = 2bA∂ξA + 2aAA2,1

[9ω2(ϑ0)−ω2(3ϑ0)]A3,3 = cA
3

with

ρ := 2(γ2
2011−β2

2)/δ2 + 4β2
2/β1 − 3(γ3002+β3), (2.12)

b := γ1111a/δ2+3γ2101−γ2102,

c := 2(3γ2011−γ2012+β2)a/δ2−3γ3002+γ3003+β3.

The function A3,1 remains undetermined. Note, that the equation for k = 3, n = 1 is
the nonlinear Schrödinger equation (1.5) which determines the evolution of A. Thus, if
we are interested only in the formal derivation of this equation we can insert in (1.1) the
improved approximation (2.1) for p = 3 and stop here (and set A3,1 ≡ 0), since at this
stage all the functions Ak,n of our approximation XA

ε = XA,1
ε , namely A1,0 and A, are

determined.

However, as we will see later on, we need also the approximation XA,2
ε . In order to

determine A2,1 we have to insert the improved approximationXA,4
ε into (1.1) and calculate

by the formalism (2.11) the functions A4,n: By using the previous results, we obtain

−ω2(0)A4,0 = d1∂
2
ξ |A|2 + [γ2210(∂

2
ξA)A+c.c.]− 2γ2101[∂ξ(A2,1A)+c.c.]

+ 2β2|A2,1|2 + 2β2(A3,1A+c.c.) + d2|A|4
0 = 2iω(ϑ0)∂τA2,1 − ω(ϑ0)ω

′′(ϑ0)∂
2
ξA2,1 − ρ(2|A|2A2,1+A

2A2,1)

+ 2ω′(ϑ0)∂τ∂ξA+ (i/6)[ω2(ϑ0)]
′′′∂3

ξA− 2e|A|2∂ξA
[4ω2(ϑ0)−ω2(2ϑ0)]A4,2 = 8iω(ϑ0)(a/δ2)A∂τA + f1∂ξ(A∂ξA) + γ2210A∂

2
ξA + 2b∂ξ(AA2,1)

+ a(A2
2,1+2AA3,1) + f2A

2|A|2
[9ω2(ϑ0)−ω2(3ϑ0)]A4,3 = gA

2∂ξA+ 3cA2A2,1

[16ω2(ϑ0)−ω2(4ϑ0)]A4,4 = hA
4

9



with

d1 := [γ1201−ω(ϑ0)ω
′′(ϑ0)]β2/β1,

d2 := 2β2|a/δ2|2 + 4β3
2/β

2
1 + 6β3β2(1/δ2−2/β1) + 6β4,

e := 2[2(3γ2101−γ2102)γ2011+γ1111(γ
2
2011−β2

2)/δ2]/δ2 + 3γ3111, (2.13)

f1 := [3γ1201−γ1202−2ω(ϑ0)ω
′′(ϑ0)]a/δ2 + 2γ1111b/δ2 + γ2211 − 2γ2210,

f2 := − 4β2
2a/β1δ2 + 2(β2−3γ2011+γ2012)c/δ3 + 6(β3−γ3021)a/δ2 − 6β3β2/β1 + 4(γ4012+β4),

g := − 3γ1130c/δ3 + 2(3γ2103−16γ2102+18γ2101)a/δ2 + 4(3γ2011−γ2012+β2)b/δ2

+ 3(2γ3111−γ3112),

h := (γ2031−2γ2030+β2)a
2/δ22 + 2(γ2031−γ2012+6γ2011+β2)c/δ3 + 3(2γ3021−γ3022+β3)a/δ2

+ γ4013−2γ4012+β4.

The function A4,1 remains undetermined. Since the equation for k = 4, n = 1 determines
A2,1, we know all the functions Ak,n of the improved approximation XA,2

ε in which we are
interested and can stop here, setting A3,1 ≡ A4,1 ≡ 0.

Thus, we have established the following result.

Theorem 2.1 If the microscopic oscillator chain equation (1.1) has for all ε ∈ (0, ε0)
solutions of the form

xj(t) = (XA
ε )j(t) +O(ε2) with (XA

ε )j(t) = εA(τ, ξ)E(t, j) + c.c.,

where τ = ε2t, ξ = ε(j+ω′t) and A : [0, τ0] × R → C is a smooth function, then A
necessarily has to satisfy the NLSE (1.5). Analogously, if (1.1) has for all ε ∈ (0, ε0)
solutions of the form

xj(t) = (XA,2
ε )j(t) +O(ε3) with XA,2

ε := εAE + ε2
(
β2

δ0
|A|2+A2,1E+

a

δ2
A2E2

)
+ c.c.,

where δn(ϑ0) := n2ω2(ϑ0)−ω2(nϑ0) and a := 4i
∑M

m=1 αm,2 sin(mϑ0)[1− cos(mϑ0)]+β2,
then A and A2,1 : [0, τ0]×R → C, (τ, ξ) 
→ A2,1(τ, ξ), necessarily have to satisfy the NLSE
(1.5) and equation (1.7), respectively.

We call this result a formal derivation, since the existence of solutions satisfying such
expansions is not clear at all. The purpose of the justification of the NLSE (and (1.7) in
the second case) is to show that solutions which start in these forms will maintain them
on suitably long time scales.

It should be noted that in order to determine the functions Ak,n of the improved approx-
imation XA,p

ε (cf. (2.1)) by the formalism (2.11), it has to hold δ0(ϑ0) = −ω2(0) �= 0 and
δn(ϑ0) = n2ω2(ϑ0)−ω2(nϑ0) �= 0. Under the stability condition (SC): ω2(ϑ) > 0 for all
ϑ ∈ (−π, π], this is satisfied if the nonresonance condition of second order

nω(ϑ0)−ω(nϑ0) �= 0 for n = 2, . . . , p (NR2)pϑ0

holds.
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Proposition 2.2 In the case of nearest-neighbour interactions (M = 1 with α1 := α1,1)
it holds:

(SC) ⇐⇒ min{β1, 4α1+β1} > 0, (2.14)

For n = 2, 3, 4: ∀ ϑ ∈ (−π, π] : δn(ϑ) > 0 ⇐⇒ min{β1,
2n+2

n2−1
α1 + β1} > 0, (2.15)

(SC) and (NR3)ϑ0 =⇒ (NR2)4ϑ0
, (2.16)

(SC) and (NR3)unif ⇐⇒ min{β1, (16/3)α1+β1} > 0. (2.17)

Remark 2.1 The stability condition (SC) restricts us by (2.14) to the harmonic coeffi-
cients β1 > 0 and α1 > −(1/4)β1. For α1 > −(3/16)β1 we obtain by (2.15) and (2.17)
that (NR3)unif implies (NR2)3ϑ0

. From (2.15) it follows that in order to guarantee (NR2)4ϑ0

we have to require 2ω(ϑ0) �= ω(2ϑ0) in the case −(3/16)β1 ≥ α1 > −(15/64)β1, and
2ω(ϑ0) �= ω(2ϑ0) and 4ω(ϑ0) �= ω(4ϑ0) in the case −(15/64)β1 ≥ α1 > −(1/4)β1. By
(2.17), both conditions follow from (NR3)ϑ0.

Proof : Equivalence (2.14) follows immediately from (DR) and (SC). For n = 2, 3, 4 it
holds

δn(ϑ) = n
2ω2(ϑ)−ω2(nϑ) = 2nα1gn(cosϑ) + (n2−1)β1 (2.18)

with

g2(c) = (1−c)2, g3(c) = c
3−3c+2, g4(c) = (1−c)2[(1+c)2 + 1] for c ∈ [−1, 1]

and min gn = 0, max gn = 4. This yields (2.15).

By (SC), (NR2)4ϑ0
is equivalent to δn(ϑ0) > 0 for n = 2, 3, 4, and thus, by (2.18), to

α1

β1
>

−(n2−1)

2ngn(cosϑ0)
=: fn(cos ϑ0). (2.19)

In Figure 1 we ploted fn(c) for n = 2 (black), n = 3 (dark grey) and n = 4 (light grey)
over c ∈ [−1, 0.45] (left) and c ∈ [−1, 0] (right). Note, that as α1/β1 approaches −1/4
from above we have to take care that it remains above fn(cos ϑ0) for our fixed ϑ0. Note
also, that f3 approximates −1/4 from below, and by (SC) it holds α1/β1 > f3(c) for all
c ∈ [−1, 1).

Ad (2.16): Setting s = 2, t = 1, θ = −ϑ0 into (NR3)ϑ0 we obtain |2ω(ϑ0)−ω(2ϑ0)| ≥
CNR
ϑ0
> 0. By (2.14) and (2.15) it holds δ3(ϑ) = 9ω2(ϑ) − ω2(3ϑ) > 0 for all ϑ ∈ (−π, π].

Finally, 4ω(ϑ0) = ω(4ϑ0) is equivalent to ω(ϑ0)+ω(3ϑ0)−ω(4ϑ0) = ω(3ϑ0)− 3ω(ϑ0). By
9ω2(ϑ)− ω2(3ϑ) > 0 and ω(ϑ) > 0 for all ϑ ∈ (−π, π], this means that ω(ϑ0) + ω(3ϑ0)−
ω(4ϑ0) < 0. But ω(0) > 0. Hence, by the continuity of ω, there exists a ϑ ∈ T with
|ϑ| ∈ (0, 3|ϑ0|), such that ω(ϑ0) + ω(ϑ)− ω(ϑ0−ϑ) = 0, which contradicts (NR3)ϑ0.

Ad (2.17): By (SC) and ω(ϑ) = ω(−ϑ) > 0, (NR3)unif can be reduced to

∃ CNR
unif > 0 : inf

ϑ,θ∈(−π,π]
[ω(ϑ)+ω(ϑ−θ)−ω(θ)] ≥ CNR

unif > 0.

11



-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4

-3

-2.5

-2

-1.5

-1

-0.5

-1 -0.8 -0.6 -0.4 -0.2

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

Figure 1: Plots over c ∈ [−1, 0.45] (left) and c ∈ [−1, 0] (right) of fn(c) defined by (2.19)
for n = 2 (black), n = 3 (dark grey), n = 4 (light grey).

For α1 = 0 we take CNR
unif = β

1/2
1 > 0. For α1 < 0 we have µ− := min{ω(ϑ) : ϑ ∈ [−π, π]}=

ω(±π) = (4α1+β1)
1/2 > 0 and µ+ := max{ω(ϑ) : ϑ ∈ [−π, π]}= ω(0) = β1/2

1 > 0. Thus,

inf
ϑ,θ∈(−π,π]

[ω(ϑ)+ω(ϑ−θ)−ω(θ)] ≥ 2µ− − µ+ =
16α1+3β1

2µ−+µ+
.

Equality is attained for ϑ = π, θ = 0. Hence, (NR3)unif is satisfied in the case α1 < 0, if
and only if 16α1+3β1 > 0. For α1 > 0 equality is not attained, since it holds µ− = ω(0)
and µ+ = ω(±π) but there exists no ϑ ∈ T with ϑ = ϑ ∓ π = 0. In this case, we show
ω(ϑ)+ω(ϑ−θ)−ω(θ) ≥ CNR

unif > 0 for all ϑ, θ ∈ (−π, π], and (2.17) is proved:

Since ω(ϑ) = 2α
1/2
1

[
sin2(ϑ/2)+γ

]1/2
with γ := β1/4α1 > 0 is 2π-periodic and continuous,

it suffices to show

f(ϑ, θ) :=
[
sin2[(ϑ−θ)/2]+γ]1/2 + [sin2(ϑ/2)+γ

]1/2 − [sin2(θ/2)+γ
]1/2

> 0

for all ϑ, θ ∈ (−π, π]. First, we prove

f̃ (ϑ, θ) := |sin[(ϑ−θ)/2]|+ [sin2(ϑ/2)+γ
]1/2 − [sin2(θ/2)+γ

]1/2 ≥ 0.

This estimate is sharp, since f̃(θ, θ) = 0. With β := sin2(ϑ/2), β0 := sin2(θ/2) it is
equivalent to

sin2[(ϑ−θ)/2] ≥ β + β0 + 2γ − 2 [(β+γ)(β0+γ)]
1/2 .

From sin2(x−y) = sin2 x + sin2 y − 2 sin x sin y cos(x−y), we obtain sin2[(ϑ−θ)/2] = β +
β0 ± 2η with η := (ββ0)

1/2 |cos[(ϑ−θ)/2]| ≥ 0. Thus, we want to prove

[(β+γ)(β0+γ)]
1/2 ± η ≥ γ ∀ β, β0 ∈ [0, 1],

which surely holds if [(β+γ)(β0+γ)]
1/2 − η ≥ γ, i.e., if

(β+γ)(β0+γ)− (η+γ)2 = ββ0 − η2 + γ(β+β0 − 2η) ≥ 0.

But this holds true, since η ∈ [0, (ββ0)
1/2]. Hence, since

f(ϑ, θ) = f̃ (ϑ, θ) +
[
sin2[(ϑ−θ)/2]+γ]1/2 − |sin[(ϑ−θ)/2]|
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and min
α∈[0,1]

{(α+γ)1/2−α1/2} = (1+γ)1/2−1, we obtain f(ϑ, θ) ≥ γ/[(1+γ)1/2+1], i.e.,

inf
ϑ,θ∈(−π,π]

[ω(ϑ)+ω(ϑ−θ)−ω(θ)] ≥ β1

(4α1+β1)1/2 + 2α
1/2
1

=
µ2
−

µ+ + (µ2
+−µ2−)1/2

> 0.

Note, that the minimum of f̃ (ϑ, θ) is attained for ϑ = θ, which yields f(θ, θ) = γ1/2,

whereas the minimum of f(ϑ, θ)−f̃(ϑ, θ) is attained for ϑ = θ±π, which yields f(θ±π, θ) ≥
γ1/2 > (1+γ)1/2−1. Hence, in the last two estimates above we can actually replace ≥ by
>. Note also, that the bound of the last estimate tends to µ− for µ+−µ− → 0 (α1 → 0)
and to 0 for µ+−µ− → ∞ (α1 → ∞). ˜

3 The normal form transform

The oscillator chain model (1.1) can be rewritten as the first-order ordinary differential
equation

˙̃x = L̃x̃+ Q̃(x̃, x̃) + M̃ (x̃) (3.1)

in the Banach space Y := :2×:2, where

x̃ =

(
x
ẋ

)
, L̃ =

(
0 1
L 0

)
, Q̃(x̃, ỹ) =

(
0

Q(x, y)

)
M̃ (x̃) =

(
0

M(x)

)
,

with L defined by (1.3), and

[Q(x, y)]j :=

M∑
m=1

αm,2[(xj+m−xj)(yj+m−yj)−(xj−xj−m)(yj−yj−m)]− β2xjyj, (3.2)

[M(x)]j :=
M∑
m=1

[vm,2(xj+m−xj)− vm,2(xj−xj−m)]− w2(xj), (3.3)

with vm,2 and w2 defined in (2.8).

On the Banach space Y we use the energy norm

‖(x, y)‖2
Y := ‖x‖2

E + ‖y‖2
�2 with ‖x‖2

E :=
M∑
m=1

αm,1

∑
j∈Z

|xj+m−xj|2 + β1‖x‖2
�2 (3.4)

and ‖y‖2
�2 =

∑
j∈Z

|yj|2. The norms ‖ · ‖�2 and ‖ · ‖E are equivalent by our stability
assumption (SC):

µ2
−‖x‖2

�2 ≤ ‖x‖2
E ≤ µ2

+‖x‖2
�2 (3.5)

with µ2
− := min{ω2(ϑ) : ϑ ∈ [−π, π]} and µ2

+ := max{ω2(ϑ) : ϑ ∈ [−π, π]}, which follows
easily by Fourier transformation.

The full oscillator chain is a Hamiltonian system whose solutions make the sum H of
kinetic and potential energy

H(x, ẋ) =
1

2
‖ẋ‖2

�2 +
∑
j∈Z

[ M∑
m=1

Vm(xj+m−xj) +W (xj)
]
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constant with respect to time. The norm ‖ · ‖Y is defined in such a way that its square
is twice the quadratic part of H. The flow of the linearized system (1.3) preserves this

norm: The solutions x̃ : t 
→ x̃(t) = et
eLx̃(0) of (1.3) satisfy ‖x̃(t)‖Y = ‖x̃(0)‖Y for all

t ∈ R (cf. [GiM04, Proposition 3.1]).

We introduce the normal form transformation F : Y → Y with

ỹ = F (x̃) := x̃+B(x̃, x̃) (3.6)

where the bilinear form B : Y×Y → Y remains to be determined. Applying this trans-
formation on (3.1) we obtain

˙̃y = L̃ỹ +Q(x̃, x̃) +M (x̃) (3.7)

with

Q(x̃, x̃) := −L̃B(x̃, x̃) +B(L̃x̃, x̃) +B(x̃, L̃x̃) + Q̃(x̃, x̃), (3.8)

M(x̃) := B(Q̃(x̃, x̃)+M̃ (x̃), x̃) +B(x̃, Q̃(x̃, x̃)+M̃(x̃)) + M̃(x̃). (3.9)

The terms of quadratic order with respect to x̃ are given by Q. The terms of cubic and
higher order of x̃ are subsummed by M .

Now we require for B = (B1, B2) to satisfy Q(x̃, x̃) = 0 for all x̃ ∈ Y . This is equivalent
to {

B2(x̃, x̃) = B1(L̃x̃, x̃) +B1(x̃, L̃x̃),

LB1(x̃, x̃)− B2(L̃x̃, x̃)−B2(x̃, L̃x̃) = Q(x, x).

Setting
B2(x̃, ỹ) := B1(L̃x̃, ỹ) +B1(x̃, L̃ỹ), (3.10)

the first equation is fulfilled, and the second reads

LB1(x̃, x̃)− B1(L̃
2x̃, x̃)− 2B1(L̃x̃, L̃x̃)− B1(x̃, L̃

2x̃) = Q(x, x),

i.e., by B1(x̃, x̃) = B1(x, ẋ; x, ẋ),

LB1(x, ẋ; x, ẋ)−B1(Lx, Lẋ; x, ẋ)−2B1(ẋ, Lx; ẋ, Lx)−B1(x, ẋ;Lx, Lẋ) = Q(x, x). (3.11)

We determine B1 : Y×Y → :2 via its Fourier transform. We denote the Fourier transform
of x ∈ :2 by x̂ ∈ L2(T) with T = R/2πZ, where

x̂(ϑ) =
∑
j∈Z

xj e
−iϑj for ϑ ∈ T.

The inverse of the Fourier transform is given by

xj =
1

2π

∫
T

x̂(ϑ) eiϑj dϑ for j ∈ Z.
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For the linear operator L defined by (1.3) it holds L̂x̂ := L̂x : ϑ 
→ −ω2(ϑ)x̂(ϑ). Using
the convolution

x̂y(ϑ) =
1

2π

∫
T

x̂(ϑ−θ)ŷ(θ) dθ := (x̂ ∗ ŷ)(ϑ) for x, y ∈ :2, ϑ ∈ T,

we obtain for Q defined by (3.2) the Fourier transform

[Q̂(x̂, ŷ)](ϑ) := \Q(x, y)(ϑ) =
1

2π

∫
T

x̂(ϑ−θ)q(ϑ, θ)ŷ(θ) dθ (3.12)

with

q(ϑ, θ) := 2i
M∑
m=1

αm,2 [sin(mϑ)− sin(m(ϑ−θ))− sin(mθ)]− β2. (3.13)

The Fourier transform of B1(x̃, ỹ) with x̃=(x1, x2), ỹ=(y1, y2) ∈ Y=:2×:2 has the general
form

[B̂1(̂̃x, ̂̃y)](ϑ) := \B1(x̃, ỹ)(ϑ)

=
1

2π

∫
T

(
x̂1(ϑ−θ), x̂2(ϑ−θ)

)(b11(ϑ, θ) b12(ϑ, θ)
b21(ϑ, θ) b22(ϑ, θ)

)(
ŷ1(θ)
ŷ2(θ)

)
dθ

for ϑ ∈ T. Thus, the Fourier transform of equation (3.11)

−ω2B̂1(x̂, ˙̂x; x̂, ˙̂x)+B̂1(ω
2x̂, ω2 ˙̂x; x̂, ˙̂x)−2B1( ˙̂x,−ω2x̂; ˙̂x,−ω2x̂)+B̂1(x̂, ˙̂x;ω

2x̂, ω2 ˙̂x) = Q̂(x̂, x̂)

holds for all (x̂, ˙̂x) if and only if

[
ω2(ϑ−θ)+ω2(θ)−ω2(ϑ)

](b11 b12

b21 b22

)
− 2

(
ω2(ϑ−θ)ω2(θ)b22 −ω2(ϑ−θ)b21

−ω2(θ)b12 b11

)
=

(
q 0
0 0

)
holds for all (ϑ, θ) ∈ (−π, π]2. This yields

b11 =
αq

α2−β2
, b22 =

2q

α2−β2
, b12 = b21 = 0, (3.14)

with α(ϑ, θ) := ω2(ϑ−θ) + ω2(θ) − ω2(ϑ) and β(ϑ, θ) := 2ω(ϑ−θ)ω(θ), provided that
(α2−β2)(ϑ, θ) �= 0 for all (ϑ, θ) ∈ (−π, π]2. Hence, in this case B1 : Y×Y → :2 is given
by

B1(x̃, ỹ) = b1(x1, y1) + b2(x2, y2) for x̃ = (x1, x2), ỹ = (y1, y2), (3.15)

where bi : :
2×:2 → :2, i = 1, 2 are defined by

[̂bi(x̂i, ŷi)](ϑ) =
1

2π

∫
T

x̂i(ϑ−θ)bii(ϑ, θ)ŷi(θ) dθ for ϑ ∈ T (3.16)

with the bii determined by (3.14). From (3.10) we obtain B2 : Y×Y → :2:

B2(x̃, ỹ) = b1(x2, y1) + b1(x1, y2) + b2(Lx1, y2) + b2(x2, Ly1) for x̃ = (x1, x2), ỹ = (y1, y2).
(3.17)

This determines B : Y×Y → Y with B = (B1, B2).
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Since

(α2−β2)(ϑ, θ) = [ω(ϑ−θ)−ω(θ)−ω(ϑ)] [ω(ϑ−θ)−ω(θ)+ω(ϑ)]
× [ω(ϑ−θ)+ω(θ)−ω(ϑ)] [ω(ϑ−θ)+ω(θ)+ω(ϑ)] , (3.18)

the condition (α2−β2)(ϑ, θ) �= 0 is fulfilled for all (ϑ, θ) ∈ (−π, π]2 if and only if our
uniform nonresonance condition is satisfied:

∃ CNR
unif > 0 : inf

s,t=1,2; ϑ,θ∈(−π,π]

∣∣ω(ϑ)+(−1)sω(θ)+(−1)tω(ϑ−θ)∣∣ ≥ CNR
unif > 0. (NR3)unif

(In the case of only nearest-neighbour interactions M = 1 (NR3)unif is equivalent to
min{β1, (16/3)α1,1+β1} > 0, cf. (2.17) in Proposition 2.2.)

Since B = (B1, B2) is given via (3.15), (3.17), in order to obtain an estimate for B, we
use the following estimate for a (general) bilinear form b : :2×:2 → :2.

Proposition 3.1 For a bilinear form b : :2×:2 → :2 with the Fourier transform

[̂b(x̂, ŷ)](ϑ) =
1

2π

∫
T

x̂(ϑ−θ)β(ϑ, θ)ŷ(θ) dθ for x, y ∈ :2 and ϑ ∈ T,

where β ∈ H3(T×T), there exists a cb > 0 depending on β, such that the estimate holds:

‖b(x, y)‖�2 ≤ cb‖x‖�2‖y‖�∞ for x, y ∈ :2.

Proof: The general form of b is given by

[b(x, y)]j =
∑
k,l∈Z

bjk,lxkyl for j ∈ Z.

Using the translation operator T : :2 → :2 defined by (Tx)j := xj+1, we obtain T b(x, y) =
b(Tx, T y), since

\T b(x, y)(ϑ) = eiϑ[̂b(x̂, ŷ)](ϑ) =
1

2π

∫
T

ei(ϑ−θ)x̂(ϑ−θ)β(ϑ, θ)eiθŷ(θ) dθ = [̂b(T̂ x, T̂ y)](ϑ).

Thus, from∑
k,l∈Z

bj+1
k,l xkyl = [T b(x, y)]j = [b(Tx, T y)]j =

∑
k,l∈Z

bjk,lxk+1yl+1 =
∑
k,l∈Z

bjk−1,l−1xkyl

we obtain bjk,l = b
j−1
k−1,l−1 and, hence, iteratively bjk,l = b

0
k−j,l−j for all j, k, l ∈ Z.

Since bjk,l = [b(ek, el)]j, where {ek : k ∈ Z} with (ek)i := δki (δ the Kronecker-symbol) and

êk(ϑ) = e−iϑk is the orthonormal system of the Hilbert space :2, we have

b0k,l = [b(ek, el)]0 =
1

2π

∫
T

[̂b(êk, êl)](ϑ) dϑ =
1

4π2

∫
T

∫
T

e−i(ϑ−θ)k β(ϑ, θ) e−iθl dθ dϑ.
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Using the Fourier representation of β

β(ϑ, θ) =
∑
m,n∈Z

bm,n e
−i(ϑm+θn) with bm,n =

1

4π2

∫
T

∫
T

β(ϑ, θ) ei(ϑm+θn) dϑ dθ,

we obtain b0k,l = b−k,k−l. From β ∈ Hs(T×T) it follows

|bm,n| ≤ C ‖β‖s
(1 +m2 + n2)s/2

for all m,n ∈ Z.

Hence, we obtain

|bjk,l| = |b0k−j,l−j | = |bj−k,k−l| ≤ C ‖β‖s
[1 + (j−k)2 + (k−l)2]s/2 for all j, k, l ∈ Z.

By this, it holds

‖b(x, y)‖2
�2 ≤

∑
j∈Z

(∑
k,l∈Z

|bjk,l||xk||yl|
)2

≤ C2‖β‖2
s‖y‖2

�∞
∑
j∈Z

(∑
k∈Z

|xk|
∑
l∈Z

1

[1 + (j−k)2 + (k−l)2]s/2
)2

≤ C2‖β‖2
s‖y‖2

�∞
∑
j∈Z

(∑
k∈Z

|xk| 1

[1 + (j−k)2]s/4
∑
l∈Z

1

[1 + (k−l)2]s/4
)2

≤ C2‖β‖2
s‖y‖2

�∞(1+2ζ(s/2))2
∑
j∈Z

(∑
k∈Z

|xk| 1

[1 + (j−k)2]s/4
)2

≤ C2‖β‖2
s‖y‖2

�∞(1+2ζ(s/2))4‖x‖2
�2

where we used

‖x ∗ y‖2
�2 ≤ ‖x‖2

�2‖y‖2
�1 with (x ∗ y)j :=

∑
k∈Z

xkyj−k

ζ(p) :=
∞∑
k=1

1

kp
for p > 1.

Choosing s = 3, our proposition holds with cb := C
2‖β‖2

3(1+2ζ(3/2))4. ˜

We can use the previous proposition in order to obtain an estimate for B = (B1, B2) in
the case where the uniform nonresonance condition (NR3)unif holds. By (3.18), and the
analyticity of ω and q given by (3.13), the bii(ϑ, θ), i = 1, 2, defined by (3.14) are analytic
with respect to ϑ, θ ∈ (−π, π]. Hence, there exist ci > 0, such that

‖bi(x, y)‖�2 ≤ ci‖x‖�2‖y‖�∞ for x, y ∈ :2, i = 1, 2.
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By the definitions of B1 (3.15) and B2 (3.17), and ‖ỹ‖∞ := max{‖y1‖�∞ , ‖y2‖�∞}, we
obtain

‖B1(x̃, ỹ)‖2
�2 ≤ (‖b1(x1, y1)‖�2+‖b2(x2, y2)‖�2)2
≤ (c1‖x1‖�2+c2‖x2‖�2)2‖ỹ‖2

∞,

‖B2(x̃, ỹ)‖2
�2 ≤ (‖b1(x2, y1)‖�2+‖b1(x1, y2)‖�2+‖b2(Lx1, y2)‖�2+‖b2(x2, Ly1)‖�2)2
≤ (c1+c2C)

2(‖x1‖�2+‖x2‖�2)2‖ỹ‖2
∞,

where we used ‖Lx‖�2 ≤ C‖x‖�2 and ‖Lx‖�∞ ≤ C‖x‖�∞. Thus, setting c := max{c1, c2},
and using (3.5) and ‖x1‖�2+‖x2‖�2 ≤ µ‖x̃‖Y with µ := (µ− + 1)/µ−, we obtain

‖B(x̃, ỹ)‖2
Y ≤ µ2

+‖B1(x̃, ỹ)‖2
�2+‖B2(x̃, ỹ)‖2

�2 ≤ C2
B‖x̃‖2

Y ‖ỹ‖2
∞ for x̃, ỹ ∈ Y (3.19)

with C2
B := µ2c2[µ2

++(1+C)2]. By ‖ỹ‖∞ ≤ µ‖ỹ‖Y , this yields also
‖B(x̃, ỹ)‖Y ≤ µCB‖x̃‖Y ‖ỹ‖Y for x̃, ỹ ∈ Y . (3.20)

Moreover, B : Y ×Y → Y is symmetric. Indeed, from q(ϑ, ϑ−θ) = q(ϑ, θ), α(ϑ, ϑ−θ) =
α(ϑ, θ) and β(ϑ, ϑ−θ) = β(ϑ, θ), we obtain bii(ϑ, ϑ−θ) = bii(ϑ, θ) for i = 1, 2 (cf. (3.14)).
By

[̂bi(x̂, ŷ)](ϑ) =
1

2π

∫
T

x̂(ϑ−θ)bii(ϑ, θ)ŷ(θ) dθ = 1

2π

∫
T

x̂(τ )bii(ϑ, θ)ŷ(ϑ−θ) dθ = [̂bi(ŷ, x̂)](ϑ)

it follows bi(x, y) = bi(y, x) for x, y ∈ :2. By (3.15), (3.17), we obtain Bi(x̃, ỹ) = Bi(ỹ, x̃),
i.e., B(x̃, ỹ) = B(ỹ, x̃) for x̃, ỹ ∈ Y .
Hence, in the case where the uniform nonresonance condition (NR3)unif holds, we obtain
by the normal form transformation F : Y → Y with F (x̃) = x̃ + B(x̃, x̃), where the
bilinear form B = (B1, B2) : Y×Y → Y is defined via (3.15), (3.17), the system

˙̃y = L̃ỹ +M(x̃) with M (x̃) = 2B(Q̃(x̃, x̃)+M̃ (x̃), x̃) + M̃ (x̃). (3.21)

By the Implicit Function Theorem, the inverse mapping ρ := F−1 of the transformation
F exists on a ball Bερ(0) ⊂ Y of radius ερ > 0 and centre F (0) = 0, and it holds
ρ ∈ C1(Bερ(0), Y ) and Dρ(0) = I . Hence, it exists a Cρ > 0, such that

‖ρ(ỹ1)−ρ(ỹ2)‖Y ≤ Cρ‖ỹ1−ỹ2‖Y for ỹ1, ỹ2 ∈ Y with ‖ỹ1‖Y , ‖ỹ2‖Y < ερ. (3.22)

Indeed, by the properties of B, the Fréchet derivative of F is given by DF : Y → L(Y, Y )
with DF (x̃) = I + 2B(x̃, ·) and, thus, DF (0) = I . Moreover, (3.20) gives F ∈ C1(Y, Y ),
since

‖DF (x̃)−DF (x̃0)‖L(Y,Y ) = 2‖B(x̃−x̃0, ·)‖L(Y,Y ) ≤ 2µCB‖x̃−x̃0‖Y for x̃, x̃0 ∈ Y .
Thus, for sufficiently small x̃ ∈ Y the system (3.21) reads

˙̃y = L̃ỹ +N(ỹ) with N(ỹ) :=M (ρ(ỹ)). (3.23)

By the definition of M and ρ(ỹ) = ỹ + O(ỹ2), the nonlinearity N of the transformed
system (3.23) has only cubic and higher order terms, but no quadratic ones. This is the
crucial motivation in applying the normal form transformation F on the system (3.1),
since it enables us to apply the Gronwall type argument already used in [GiM04] for
the justification of the NLSE associated to systems with cubic leading terms in their
nonlinearity (cf. Section 4.2).
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4 The justification of the NLSE

4.1 Estimate of the residual

The procedure of the formal derivation of NLSE consisted in equating the left and right
hand side coefficients of each term εkEn of the expansion in such terms of equation (2.2)
for k = 1, . . . , p (and n = 0, . . . , k). Hence, for the improved approximation XA,p

ε with
the Ak,n calculated in Section 2 the residual terms have by (2.3), (2.6) and (2.9) the form

res(XA,p
ε ) := ẌA,p

ε − LXA,p
ε −N(XA,p

ε ) = εp+1(rD,pε −rL,pε −rN,pε ) (4.1)

From (2.4) we obtain that there exists a CD > 0, depending on ω : ϑ 
→ ω(ϑ), ϑ, and ε0
such that for ε ≤ ε0 it holds

|(rD,pε )j(t)| ≤ CD
p+4∑

k=p+1

p∑
q=1

q∑
n=−q

∑
µ+2ν=k−q,

µ+ν≤2

|∂ντ ∂µξAq,n(τ, ξ)| (4.2)

with τ = ε2t, ξ = ε(j+ω′(ϑ)t). Analogously, from (2.7) and (2.10) we obtain that there
exists a C > 0, depending on ω, ϑ, Vm,W ∈ Cp+2(R) (m = 1, . . . ,M) and ε0, such that
for ε ≤ ε0 and ε2t ∈ [0, τ0] it holds

|(rL,pε )j(t)|+ |(rN,pε )j(t)| ≤ C
p∑

s,r=0

p∑
l=1

l∑
n=0

‖∂rξAl,n(τ, ·)‖sL∞(R)×

×
[

p−1∑
r=0

p∑
l=1

l∑
n=0

|∂rξAl,n(τ, ξ)|+
M∑
m=1

p∑
l=1

l∑
n=0

(|∂pξAl,n(τ, ξ+θ
+εm
pqn εm)|+|∂pξAl,n(τ, ξ−θ−εmpqn εm)|)

]

with θ±εmpqn ∈ (0, 1) (cf. (2.5)). For the estimation of vm,p and wp in N(XA,p
ε ) we used the

mean value theorem. Hence, the above estimate holds as long as ‖∂rξAl,n(τ, ·)‖L∞(R) ≤ d
is satisfied for all r = 0, . . . , p, l = 1, . . . , p, n = 0, . . . , l and all τ ∈ [0, τ0] (and C depends
also on d). By Sobolev’s imbedding theorem, this is fulfilled if ‖Al,n(τ, ·)‖Hp+1(R) ≤ d̃ for
τ ∈ [0, τ0].

Thus, applying Proposition 3.3 of [GiM04]∑
j∈Z

sup
|s|≤1

|φ (ε(j+c+s))|2 ≤ 8

ε
‖φ‖2

H1(R) for φ ∈ H1(R), ε ∈ (0, 1), c ∈ R,

we obtain

‖rL,pε (t)‖�2 + ‖rN,pε (t)‖�2 ≤ ε−1/2C̃

p+1∑
s=1

p∑
r=0

p∑
l=1

l∑
n=0

‖∂rξAl,n(τ, ·)‖sH1(R).

The same argument yields ‖rD,pε (t)‖�2 = O(ε−1/2) for ε ≤ ε0 and ε2t ≤ τ0, if and only if
the derivatives appearing in (4.2) satisfy ‖∂ντ ∂µξAq,n(τ, ·)‖H1(R) ≤ c for τ ∈ [0, τ0] and some

c > 0. If this is the case, by (4.1) and res(X̃A,p
ε ) := (0, res(XA,p

ε )) we finally obtain
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‖res(X̃A,p
ε )(t)‖Y = ‖res(XA,p

ε )(t)‖�2 ≤ C̃rεp+1/2 for ε ≤ ε0 and ε2t ≤ τ0. (4.3)

Looking at our systems of determining equations for the functions Al,n and taking into
account that ∂τA, ∂τA2,1 is equivalent to ∂

2
ξA, ∂

2
ξA2,1, respectively, we see that the needed

regularity conditions on Al,n are satisfied for A(τ, ·) ∈ H6(R) if p = 3 (where A2,1 remained
undetermined and thus can be assumed as equivalently vanishing) and for A(τ, ·) ∈ H7(R)
and A2,1(τ, ·) ∈ H6(R) if p = 4. From the determining equations of A and A2,1 it follows by
standard arguments of the theory of semilinear wave equations (cf. e.g., [Paz83, Tem88])
that there exists some τ0 > 0 such that the required regularity on A and A2,1 is preserved
for τ ∈ [0, τ0] if we assume initialy A(0, ·) ∈ H6(R) in the case p = 3 and A(0, ·) ∈ H7(R),
A2,1(0, ·) ∈ H6(R) in the case p = 4.

Obviously, under this regularity conditions we obtain by the same reasoning as above that
for XA,p

ε with p = 3, 4 and the calculated coefficients Ak,n (with A2,1 = A3,1 = 0 if p = 3
and A3,1 = A4,1 = 0 if p = 4) there exists a C > 0, depending on Vm,W, ω, θ, A, τ0 (and
A2,1 if p = 4), such that

‖XA,p
ε (t)‖�∞, ‖ẊA,p

ε (t)‖�∞ , ‖XA,p
ε (t)‖�2, ‖ẊA,p

ε (t)‖�2 ≤ ε1/2C for ε ≤ ε0 ≤ 1 and ε2t ≤ τ0,

which leads by the definitions (3.4) and ‖(x, y)‖∞ := max{‖x‖�∞ , ‖y‖�∞} to

‖X̃A,p
ε (t)‖∞ ≤ εC, ‖X̃A,p

ε (t)‖Y ≤ ε1/2C1 for ε ≤ ε0 ≤ 1 and ε2t ≤ τ0 (4.4)

with C1 := C(µ2
++1)1/2 (cf. (3.5)). Analogously, there exist C2, C

′
2, C3 > 0 such that

‖X̃A,p
ε (t)−X̃A

ε (t)‖Y ≤ C2ε
3/2, ‖X̃A,p

ε (t)−X̃A
ε (t)‖∞ ≤ C ′

2ε
2, ‖X̃A,p

ε (t)−X̃A,2
ε (t)‖Y ≤ C3ε

5/2

(4.5)
for ε ≤ ε0 ≤ 1, ε2t ≤ τ0.

4.2 Justification under uniform nonresonance (NR3)unif

We consider the transformed system (3.23) ˙̃y = L̃ỹ+N(ỹ) and the associated transformed
approximation

Ỹ A,3
ε := F (X̃A,3

ε ) = X̃A,3
ε +B(X̃A,3

ε , X̃A,3
ε ).

The residual term of the approximation Ỹ A,3
ε is given by

res(Ỹ A,3
ε ) :=

˙̃
Y A,3
ε − L̃Ỹ A,3

ε −N(Ỹ A,3
ε ) (4.6)

=
˙̃
XA,3

ε + 2B(
˙̃
XA,3

ε , X̃A,3
ε )− L̃X̃A,3

ε − L̃B(X̃A,3
ε , X̃A,3

ε )−M(X̃A,3
ε )

=
˙̃
XA,3

ε + 2B(res(X̃A,3
ε ), X̃A,3

ε )− L̃X̃A,3
ε − Q̃(X̃A,3

ε , X̃A,3
ε )− M̃(X̃A,3

ε )

= res(X̃A,3
ε ) + 2B(res(X̃A,3

ε ), X̃A,3
ε ),

where we used (3.8) (with Q = 0) and (3.9). From (4.3) and (4.4), it follows by (3.19)

‖res(Ỹ A,3
ε )(t)‖Y ≤ Crε7/2 for ε ≤ ε0, ε2t ≤ τ0 with Cr := (1+2CBCε0)C̃r (4.7)
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Inserting the error ε3/2R̃ := ỹ − Ỹ A,3
ε between a solution ỹ of the transformed system

(3.23) and the transformed approximation Ỹ A,3
ε into (3.23), we obtain by the definition

of the residual term res(Ỹ A,3
ε ) the differential equation for the error

˙̃
R = L̃R̃ + ε−3/2[N(Ỹ A,3

ε +ε3/2R̃)−N(Ỹ A,3
ε )−res(Ỹ A,3

ε )].

The semigroup associated to the linear problem
˙̃
R = L̃R̃ is given by G(t) = et

eL. Hence,
the differential equation for the error can be transformed by the variation of constants
formula into te

R̃(t) = et
eLR̃(0) + ε−3/2

∫ t

0

e(t−s)eL
[
N(Ỹ A,3

ε (s)+ε3/2R̃(s))−N(Ỹ A,3
ε (s))− res(Ỹ A,3

ε (s))
]
ds.

(4.8)

Assuming ‖x̃(0)−X̃A
ε (0)‖Y ≤ dε3/2, we obtain by (4.5): ‖x̃(0)−X̃A,3

ε (0)‖Y ≤ (d+C2)ε
3/2,

and thus by (4.4): ‖x̃(0)+X̃A,3
ε (0)‖Y ≤ [(d+C2)ε0+2C1]ε

1/2 for ε ≤ ε0 < 1. This yields,

by ỹ − Ỹ A,3
ε = x̃− X̃A,3

ε +B(x̃−X̃A,3
ε , x̃+X̃A,3

ε ) and (3.20),

‖R̃(0)‖Y = ε−3/2‖ỹ(0)−Ỹ A,3
ε (0)‖Y ≤ d̃ for ε ≤ ε0 < 1 (4.9)

with d̃ := (d+C2){1+µCB [(d+C2)ε0+2C1]ε
1/2
0 }.

Now, let us assume for the moment that we can show, that there exist a constant CN > 0
independent of a given D > 0, and an ε0 > 0 depending on D, such that it holds

‖N(Ỹ A,3
ε (t)+ε3/2R̃(t))−N(Ỹ A,3

ε (t))‖Y ≤ CNε
2‖ε3/2R̃(t)‖Y (4.10)

for ε ≤ ε0, ε2t ≤ τ0, ‖R̃(t)‖Y ≤ D.

Then, by ‖eteL‖Y→Y = 1, (4.7), (4.9) and (4.10), equation (4.8) yields

‖R̃(t)‖Y ≤ d̃+ ε2
(
CN

∫ t

0

‖R̃(s)‖Y ds + tCr

)
for ε ≤ ε0, ε2t ≤ τ0

as long as ‖R̃(s)‖Y ≤ D holds for s ∈ [0, t]. By Gronwall’s inequality, it follows

‖R̃(t)‖Y ≤ (d̃+ε2tCr)e
ε2tCN for ε ≤ ε0, ε2t ≤ τ0

as long as ‖R̃(s)‖Y ≤ D holds for s ∈ [0, t]. This is fulfilled if we choose D :=

(d̃+τ0Cr)e
τ0CN . Hence, for an ε0 > 0 associated to this D by (4.10), we have obtained

‖ỹ(t)−Ỹ A,3
ε (t)‖Y = ‖R̃(t)‖Y ε3/2 ≤ Dε3/2 for ε ≤ ε0, ε2t ≤ τ0.

For ‖ỹ(t)−Ỹ A,3
ε (t)‖Y , ‖Ỹ A,3

ε (t)‖Y < ερ/2 it holds ‖ỹ(t)‖Y < ερ. Thus, since x̃(t) = ρ(ỹ(t))
and X̃A,3

ε (t) = ρ(Ỹ A,3
ε (t)), it follows from (3.22)

‖x̃(t)−X̃A,3
ε (t)‖Y ≤ Cρ‖ỹ(t)−Ỹ A,3

ε (t)‖Y ≤ CρDε3/2 for ε ≤ ε0, ε2t ≤ τ0.
Hence, we finally obtain by (4.5)

‖x̃(t)−X̃A
ε (t)‖Y ≤ Cε3/2 for ε2t ≤ τ0, ε ≤ ε0 < 1 with C := CρD+C2.
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Thus, except for the proof of (4.10) that is presented below, we have established the
following theorem, which constitutes under the uniform nonresonance condition (NR3)unif

our justification of the validity of the NLSE (1.5) as a macroscopic limit for the oscillator
chain model (1.1).

Theorem 4.1 Assume that Vm, W ∈ C5(R) in (1.1) have the form (1.2) and that the
stability condition (SC) and the nonresonance conditions (NR2)3

ϑ0
and (NR3)unif hold.

Let A : [0, τ0]×R → C, τ0 > 0, be a solution of the NLSE (1.5) with A(0, ·) ∈ H6(R) and
let XA

ε be the formal approximation given in (1.4) with cgr = −ω′. Then, for each d > 0
there exist ε0, C > 0 such that for all ε ∈ (0, ε0) the following statement holds:

Any solution x̃ of (3.1) with an initial condition x̃(0) satisfying

‖x̃(0)−X̃A
ε (0)‖Y ≤ dε3/2,

fulfills the estimate

‖x̃(t)−X̃A
ε (t)‖Y ≤ Cε3/2 for t ∈ [0, τ0/ε

2].

(In the case of nearest-neighbour interactions (NR2)3ϑ0
is implied by (SC) and (NR3)unif ,

cf. Remark 2.1.)

Proof of (4.10): For y,∆ ∈ Y with ‖y‖Y+‖∆‖Y < ερ and x̃1 := ρ(y+∆), x̃2 := ρ(y) ∈ Y
we have by (3.23) and (3.9)

N(y+∆)−N(y) =M (x̃1)−M(x̃2)

= 2B(Q̃(x̃1, x̃1)−Q̃(x̃2, x̃2), x̃1) + 2B(Q̃(x̃2, x̃2), x̃1−x̃2)

+ 2B(M̃ (x̃1)−M̃(x̃2), x̃1) + 2B(M̃(x̃2), x̃1−x̃2) + M̃ (x̃1)− M̃(x̃2).

From (3.19) ‖B(x̃, ỹ)‖Y ≤ CB‖x̃‖∞‖ỹ‖Y it follows

‖N(y+∆)−N(y)‖Y ≤ 2CB‖x̃1‖∞
(
‖Q̃(x̃1, x̃1)−Q̃(x̃2, x̃2)‖Y+‖M̃(x̃1)−M̃ (x̃2)‖Y

)
+ 2CB

(
‖Q̃(x̃2, x̃2)‖∞+‖M̃(x̃2)‖∞

)
‖x̃1−x̃2‖Y + ‖M̃(x̃1)− M̃ (x̃2)‖Y . (4.11)

By the definition of M (3.3), we have

‖M(x1)−M(x2)‖2
�2 =

∑
j∈Z

([M(x1)]j−[M(x2)]j)
2

=
∑
j∈Z

(
M∑
m=1

[vm,2(x
(1)
j+m−x(1)

j )−vm,2(x
(1)
j −x(1)

j−m)−vm,2(x
(2)
j+m−x(2)

j )+vm,2(x
(2)
j −x(2)

j−m)]

−w2(x
(1)
j )+w2(x

(2)
j )
)2

with x(i) := xi ∈ :2 for i = 1, 2. Since vm,2(d) = O(d3) and w2(x) = O(x3) (cf. (2.8)), it
follows by the mean value theorem that for arbitrary δ > 0 there exists a constant C > 0
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depending on vm,2, w2, δ such that for ‖x1‖�∞ , ‖x2‖�∞ ≤ δ/µ− it holds

|vm,2(x
(1)
j±m−x(1)

j )−vm,2(x
(2)
j±m−x(2)

j )| ≤ C(‖x1‖2
�∞+‖x2‖2

�∞)|x(1)
j±m−x(1)

j −x(2)
j±m+x

(2)
j |,

|w2(x
(1)
j )−w2(x

(2)
j )| ≤ C(‖x1‖2

�∞+‖x2‖2
�∞)|x(1)

j −x(2)
j |.

Hence, we obtain

‖M(x1)−M(x2)‖�2 ≤ C̃(‖x1‖2
�∞+‖x2‖2

�∞)‖x1−x2‖�2 for ‖x1‖�∞ , ‖x2‖�∞ ≤ δ/µ−

and thus, by M̃(x̃) = (0,M(x)) , the definitions of ‖ · ‖Y and ‖ · ‖∞, and (3.5)

‖M̃(x̃1)−M̃(x̃2)‖Y ≤ CM(‖x̃1‖2
∞+‖x̃2‖2

∞)‖x̃1−x̃2‖Y for ‖x̃1‖Y , ‖x̃2‖Y ≤ δ (4.12)

with CM := C̃/µ−. By M̃ (0) = 0 (since vm,2(0) = w2(0) = 0), this yields also

‖M̃(x̃)‖∞ ≤ ‖M̃(x̃)‖Y ≤ CM‖x̃‖2
∞‖x̃‖Y for ‖x̃‖Y ≤ δ. (4.13)

Analogously, since

|(x(1)
j+1−x(1)

j )2−(x
(2)
j+1−x(2)

j )2| ≤ 2‖x1+x2‖�∞(|x(1)
j+1−x(2)

j+1|+|x(1)
j −x(2)

j |),
|(x(1)

j )2−(x
(2)
j )2| ≤ ‖x1+x2‖�∞ |x(1)

j −x(2)
j |,

we obtain, by Q̃(x̃, x̃) = (0, Q(x, x)), the definition of Q (3.2), and (3.5)

‖Q̃(x̃1, x̃1)−Q̃(x̃2, x̃2)‖Y ≤ CQ‖x̃1+x̃2‖∞‖x̃1−x̃2‖Y (4.14)

with CQ := C/µ−, C2 > 0 being a polynom of |αm|, (m = 1, . . . ,M) and |β2|. Moreover,
it holds

‖Q̃(x̃, x̃)‖∞ = ‖Q(x, x)‖�∞ ≤ (6
M∑
m=1

|αm,2|+|β2|)‖x‖2
�∞ ≤ (6

M∑
m=1

|αm,2|+|β2|)‖x̃‖2
∞.

(4.15)

Inserting (4.12)–(4.15) in (4.11), we obtain

‖N(y+∆)−N(y)‖Y ≤ Cn(‖x̃1‖2
∞+‖x̃2‖2

∞)‖x̃1−x̃2‖Y for ‖x̃1‖Y , ‖x̃2‖Y ≤ δ,

where Cn > 0 depends on CB, Vm, W and δ, with arbitrary δ > 0. For x̃1 = ρ(y+∆),
x̃2 = ρ(y) with ‖y‖Y+‖∆‖Y < ερ, there exists a δ > 0, such that ‖x̃1‖Y , ‖x̃2‖Y ≤ δ.
Hence, we obtain by (3.22)

‖N(y+∆)−N(y)‖Y ≤ CnCρ(‖x̃1‖2
∞+‖x̃2‖2

∞)‖∆‖Y for ‖y‖Y+‖∆‖Y < ερ (4.16)

with Cn > 0 depending on CB, Vm, W and ερ.

For y := Ỹ A,3
ε (t) = X̃A,3

ε (t) +B(X̃A,3
ε (t), X̃A,3

ε (t)), we obtain from (4.4) by (3.19)

‖y‖Y ≤ C1ε
1/2(1+CBCε) for ε2t ≤ τ0, ε ≤ ε0.
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Let ∆ := ε3/2R with ‖R‖Y ≤ D, D > 0, and choose ε0 sufficiently small, such that

‖y‖Y+‖∆‖Y < ερ. Since x̃2 = ρ(y) = X̃A,3
ε (t) and x̃1 = ρ(y+∆), it follows by (4.4),

(3.22) and ‖x̃‖∞ ≤ µ‖x̃‖Y with µ := m+1
m

,

‖x̃1‖∞ ≤ ‖x̃1−x̃2‖∞+‖x̃2‖∞ ≤ µ‖ρ(y+∆)−ρ(y)‖Y + Cε

≤ µCρε3/2D + Cε ≤ (µCρε
1/2
0 D+C)ε for ε2t ≤ τ0, ε ≤ ε0, ‖R‖Y ≤ D.

Decreasing ε0 > 0 further if needed, we obtain for given D > 0 e.g.

‖x̃1‖∞ ≤ 2Cε for ε2t ≤ τ0, ε ≤ ε0, ‖R‖Y ≤ D.

Inserting these estimates in (4.16), we obtain (4.10) with CN := 5CnCρC
2, which is

independent of D. ˜

4.3 Justification under the nonresonance condition (NR3)ϑ0

In the previous section we proved Theorem 4.1 under the uniform nonresonance condition
(NR3)unif . Now we only assume the weaker local nonresonance condition (NR3)ϑ0 for the
given, fixed ϑ0 ∈ T. Our approach follows closely ideas in [Sch98]. By the representation
(3.18) of γ := α2−β2, (NR3)ϑ0 implies that there exist c, δ > 0 such that

|γ(ϑ, θ)| > c for all (ϑ, θ) ∈ T×T with |ϑ−ϑ0| < 2δ (4.17)

(here and in the following the differences ϑ−ϑ0 are taken mod 2π), which certainly means
that it holds also

|γ(ϑ,−θ)| > c for all (ϑ, θ) ∈ T×T with |ϑ−ϑ0| < 2δ.

By the structure of γ, and since ω is an even function, we have the symmetries

γ(ϑ,−θ) = γ(−θ, ϑ), γ(ϑ, θ) = γ(θ, ϑ), γ(ϑ, θ) = γ(ϑ, ϑ−θ) for all (ϑ, θ) ∈ T×T.

Thus, it holds
|γ(ϑ, θ)| > c for all (ϑ, θ) ∈ Γ(ϑ0, 2δ),

where

Γ(ϑ0, δ) := {(ϑ, θ) ∈ T×T : |ϑ±ϑ0| < δ ∨ |θ±ϑ0| < δ ∨ |ϑ−θ±ϑ0| < δ}.

Now, we define B ′ = (B ′
1, B

′
2) : Y×Y → Y by (3.14)–(3.17) with the bi and bii, i = 1, 2,

replaced by b′i and b
′
ii := χδbii, respectively, where χδ : T×T → [0, 1] is such that χδ ∈

H3(T×T), χδ(ϑ, θ) = χδ(ϑ, ϑ−θ), and
χδ(ϑ, θ) = 1 for (ϑ, θ) ∈ Γ(ϑ0, δ), χδ(ϑ, θ) = 0 for (ϑ, θ) ∈ T×T \ Γ(ϑ0, 2δ).

Analogously, we define Q̃′ = (0, Q′) : Y×Y → Y by (3.12), replacing Q and q by Q′ and
q′ := χδq, respectively. The bilinear forms B ′, Q̃′ inherit the symmetry of B, Q̃ (i.e.,
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Figure 2: Sketch of Γ(ϑ0, δ) for ϑ0 ∈ (−π, π], δ > 0

q(ϑ, θ) = q(ϑ, ϑ−θ), bii(ϑ, θ) = bii(ϑ, ϑ−θ)), since (ϑ, θ) ∈ Γ(ϑ0, δ) ⇔ (ϑ, ϑ−θ) ∈ Γ(ϑ0, δ).
Moreover, in analogy to the uniformly nonresonant case (NR3)unif , it holds

2B ′(L̃x̃, x̃)− L̃B ′(x̃, x̃) + Q̃′(x̃, x̃) = 0 (4.18)

(cf. (4.18)). Thus, applying to (3.1) the normal form transformation F ′ : Y → Y with

ỹ = F ′(x̃) := x̃+B ′(x̃, x̃),

we obtain
˙̃y = L̃ỹ + S̃(x̃, x̃) +M

′
(x̃) (4.19)

with

S̃(x̃, ỹ) := Q̃(x̃, ỹ)− Q̃′(x̃, ỹ),

M
′
(x̃) := 2B ′(Q̃(x̃, x̃)+M̃(x̃), x̃) + M̃ (x̃). (4.20)

By definition, S̃(x̃, ỹ) = (0, S(x, y)) with S(x, y) := Q(x, y) − Q′(x, y) is bilinear and
symmetric, and has the Fourier transform

[Ŝ(x̂, ŷ)](ϑ) := \S(x, y)(ϑ) =
1

2π

∫
T

x̂(ϑ−θ)s(ϑ, θ)ŷ(θ) dθ,

with s := (1−χδ)q. Since b′ii, s ∈ H3(T×T), we obtain by Proposition 3.1

‖b′i(x, y)‖�2 ≤ c′i‖x‖�2‖y‖�∞ (i = 1, 2), ‖S(x, y)‖�2 ≤ cs‖x‖�2‖y‖�∞ for x, y ∈ :2.
(4.21)
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and thus

‖B ′(x̃, ỹ)‖Y ≤ C ′
B‖x̃‖Y ‖ỹ‖∞, ‖S̃(x̃, ỹ)‖Y ≤ CS‖x̃‖Y ‖ỹ‖∞ for x̃, ỹ ∈ Y (4.22)

with CS = cs/µ− and C ′
B defined by CB with c, ci replaced by c′, c′i (cf. (3.19)), which

yields also

‖B ′(x̃, ỹ)‖Y ≤ µC ′
B‖x̃‖Y ‖ỹ‖Y , ‖S̃(x̃, ỹ)‖Y ≤ µCS‖x̃‖Y ‖ỹ‖Y for x̃, ỹ ∈ Y (4.23)

(cf. (3.20)). Thus, like for ρ = F−1, it follows from the Implicit Function Theorem also
for ρ′ := (F ′)−1 the existence of constants C ′

ρ, ε
′
ρ > 0, such that

‖ρ′(ỹ1)−ρ′(ỹ2)‖Y ≤ C ′
ρ‖ỹ1−ỹ2‖Y for ỹ1, ỹ2 ∈ Y with ‖ỹ1‖Y , ‖ỹ2‖Y < ε′ρ. (4.24)

(cf. (3.22)). Hence, for sufficiently small x̃ ∈ Y the system (4.19) reads in analogy to
(3.23)

˙̃y = L̃ỹ + S ′(ỹ, ỹ) +N ′(ỹ) with S ′(ỹ, ỹ) := S̃(ρ′(ỹ), ρ′(ỹ)), N ′(ỹ) :=M
′
(ρ′(ỹ)). (4.25)

However, unlike (3.23), the system (4.25) posseses also quadratic nonlinear terms S ′(ỹ, ỹ) �=
0. Thus, it is clear that in order to prove a result similar to Theorem 4.1 we have to alter-
nate some parameters in the method used in Section 4.2, which was taylored to the case of
only cubic and higher order nonlinear terms. To this end, we start with an abstract form
of our method, where some parameters are unspecified, and deduce the needed values of
these parameters.

In Section 2 we carried out the formal derivation of the NLSE for the multiple scale ansatz
XA,p
ε given in (2.1) for p = 3 and p = 4. (In the uniformly nonresonant case p = 3 was

sufficient; in the present case it will turn out that we need p = 4.) This means that we
inserted (2.1) in our original microscopic model (1.1) and equated the left- and right-hand
side coefficients of each term εkEn for all k = 1, . . . , p, n = −k, . . . , k. Thus, we obtained
determining equations for all macroscopic functions Ak,n (or set Ak,n = 0), and moreover,
as showed in Section 4.2, the estimate

‖res(X̃A,p
ε )(t)‖Y ≤ C̃rεp+1/2 for ε ≤ ε0 and ε2t ≤ τ0, (4.3)

under certain regularity conditions on Ak,n, and for potentials Vm,W ∈ Cp+2(R). For
p = 4 it suffices to require Vm,W ∈ C6(R), and A(0, ·) ∈ H7(R), A2,1(0, ·) ∈ H6(R) for
the solutions A of the NLSE (1.5) and A2,1 of (1.7), which guarantees that there exist
constants CA, τ0 > 0 such that

max
k+2l≤7

‖∂ lτ∂kξA(τ, ·)‖L2(R) + max
k+2l≤6

‖∂ lτ∂kξA2,1(τ, ·)‖L2(R) ≤ CA for τ ≤ τ0 (4.26)

(cf. Section 4.1).

Then, considering the transformed system (4.25) and the associated transformed approx-
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imation Ỹ A,p
ε := F ′(X̃A,p

ε ) = X̃A,p
ε +B ′(X̃A,p

ε , X̃A,p
ε ), the residual terms are given by

res(Ỹ A,p
ε ) :=

˙̃
Y A,p
ε − L̃Ỹ A,p

ε − S ′(Ỹ A,p
ε , Ỹ A,p

ε )−N ′(Ỹ A,p
ε )

=
˙̃
Y A,p
ε + 2B ′( ˙̃XA,p

ε , X̃A,p
ε )− L̃X̃A,p

ε − L̃B ′(X̃A,p
ε , X̃A,p

ε )− S̃(X̃A,p
ε , X̃A,p

ε ) −
−M ′

(X̃A,p
ε )

=
˙̃
XA,p

ε + 2B ′(res(X̃A,p
ε ), X̃A,p

ε )− L̃X̃A,p
ε − Q̃(X̃A,p

ε , X̃A,p
ε )− M̃ (X̃A,p

ε )

= res(X̃A,p
ε ) + 2B ′(res(X̃A,p

ε ), X̃A,p
ε ),

where we used (4.18) and (4.20) with x̃ = X̃A,p
ε . From (4.3) and (4.4), it follows by (4.22)1

‖res(Ỹ A,p
ε )(t)‖Y ≤ C̃ ′

rε
p+1/2 for ε ≤ ε0, ε2t ≤ τ0 with C̃ ′

r := (1+2C ′
BCε0)C̃r. (4.27)

Inserting into (4.25) the error εαR̃′ := ỹ − Ỹ A,p
ε between a solution ỹ of (4.25) and the

transformed approximation Ỹ A,p
ε , we obtain the differential equation for the error

˙̃
R′ = L̃R̃′ + ε−α[S ′(Ỹ A,p

ε +εαR̃′, Ỹ A,p
ε +εαR̃′)−S ′(Ỹ A,p

ε , Ỹ A,p
ε )]+

+ ε−α[N ′(Ỹ A,p
ε +εαR̃′)−N ′(Ỹ A,p

ε )]− ε−αres(Ỹ A,p
ε )

which, using the semigroup G(t) = et
eL associated to the linear problem

˙̃
R′ = L̃R̃′ and the

variation of constants formula, yields

‖R̃′(t)‖Y ≤‖R̃′(0)‖Y+

+ ε−α
∫ t

0

(
‖S ′(Ỹ A,p

ε (s)+εαR̃′(s), Ỹ A,p
ε (s)+εαR̃′(s))−S ′(Ỹ A,p

ε (s), Ỹ A,p
ε (s))‖Y+

+‖N ′(Ỹ A,p
ε (s)+εαR̃′(s))−N ′(Ỹ A,p

ε (s))‖Y + ‖res(Ỹ A,p
ε (s))‖Y

)
ds.

(4.28)

Now, let us assume that there exist constants d′, C ′
r, C

′
N , C

′
S > 0 independent of a given

D′ > 0, and an ε0 > 0 depending on D′, such that the estimates

‖R̃′(0)‖Y ≤ d′, (4.29)

‖res(Ỹ A,p
ε )(t)‖Y ≤ C ′

rε
α+2, (4.30)

‖N ′(Ỹ A,p
ε (t)+εαR̃′(t))−N ′(Ỹ A,p

ε (t))‖Y ≤ C ′
Nε

α+2‖R̃′(t)‖Y ,
(4.31)

‖S ′(Ỹ A,p
ε (t)+εαR̃′(t), Ỹ A,p

ε (t)+εαR̃(t)′)−S ′(Ỹ A,p
ε (t), Ỹ A,p

ε (t))‖Y ≤ C ′
Sε

α+2‖R̃′(t)‖Y
(4.32)

hold for ε ≤ ε0, ε2t ≤ τ0, ‖R̃′(t)‖Y ≤ D′. Inserting these estimates in (4.28), we obtain by
Gronwall’s Lemma for D′ := (d′+τ0C ′

r)e
τ0(C

′
N+C′

S) and its associated ε0 > 0 the estimate

‖R̃′(t)‖Y ≤ D′ for ε ≤ ε0, ε2t ≤ τ0, i.e.,

‖ỹ(t)−Ỹ A,p
ε (t)‖Y ≤ D′εα for ε ≤ ε0, ε2t ≤ τ0
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(cf. the argument in Section 4.2). Thus, for ε0 > 0 such that ‖ỹ(t)−Ỹ A,p
ε (t)‖Y , ‖Ỹ A,p

ε (t)‖Y
< ε′ρ/2 inequality (4.24) yields

‖x̃(t)−X̃A,p
ε (t)‖Y ≤ C ′

ρD
′εα for ε ≤ ε0, ε2t ≤ τ0,

and for α ∈ (2, 5/2] we obtain by (4.5)3

‖x̃(t)−X̃A,2
ε (t)‖Y ≤ C ′εα for ε2t ≤ τ0, ε ≤ ε0 < 1 with C ′ := C ′

ρD
′ + ε5/2−α0 C3.

Let us now verify the estimates (4.29)–(4.32), and thereby deduce the required values of
α and p: Since N ′ consists of the cubic and higher order nonlinear terms, the proof of
(4.31) follows along the same lines as that of (4.10) in Section 4.2: By (4.20), (4.22)1,

(4.24), (4.25), we obtain for x̃′1 := ρ′(Ỹ A,p
ε (t)+εαR̃′(t)), x̃′2 := ρ′(Ỹ A,p

ε (t)) = X̃A,p
ε (t) under

the condition
‖Ỹ A,p

ε (t)‖Y + ‖εαR̃′(t)‖Y ≤ ε′ρ (4.33)

the estimate

‖N ′(Ỹ A,p
ε (t)+εαR̃′(t))−N ′(Ỹ A,p

ε (t))‖Y ≤ C ′
nC

′
ρ(‖x̃′1‖2

∞+‖x̃′2‖2
∞)‖εαR̃′(t)‖Y

with C ′
n > 0 depending only on C ′

B, Vm, W and ε′ρ (cf. (4.16)). Moreover, for α > 1 we
can show, that for given D′ > 0 there exists an ε0 > 0 such that (4.33) and

‖x̃′1‖2
∞+‖x̃′2‖2

∞ ≤ 5C2ε2 for ε ≤ ε0, ε2t ≤ τ0, ‖R′(t)‖Y ≤ D′

are satisfied, with C > 0 independent of D′. Setting C ′
N := 5C ′

nC
′
ρC

2 we obtain (4.31).

In order to prove (4.32), we decompose S ′ using its bilinearity and symmetry (with x̃′1, x̃
′
2

as before):

S ′(Ỹ A,p
ε (t)+εαR̃′(t), Ỹ A,p

ε (t)+εαR̃′(t))− S ′(Ỹ A,p
ε (t), Ỹ A,p

ε (t))

= S̃(x̃′1, x̃
′
1)− S̃(x̃′2, x̃′2) = S̃(x̃′1−x̃′2, x̃′1−x̃′2) + 2S̃(x̃′2, x̃

′
1−x̃′2)

= S̃(x̃′1−x̃′2, x̃′1−x̃′2) + 2S̃(X̃A,p
ε (t)−X̃A

ε (t), x̃
′
1−x̃′2) + 2S̃(X̃A

ε (t), x̃
′
1−x̃′2).

By (4.24) it holds under condition (4.33) ‖x′1−x̃′2‖Y ≤ εαC ′
ρ‖R̃′(t)‖Y . This yields by

(4.23)2
‖S̃(x̃′1−x̃′2, x̃′1−x̃′2)‖Y ≤ ε2αµCS(C ′

ρ)
2‖R̃′(t)‖2

Y

and by (4.5)2 and (4.22)2

‖S̃(X̃A,4
ε (t)−X̃A

ε (t), x
′
1−x̃′2)‖Y ≤ ε2+αCSC

′
2C

′
ρ‖R̃′(t)‖Y

for ε ≤ ε0 < 1, ε2t ≤ τ0. Finally, let us assume for the moment that we can show that
there exists a CP > 0 such that

‖S̃(X̃A
ε (t), z̃)‖Y ≤ CSCPε2‖z̃‖Y for z̃ ∈ Y and ε ≤ ε0, ε2t ≤ τ0. (4.34)

Then, for given D′ > 0 there exists a ε0 > 0 satisfying (4.33) and

‖S ′(Ỹ A,p
ε (t)+εαR̃′(t), Ỹ A,p

ε (t)+εαR̃′(t))− S ′(Ỹ A,p
ε (t), Ỹ A,p

ε (t))‖Y
≤ εα+2CSC

′
ρ(ε

α−2
0 µC ′

ρD
′ + 2C ′

2 + 2CP )‖R̃′(t)‖Y for ε ≤ ε0, ε2t ≤ τ0, ‖R̃′(t)‖Y ≤ D′.
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Thus, in order to obtain (4.32) with a constant C ′
S independent of D′, e.g., C ′

S =
2CSC

′
ρ(µC

′
ρ+C

′
2+CP ), which for given D′ can be achieved by controlling ε0, we have

to require α > 2.

The estimate (4.30) for the residual res(Ỹ A,p
ε ) follows from (4.27) if p+1/2 ≥ α+2, with

C ′
r := C̃ ′

rε
p+1/2−α−2
0 . Since we need α > 2, we require necessarily p > 3/2, i.e. at least

p = 4, which is also sufficient for α ≤ 5/2, and optimal for α = 5/2.

Finally, estimate (4.29) is equivalent to ‖ỹ(0)−Ỹ A,p
ε (0)‖Y ≤ εαd′ for ε ≤ ε0. By ỹ− Ỹ A,p

ε =

x̃− X̃A,p
ε +B ′(x̃−X̃A,p

ε , x̃−X̃A,p
ε ) + 2B ′(x̃−X̃A,p

ε , X̃A,p
ε ), and (4.23)1, (4.4)2, it has to hold

‖x̃(0)−X̃A,p
ε (0)‖Y ≤ εαd̃ for ε ≤ ε0 and a d̃ > 0. For α ∈ (2, 5/2] this is by (4.5)3

equivalent to the assumption ‖x̃(0)−X̃A,2
ε (0)‖Y ≤ εαc′ for ε ≤ ε0 and a c′ > 0.

Hence, except for the estimate (4.34), we have proven the following result based on the
nonresonance condition (NR3)ϑ0

Theorem 4.2 Assume that Vm, W ∈ C6(R) in (1.1) have the form (1.2) and that the
stability condition (SC) and the nonresonance conditions (NR2)4

ϑ0
and (NR3)ϑ0 hold. Let

A, A2,1 : [0, τ0]×R → C, τ0 > 0, be the solutions of the NLSE (1.5) with A(0, ·) ∈ H7(R)
and of (1.7) with A2,1(0, ·) ∈ H6(R), respectively, and let XA,2

ε be the formal approximation
(1.6). Then, for each c′ > 0 there exist ε0, C

′ > 0 such that for all ε ∈ (0, ε0) the following
statement holds:

Any solution x̃ of (3.1) with an initial condition x̃(0) satisfying

‖x̃(0)−X̃A,2
ε (0)‖Y ≤ c′εα with α ∈ (2, 5/2]

fulfills the estimate

‖x̃(t)−X̃A,2
ε (t)‖Y ≤ C ′εα for t ∈ [0, τ0/ε

2].

(In the case of nearest-neighbour interactions (NR2)4ϑ0
is implied by (SC) and (NR3)ϑ0 ,

cf. (2.16) in Proposition 2.2.)

Proof of (4.34): It suffices to prove the existence of a Cp > 0 such that

‖S(XA
ε (t), z)‖�2 ≤ csCpε2‖z‖�2 for z ∈ :2 and ε ≤ ε0, ε2t ≤ τ0.

with the cs > 0 given by (4.21)2. We define P : :2 → :2 by P̂ x̂ := P̂x := γx̂ with

γ(ϑ) :=

{
0 for ϑ ∈ T with |ϑ±ϑ0| < δ,
1 else

with the δ > 0 given in (4.17). Thus, by the definitions of S and Γ(ϑ0, δ), we obtain

γ(ϑ−θ)s(ϑ, θ) = s(ϑ, θ)γ(θ) = s(ϑ, θ) for all (ϑ, θ) ∈ T×T, which implies Ŝ(P̂x̂, ŷ) =

Ŝ(x̂, P̂ ŷ) = Ŝ(x̂, ŷ), and hence S(Px, y) = S(x,Py) = S(x, y). This yields by (4.21)

‖S(x, z)‖�2 ≤ cs‖Px‖�∞‖z‖�2 .
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Since ‖x‖2
�∞ ≤ ‖x‖2

�2 = ‖x̂‖2
L2(T) :=

1
2π

∫
T
|x̂(ϑ)|2 dϑ, it remains to show

‖P̂X̂A
ε (t)‖L2(T) ≤ Cpε2 for ε ≤ ε0, ε2t ≤ τ0. (4.35)

Setting aj := a(εj) := A(ε
2t, ε(j+ω′t)) for j ∈ Z, we obtain

[X̂A
ε (t)](ϑ) = εe

iωtâ(ϑ−ϑ0) + εe
−iωtâ(−ϑ−ϑ0),

and hence
|[X̂A

ε (t)](ϑ)|2 ≤ ε22(|â(ϑ−ϑ0)|2+|â(−ϑ−ϑ0)|2).
By the definition of P̂ , this yields

‖P̂X̂A
ε (t)‖2

L2(T) ≤ ε24
1

2π

∫
δ≤|η|≤π

|â(η)|2 dη.

Considering φ ∈ :2 with φ0 = 1, φ1 = φ−1 = −1/2 and φk = 0 for k ∈ Z, |k| ≥ 2, we

obtain φ̂(η) = 1− cos η and∫
δ≤|η|≤π

|â(η)|2 dη ≤ 1

(1− cos δ)2

∫ π

−π
|φ̂(η)â(η)|2 dη = 2π

(1− cos δ)2
‖φ ∗ a‖2

�2.

Since

|(φ ∗ a)j|2 = |
∑
k∈Z

φkaj−k|2 = |aj−1

2
(aj+1+aj−1)|2 =

1

4
|(aj+1−aj)−(aj−aj−1)|2

=
ε2

4
|a′(εx+

j )−a′(εx−j )|2 =
ε4

4

∣∣ ∫ x+
j

x−j

a′′(εx) dx
∣∣2 ≤ ε4

4

( ∫ j+1

j−1

|a′′(εx)| dx)2
≤ ε4

2

∫ j+1

j−1

|a′′(εx)|2 dx

with x−j ∈ (j − 1, j), x+
j ∈ (j, j + 1), we obtain

‖φ ∗ a‖2
�2 ≤ ε4

∫
R

|a′′(εx)|2 dx = ε3
∫

R

|a′′(ξ)|2 dξ = ε3‖∂2
ξA(ε

2t, ·)‖2
L2(R).

Hence, by (4.26) we obtain (4.35), and thus (4.34), with Cp := ε
1/2
0 2CA/(1− cos δ). ˜
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