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Abstract

We consider the dispersive evolution of a single pulse in a nonlinear oscillator
chain embedded in a background field. We assume that each atom of the chain
interacts pairwise with an arbitrary but finite number of neighbours. The pulse
is modeled as a macroscopic modulation of the exact spatiotemporally periodic
solutions of the linearized model. The scaling of amplitude, space and time is
chosen in such a way that we can describe how the envelope changes in time due to
dispersive effects. By this multiscale ansatz we find that the macroscopic evolution
of the amplitude is given by the nonlinear Schrédinger equation. The main part of
the work is focused on the justification of the formally derived equation: We show
that solutions which have initially the form of the assumed ansatz preserve this
form over time-intervals with a positive macroscopic length. The proof is based on
a normal form transformation constructed in Fourier space, and the results depend
on the validity of suitable nonresonance conditions.

1 Introduction

A major topic in the area of multiscale problems is the derivation of macroscopic, con-
tinuum models from microscopic, discrete ones. Since the prototype of a discrete model
is a lattice (modeling, e.g., a crystal), it is natural that starting with the seminal work of
Fermi, Pasta and Ulam [FPU55|, a lot of interest and work is attracted to the simplest,
one-dimensional representant, viz. the monoatomic, infinite oscillator chain:

M

B =Y Vi(@jem—1;) = Vi (2j—aj-m)] = W(z;), jE€LZ, (1.1)

m=1

where x;(t) € R is the deviation of an atom from its rest position j € Z at time ¢ > 0,
due to the interaction potentials V,,, with its m-th neighbours and an on-site potential W,
coupling the atoms to a background field.

Here, we are interested in the macroscopic limit which is obtained by choosing well-
prepared initial conditions: We choose the initial data in a specified class of functions
and want to obtain an evolution equation within this function class, which we call the
macroscopic limit problem. This approach is motivated by the theory of modulation
equations which evolved in the late 1960’s for problems in fluid mechanics (see [Mie02] for a
survey on this subject). If the linearized model has a space-time periodic solution one asks
how initial modulations of this pattern evolve in time. The modulations occur on much
larger spatial and temporal scales, such that the modulation equation is a macroscopic
equation.



This is only one among a huge variety of possible approaches for investigating the oscillator
chain and deriving macroscopic limits, which reflect different viewpoints and aims. Apart
from methods and results in the framework of nonequilibrium statistical mechanics (cf.
for a survey e.g. [Spo91, Bol96]), in a more deterministic setting we would like to mention
the following groups of questions: First, one can focus on completely integrable systems
like the Toda lattices (with M =1, V(y) = €Y and W = 0, see, e.g., [DKKZ96, DKV95]).
Second, a big body of work is concentrated on the dynamics of special types of solutions
like solitons, breathers or wave trains [FrW94, MaA94, Kon96, FrP99, Ioo00, IoK00,
FrM02, FrP02, Jam03, FrP04a, FrP04b, 10J05]. Third, one can be interested in the
response of the oscillator chain to a simple initial disturbance [BCSO01] or to Riemann
initial data [DKKZ96, DKV95].

Our paper is embedded in that body of work which is focused on the derivation and
rigorous justification of partial differential equations as macroscopic limits describing the
dynamics of a discrete lattice. In the framework of harmonic lattices [Mie05] considers
general polyatomic crystals in any dimension. It is shown that the weak continuum limit
describing the macroscopic evolution of displacements and velocities is the equation of
linear elastodynamics, and that the weak limit of the local energy density can be described
by Wigner-Husimi measures, satisfying a transport equation. Here, the macroscopic space
and time variables are modeled as y = ¢j and 7 = ¢t, respectively. In the nonlinear,
anharmonic setting the same hyperboling scaling is used in [FiV99, DHMO05, Her04],
where for W = 0 the modulations of large-amplitude travelling waves are considered, and
the derived macroscopic limit is the so-called Whitham modulation equation. Supported
by numerical investigations in [Her04], the validity of this equation is discussed in detail
and for special cases it is rigorously justified in [DHMO05]. A similar modulation ansatz
has been used in [HLM94] for the discrete nonlinear Schrédinger equation i4;4-¢;(A;_; —
2Aj -+ Aj-f—l) -+ Cg’AjPAj = 0 with Aj(t) e C.

However, closest to our work is the justification of the Korteweg-de Vries equation as
the long wave-length limit in [Kal89, FrP99, ScW00]. There, for W = 0 small-amplitude
solutions of the form z;(t) = e2U(e%, e(xz—ct)) + O(e*) are studied, and it is justified that
U satisfies the KdV equation 0,U + k1U0:U + @agU =0.

Like [GIMO04] the present work is concerned with modulations of the form

2;(t) = eA(e%, e(j—cgt))e @D ¢ + O(e?),
where (c.c. abbreviates “conjugate complex” and) A satisfies the nonlinear Schrodinger
equation i0,A = 7165214 + Y| A]2A. Our aim is to generalize [GiM04] in two directions.
First, we allow for general interaction potentials leading to quadratic terms in the non-
linearities. Second, we allow for pair interaction potentials between 1 to M neighbours.
To be more specific, we consider potentials of the form

4 d2+&§’2d3+&2’3d4+0(d5), W(z) = %x2+%x3+%$4+0(3f5) (1.2)

. Om,1

Vin(d) :=

for m =1,..., M. (In particular, [GIM04] relates to the case M =1 and a2 = 0 = [,
which leads to a much simpler analysis.) We investigate solutions which are microscopi-



cally periodic in space and time. The linearized model is given by

M
i’j = LJ(JZ') = Z O4m,1(£j+m_2xj+xj—m> — lej- (13)

m=1

It has the basic solutions z;(t) = el@499) where the wave number 9 and the frequency @
have to satisfy the dispersion relation &* = w?(9)) with

W(0) =2 apa[l—cos(md)|+p, ¥ € (=, 7). (DR)

m=1

Throughout, we require that a stability condition holds:
W) >0 foralld € (—m, nl, (SC)

and we take w(¥) > 0. In the case of interactions only between nearest neighbours
(M =1,V =W, a, := aq) (SC) is equivalent to min{ 3y, 4da;+51} > 0 (cf. (2.14)). In
the following, we consider always a fixed wave number ¥y € (—m, 7|, and write shortly w,
W', W to denote w(vy), w'(Yy), w”(Vg), respectively. The associated basic mode E(t, j) :=
el@t0) ig considered to be the microscopic pattern of reference.

Our aim is to understand the macroscopic evolution of solutions, which are modulations
of the microscopic pattern, given by a modulation function A : [0, 00) xR — C:

zi(t) = (X2);(t) + O(?)  with (X2);(t) := eA(e*, e(j—cut))E(t,j) +c.c.  (1.4)

with & < &g for some g9 > 0. We let 7 = €%t and & = £(j—cgt) for the macroscopic time
and space variable, respectively. Since the solutions given through (1.4) are small, they
lead to dynamics which are close to the linear one. Only the extremely long time scale
enables us to see how the amplitude A changes due to dispersive effects. In the hyperbolic
scaling 7 = et with £ = €5 one only sees hyperbolic transport effects, but no dispersion.

Inserting such an ansatz into (1.1), it turns out that this provides a useful approximation
for solutions of (1.1) only if the group velocity ¢, equals —w’, and A satisfies the associated
nonlinear Schrodinger equation (NLSE)

2iwd, A = ww"OFA + p|APA, (1.5)

where p can be calculated explicitly (cf. (2.12)). A formal derivation of (1.5) is obtained
by assuming that solutions in the form (1.4) exist (cf. Section 2).

The mathematical justification is carried out in section 4: We show that solutions ¢ +—
(xj(t))jez which start at ¢ = 0 in the form of the ansatz (1.4) stay in this form over
intervals [0, 70/€?] of positive macroscopic length 75 > 0. More precisely, Theorem 4.1
states the following: Given a sufficiently smooth solution A of NLSE (1.5), 7o > 0 and
d > 0, there exist ¢g > 0 and C' > 0 such that for all ¢ < gy any solution z of (1.1) with

I((0), &(0)) — (X2(0), X2(0)) |2 xe2 < de®/
satisfies the estimate

I((8), &(8)) = (X2(8), X2 (1)) laxee < O for t € [0, 70/€7].
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We prove this result in principle by the same approach we used in our previous paper
[GIMO04] on this subject. There, we considered the situation of only nearest-neighbour
interactions and restricted the justification of the NLSE on the case of cubic leading
terms of the nonlinearity in (1.1) (i.e. V"'(0) = 0 = W"(0) or, equivalently, ay = 0 = 32),
since exactly this assumption enabled us to use the method developed in [KSM92], relying
on a Gronwall type argument. Thus, in the general case of quadratic leading terms treated
here, this Gronwall type argument can not be used directly. We circumvent this difficulty
by a method which was developed in [Sch98] for hyperbolic PDEs.

The idea is to apply to the system 7 = L7+ @(’f, z)+ M(’f) (corresponding to our micro-
scopic model (1.1)) a suitable normal form transformation (near-identity transformation)
F : 72— y = F(x), such that the transformed system y=Lj+N (y) has a nonlinearity N
with cubic leading terms. Then, we prove for the transformed system a result equivalent
to Theorem 4.1, by using the Gronwall type argument mentioned above. Transforming
this result back into the variable z, we obtain Theorem 4.1.

The construction of the normal form transform F is carried out in Fourier space (Section
3). An essential condition in normal-form theory is a nonresonance condition of third
order on our fixed ¥y € (—m, 7

IO >0: ) Qi%f( ] |w(W0)+(—1)*w(0)+(—1)'w(W—0)| > Cy* > 0. (NR3)y,
s,t=1,2; 0e(—m,m
Our first result is Theorem 4.1 which is proved under a strengthened version of (NR3)y,,
which we call uniform nonresonance condition

FCNL >0 ,inf o |w (@) +(—1)"w(6)+(—1)w(@—0)| > Cai > 0. (NR3)unit
s,t=1,2; ¥,0e(—m,m

In the case of nearest-neighbour interactions (NR3)yuir holds if and only if the coefficients

aq, 1 of the harmonic parts of the potentials V, W satisfy min{ 31, (16/3)ca+51} > 0 (cf.

(2.17) ), which is slightly sharper than the stability condition (SC) min{3;, 4a;+3:1} > 0.

However, for a; > 0, both conditions reduce to 5, = W”(0) > 0.

Under the more general condition (NR3)y, the analysis is more subtle. We obtain an
analogous justification result by using the higher-order approximation

XA = cAE + £ (%]APJFAQJEJF;AQE?) + c.c., (1.6)
0 2

with 6, := n*w?(¥o)—w?(ndy) and a := 4 3°M_ a9 sin(midg)[1— cos(midy)]+32, where
A solves the NLSE (1.5) for 7 € [0, 70] and Ay : [0, 7] x R — C solves the equation

21w, Ay = ww”agAu+p(21A12A2,1+A2ZQ,1)—zw’aTagA—é(w2)”’a§A+zeyAyQa§A (1.7)

where again e can be given explicitly (cf. (2.13)). This equation is obtained formally in
the course of the formal derivation of the NLSE by increasing the order of considered
scales ¥ to k = 4 (cf. Section 2). Clearly, by increasing the order of our approximation
we consider estimates for the error with respect to an original solution which are also of
higher order, namely ¢* with a € (2,5/2]. The precise result is proven in Section 4.3.
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2 The formal derivation of the NLSE

The formal derivation of the NLSE as a modulation equation for the oscillator chain model
(1.1) with M = 1 has been presented in full detail in [GiM04, Section 2]. There, sort
of a step-by-step method was used, which was restricted to the concrete situation. More
general situations are treated in [Kon96].

Here, since we want to derive the NLSE in the case of generalized interaction potentials
(M > 1) and especially since we need to consider also additional modulation equations
(cf. (1.7)), we take the opportunity to present the formal derivation in a more general way,
culminating in the equation system (2.11), which can be used in some sense algorithmically
in order to determine the functions Ay, of an approximation X** (cf. (2.1)) for arbitrary
p € N.

Since we want to study the macroscopic evolution of modulated solutions of the form (1.4),
it is naturally to insert such an ansatz into our microscopic model (1.1) in order to derive
an evolution equation for the macroscopic modulation function A : [0,00)xR — C. But,
inserting such an ansatz into the nonlinear problem (1.1) will generate higher harmonic
terms (with factors E") having scaling parameters ¢*, k € N. Hence, we insert into (1.1)

the multiple scale ansatz
XAP:—Zg Z A E" (2.1)

k=1 n=—k

with A, = Apn(7,€) € C and Ay, = Ap, where 7 = 2, £ = e(j—cgyt) for j € Z,
t 2 0. ObViOUSly, Al,l = A.

The idea is now to expand the left- and right-hand side of the equation

M

(X27)5 = D AVAI(XED) o= (X)) = Vo [(XAP) = (X2) ol } = WIIXEP),) (2.2)

€ €
m=1

in terms of e*E™. Then, by equating the left- and right-hand side coefficients of each
of these terms for k = 1,...,p, n = 0,...,k separately, we will obtain an hierarchy of
equations for the functions Ay ,.

Since
d2
dt?
we obtain for the left hand side

Ko Z ZZ S B0 B 4 DT (2.3)

q=1 n=—q p+2v=k—q

— (A E") = [inw(Yo) + e(—cgr) O + SQGT]QAkME”,

with
p+4

Pty Dp _ Z Z Z Z meauauA ,nEna (2.4)

k=p+1 q=1 n=—q p+2v=k—q



where u, v € Ny and

0 for p+v>2,
Copr = Yoo [INW(90)]* ¥ (=) with 7, =<2 for p+v<2and p=1orv=1,

1 else.

We introduce for convenience the expression

XA (XA (K] = £33 om0 B

€
k=1 n=—=k

By Taylor expansion we obtain

2p min{k,p} q

ajimX?’p ==+ ng Z Z q(k qn (2‘5)

k=1 g=max{1l,k—p} n=—¢q

with
. : +
;(E);" = (eFmo 1) A, ., f;ﬁ;" = eim”“go( m) OfAgn forr=1,...,p—1,
m imn (:l:m>p m m
dm o ﬂoTagAqm( 7, §+05mem)  with 655 € (0,1).
Using
M
Z 1 (from 4 from) — BrAgn = —w? (no) A
and

M

_ (_i>r+2 drw2(19)
> cmalfan o) = ,
— 1 1 7! dv

we obtain for the linear part of the right hand side

OfAgn forr=1,...,p—1,
Jd=ndg

M
LiX2P =Y 1 (07 XAP -0 XAP) — B (XAP);
J“*e ) 7 € 7 € € J

m=1

D k q Nk—q+2 Jk—q, 2
N\ (=) dM()
B < Z Z (k—q)! d9k—a

k=1

=1 n=—q

' O Ay BN 4 ertirle(2.6)
Jd=ndg

with

el Lp Z Z Z ZQWI q(k on +fq(k on )En (2'7)

k=p+1 q=k—p n=—q m=1

Splitting 0" X% = 0" X< 4 9F " X AP with

aimXA<p ‘_iz Z Z q(k qQn

g=1 n=—q



the nonlinear part of the right hand side of equation (2.2) reads

Nj(X27) Z{Z O s [(OF " XZHEP)T — (7 XESP)] — By (X2)3}

s=2 m=1

M s
+ i Z Ol s Z <j) [(aj—"—mX?ép)s_a(aj—»’—mX?’>p)‘7

s=2 m=1 o=1

D SR U VEO

M
+ D [0mp(0) " XP) = 0 (D X)) — (X))
m=1

with

p
Ump(d) ==V, (d Z Omsll®,  wp(@) =W (@) =Y B (2.8)
s=1

In the following we use the general formula

SO ckary ZZZ@<+Z DD ST

=2 k=1 =2 =2 (), F=ptl  s=[(h—1)/pl+1 [(0)sl=h
where (i)s 1= (i1, ...,4s) with 4, € {1,...,p}, [()s| == D /1% and ag, == [[;_; as.

Applying this formula on ay := $°F

n=

Zﬂs X2y Z&‘ S NIDSEPINET SN SID S

k=2  n—=—Fk s=2  |(ix)s|=(kn), k=p+1 k—1)/p]+1 )el=k
(vD)s<(i)s s=[(k—1)/p] [(2)s]

with [(i,v)] = (k,n) & Qi i=k and Y ;_, y=n) and (|v|)s < (i)s & || < ip. Also,
A(ivV)s = Hle Ay

Analogously, since

_& ArnE", we obtain

OFmXASr = Ze Z Zd(k o0t Ag B

n=— q—In|
k .
(by Zq 1 n*—q Ggn = Zn:—k Zq:max{1,|n|} aqn) with
. . +m)"
dzm = 4™ 1) and dI" = j:eilm”%@ forr=1,...,p—1,
7!
: +m k k +m k—q n
setting bp™ 1= 3 1 1 D max(l, |n|} d(k om0 "AgaE", we obtain
DTS SEIES YD 9D WIND DEND DR N O
5=2 k=2  n=—k s=2 |(i)s|=(kn), (max{1,|v[})s
(WDs<@s <(@)s<()s
+m
o STD ST Sy
k=p+1  s=[(k—1)/p]+1 |(2)s|=Fk



with (max{l, [v|})s := (max{1, |}, .., max{1, [s|}), (i=q)s := (h—aqn, ..., 75—¢s) and

S S

+m . +m (r)s I Tt
dim =Tldin, 07 Agw. =[] 0 Agn
t=1 t=1
This leads to
P ko k
Ni(x2ny =3T3 Ny S (—De ) 08 Ay BT 4 e
k=2 n=—k s=2 |(iw)s|=(kn), (max{1,|v|})s
(WDs<(@s  <(@s<()s
(2.9)
with
M
Z@m Hdw Hdw for (r), # (0)s,
M,s
o =M
Zam,s<H do — Hdoyt + B, for (r)s = (0),
m=1 t=1
and
LS T VD o) WIRCTE IR
k=p+1  s=[(k—1)/p]+1|(i)s|=k m=1
DRI NWITE R
s=2 m=1
— (0 XAy (0 X))
M
+ > [0mp(0 XY = 0 (07 XEP)] — wp[(X2P);). (2.10)
m=1

Hence, equating the coefficients of the left and right hand side for each term e*E™ with
k=1,...,pand n=0,...,k (the terms for n = —k, ..., —1 can be ommited since they
are just the complex conjugates of the terms for n = 1,...,k), we obtain the equations
that determine the functions Ay,

k—1 .
v o (=) d*9w(¥) -
5n(790>14k,n = Z { Z C”HVaTaé A‘]v” + (k—Q)' dﬁk—q S ag qu,n}

g=max{1l,n} pu+2v=k—q

k
2 2 > 0 A, (2.11)

s=2 |(i,v)s|=(k,n), (max{1,|v|})s
(IlvDs<(¥)s <(g9)s<(i)s

with 8, (Jg) := n?w? () — w?(ndy).

By this formalism we can calculate hierarchically the determining equations for the func-
tions Ay, of the approximation (2.1) with p = 3 and p = 4 in which we are interested

8



here. Note, that it holds A = A; 1, Ay, = A,. Thus, for k = 1, n = 0, 1 we obtain only
the equation —w?(0)A1 ¢ = 0 which yields A; o = 0, since w?(0) = B; > 0 by (SC). The
function A = A;; remains undetermined. For k = 2, n = 0, 1,2 we obtain (with A; ¢ = 0)
—w2(O)A270 = 252’14’2,
0 = 2iw (Vo) [catw (V0)] O A,
[4w? (99) —w?(200)] Ago = aA®
with a = 4 3™ a0 sin(madg) [1— cos(midg)]+B2. The second equation yields ¢ =

—w'(V), since w(¥g) # 0 by (SC). The function Ay; remains undetermined. In the
following we use the abbreviation

Vorw = Y Qe 28 sin(midg) P {2[1— cos(midg)] }.

m=1
Hence, a = 75011+ 02. Using the results we obtained until now, the equations for £ = 3
read

—w?(0) Az = 282(AAy 1 +c.c.) — 299101 (Ade A+c.c.),
0 = 2iw(90)0-A — w(Wo)w" (90)OFA — pA|A?
[4w?(90)—w?(200)] Az 2 = 2bAD: A + 2a A Ay,
[9w?(P0)—w?(300)] A3 3 = cA®
with

p= 2(7%011—53)/52 + 4522/51 — 3(73002+03), (2.12)

b := Y11110/02+3Y2101 —Y2102,

¢ := 2(372011—"Y2012+52)a/62—3¥3002+Y3003+ 5.

The function Aj; remains undetermined. Note, that the equation for Kk = 3, n = 1 is
the nonlinear Schrodinger equation (1.5) which determines the evolution of A. Thus, if
we are interested only in the formal derivation of this equation we can insert in (1.1) the
improved approximation (2.1) for p = 3 and stop here (and set As; = 0), since at this
stage all the functions Aj,, of our approximation X = X! namely A,y and A, are
determined.

However, as we will see later on, we need also the approximation X2 In order to
determine A ; we have to insert the improved approximation X2 into (1.1) and calculate
by the formalism (2.11) the functions A4,: By using the previous results, we obtain

—w?*(0)As = d1OZ|A]* + [12210(0F A) Atc.c.] — 272101 [0e(A2,1A)+c.c ]
+ 262 Az 1|* + 289 (A3 1 A+c.c.) + do] Al*
0 = 2iw(99) 0y Az — w(Vo)w” (90)0; Aza — p(2|A]> Az 1+ A% Asy)

+ 20 (90)0: e A + (1/6)[w?(00)]" g A — 2e|A|P0: A

[4w? (Po) —w?(200)] Auz = 8iw (Vo) (a/02) AD-A + f10e(ADeA) + Y2210AF A + 200 (AAz, )
+ a(A3142AA5,) + fA*A]?

[9w?(9g) —w? (300)] Auz = gA?Oc A+ 3cA® Ay,

[16w? (9g) —w?(499)] Ay g = RA*



with

dy = [y1201—w(Po)w" (¥0)] B2/ B,
dy :=20a]a/0s]% + 453 /87 + 63352(1/62—2/B1) + 604,
e 1= 2[2(3v2101—72102) 72011 +71111 (V01133 /92] /82 + 3y3111, (2.13)
Ji:= [371201—71202—%1(790)w”(ﬁo)]a/% + 2711115/52 + Y2211 — 272210,
fo = —4B3a/B102 + 2(B2—3v2011+72012) ¢/ 83 + 6(B3—73021)a /2 — 63582/ B1 + 4(ya0124+64),
g := — 371130¢/03 + 2(372103— 1672102+ 1872101 ) @ /02 + 4(3V2011 —V2012+32)b/ 02
+ 3(2y3111—73112);
h = (72031—2720304‘52)@2/53 + 2(72031—Y2012+672011+82) ¢/ 03 + 3(273021 — Y3022+ 33) 0/ )2
+ Y1013 —271012+ 5.

The function A, ; remains undetermined. Since the equation for & = 4, n = 1 determines
Ay 1, we know all the functions Ay, of the improved approximation X2 in which we are
interested and can stop here, setting A3 ; = A1 = 0.

Thus, we have established the following result.

Theorem 2.1 If the microscopic oscillator chain equation (1.1) has for all € € (0,¢¢)
solutions of the form

z;(t) = (X2);() + O(e?)  with  (X2);(t) = eA(r,OE(t, j) + c.c.,

where T = &%, £ = e(j+w't) and A : [0,7] x R — C is a smooth function, then A
necessarily has to satisfy the NLSE (1.5). Analogously, if (1.1) has for all € € (0,¢e9)
solutions of the form

zi(t) = (X2, + 0% with X = cAE + ¢ (%1A12+A271E+§A2E2) +c.c.,
0 2

where §,(90) = n*w? (Vo) —w?(ndo) and a = 4i XM o sin(midg)[1— cos(midg)|+ s,

then A and Az : [0, 0] xR — C, (7,€) — A21(7,§), necessarily have to satisfy the NLSE

(1.5) and equation (1.7), respectively.

We call this result a formal derivation, since the existence of solutions satisfying such
expansions is not clear at all. The purpose of the justification of the NLSE (and (1.7) in
the second case) is to show that solutions which start in these forms will maintain them
on suitably long time scales.

It should be noted that in order to determine the functions Ay ,, of the improved approx-
imation X2 (cf. (2.1)) by the formalism (2.11), it has to hold dy(Jg) = —w?(0) # 0 and
6n(90) = n2w?(Yy)—w?(ny) # 0. Under the stability condition (SC): w?(d¥) > 0 for all
¥ € (—m, x|, this is satisfied if the nonresonance condition of second order

nw(ty)—w(ndy) #0 forn=2....p (NR2)3,

holds.
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Proposition 2.2 In the case of nearest-neighbour interactions (M = 1 with oy == ;1)
1t holds:

(SC) <= min{f,4a1+01} > 0, (2.14)

Forn =2,3,4: Ve (—mm|: d,(9) >0 <= min{f, n:—Z&l + G} >0, (2.15)
(SC) and (NR3)y, = (NR2)j, , (2.16)

(SC) and (NR3)upit <= min{f1, (16/3)a1+01} > 0. (2.17)

Remark 2.1 The stability condition (SC) restricts us by (2.14) to the harmonic coeffi-
cients #; > 0 and a; > —(1/4)6;. For ay > —(3/16)3; we obtain by (2.15) and (2.17)
that (NR3)ynir implies (NR2)3 . From (2.15) it follows that in order to guarantee (NR2)j,
we have to require 2w(dy) # w(29y) in the case —(3/16)5 > a; > —(15/64)0:, and
2w(dy) # w(20p) and 4w (Vy) # w(4dy) in the case —(15/64)3; > o > —(1/4)51. By
(2.17), both conditions follow from (NR3)sy,.

Proof : Equivalence (2.14) follows immediately from (DR) and (SC). For n = 2,3,4 it
holds
6, (9) = n*wW?(9)—w?(nv) = 2"y gn(cos?) + (n*—1)3 (2.18)

with
g(c) = (1—c)?,  g3(c) = A=3c+2, gulc) = (1—c)?*[(1+c)* + 1] for c € [~1,1]

and min g, = 0, max g, = 4. This yields (2.15).
By (SC), (NRQ)f;O is equivalent to 6, (%) > 0 for n = 2,3, 4, and thus, by (2.18), to

ai —(n?-1)

E 27 gy, (cos ¥y) =: Julcos o). (2.19)

In Figure 1 we ploted f,(c) for n = 2 (black), n = 3 (dark grey) and n = 4 (light grey)
over ¢ € [—1,0.45] (left) and ¢ € [—1,0] (right). Note, that as a; /3 approaches —1/4
from above we have to take care that it remains above f,(cosvy) for our fixed ¥y. Note
also, that f; approximates —1/4 from below, and by (SC) it holds «a;/8; > f3(c) for all
cel[-1,1).

Ad (2.16): Setting s = 2, t = 1, § = —1 into (NR3)y, we obtain |2w(dy)—w(29y)| >
Cyt > 0. By (2.14) and (2.15) it holds §3(9) = 9w? () — w?(39) > 0 for all ¥ € (—x, 7).
Finally, 4w(vy) = w(4vy) is equivalent to w(dy) +w(30p) — w(4vy) = w(3y) — 3w(dy). B
9w?(¥) — w?(309) > 0 and w(¥?) > 0 for all ¥ € (—m, 7|, this means that w(dg) + w(39g) —
w(49y) < 0. But w(0) > 0. Hence, by the continuity of w, there exists a ¥ € T with
|| € (0,3|Y]), such that w(Vy) + w(¥) — w(Jo—13) = 0, which contradicts (NR3)y,.

Ad (2.17): By (SC) and w(¥) = w(—v) > 0, (NR3)unit can be reduced to

JCN >0 inf  [w®)+w@—0)—w(d)] > CAE > 0.

unif 9,0€(—m,] unif
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Figure 1: Plots over ¢ € [—1,0.45] (left) and ¢ € [—1,0] (right) of f,(c) defined by (2.19)
for n = 2 (black), n = 3 (dark grey), n = 4 (light grey).

For a; = 0 we take CXE = 3172 > 0. For a; < 0 we have p_ := min{w(9) : ¥ € [—m, 7]} =

unif
w(ET) = (day+51)Y2 > 0 and gy = max{w(¥) : ¥ € [-7, 7]} = w(0) = 47> > 0. Thus,
) 1601 +31
—0)— > — fy = ————
poald w(@)+w(@—=0)—w(0)] > 2u- — py T

Equality is attained for ¢ = 7, # = 0. Hence, (NR3)uynir is satisfied in the case oy < 0, if
and only if 16c;+33; > 0. For oy > 0 equality is not attained, since it holds u— = w(0)
and pip = w(£m) but there exists no ¥ € T with ¥ = ¥ F 7 = 0. In this case, we show
w()+w(W@—0)—w(0) > CNE > 0 for all 9,0 € (—m, 7], and (2.17) is proved:

unif

Since w(¥) = 20}’ [sin2(19/2)+ﬂ1/2 with v := (1 /4a; > 0 is 27-periodic and continuous,
it suffices to show

f(0,0) := [sin®[(9—0)/2]+7] Y2y [sin2(19/2)+ﬂ1/2 — [sin*(6/2)+7] Y250
for all 9,0 € (—m,x]. First, we prove
F(0,60) = |sin[(9—0) /2]| + [sin®(0/2)+~]"* = [sin2(6/2)+~]"* > 0.

This estimate is sharp, since f(@,@) = 0. With 8 := sin?(9/2), By := sin?(6/2) it is
equivalent to

sin’[(9—0)/2] > B+ Bo + 2y — 2 [(B+7) (Bo+1)]'"*.
From sin?(z—y) = sin? x + sin? y — 2sin z siny cos(x—y), we obtain sin?[(9—0)/2] = 5 +
Bo £ 21 with 1 := (830)"/?|cos[(9—0)/2]| > 0. Thus, we want to prove

(B+) Bt £n =y VB, 6o € [0,1],
which surely holds if [(8+7)(Bo+7)]"? —n > 7, i.e., if

(B4+7)(Bo+7) — (n+7)* = BBo — n* + (8460 — 217) > 0.

But this holds true, since € [0, (850)'/?]. Hence, since
F(9,6) = F(9,0) + [sin*[(9=0)/214+7] "* — [sin[(9—0) /2]

12



and min {(a+7)2—a'/?} = (1+7)Y2—1, we obtain f(¢,0) > v/[(1+7)/2+1], i.e.,

a€(0,1]

. B M2_

inf |w(?)+w(I—-0)—w(8)] > = > 0.
19,06(—7r,7r][ ()4 )= () (day+01)12 + 20&/2 M+ (M%L—/ﬂ—)lﬂ

Note, that the minimum of f(1J,6) is attained for ¥ = 6, which yields f(6,0) = ~'/2,
whereas the minimum of f (¥, 9)—]?(19, 0) is attained for ¢ = 0+m, which yields f(6+m, 6) >
Y% > (147)Y2—1. Hence, in the last two estimates above we can actually replace > by
>. Note also, that the bound of the last estimate tends to p— for gui—p— — 0 (y — 0)

and to 0 for py—p_ — oo (a; — 0).

O

3 The normal form transform

The oscillator chain model (1.1) can be rewritten as the first-order ordinary differential
equation o B .
T=Lr+Q,7)+ M) (3.1)

in the Banach space Y := ?x (2, where

= (1) =0 0) 2= (od) 0= (uln)
with L defined by (1.3), and

M

Q)] =Y amal(@jam—2) Ujm—1i) = (=T o) Y5—Yjm)] — Pozjys,  (3.2)
(M (2)]j =) [m2(@jpm—2;) = Om (=2 -m)] — wa(;), (3.3)

with vy, 2 and wo defined in (2.8).

On the Banach space Y we use the energy norm

M
I I3 = N2z +llyle with [lellf =) amy ) lepm—zil® + Gullzlz (3.4)

m=1 jez
and |lyll7; = 3 °ezlyil>. The norms || - ||z and || - ||z are equivalent by our stability
assumption (SC):
ol < llwlle < pd )z (3.5)
H_1[Tl2 = E S Py ||l .

with p2 = min{w?(9) : ¥ € [—m, 7]} and p? = max{w?(¥) : ¥ € [—m, 7]}, which follows
easily by Fourier transformation.

The full oscillator chain is a Hamiltonian system whose solutions make the sum H of
kinetic and potential energy

Hr,8) = S8+ 37 [ D Vi) + W)

JEZ m=1
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constant with respect to time. The norm || - ||y is defined in such a way that its square
is twice the quadratic part of H. The flow of the linearized system (1.3) preserves this

norm: The solutions 7 : t — Z(t) = etzi(O) of (1.3) satisty ||z(¢)||y = ||Z(0)]|y for all
t € R (cf. [GIM04, Proposition 3.1]).

We introduce the normal form transformation F': Y — Y with
y=F(z):=7+ B(z,2) (3.6)

where the bilinear form B : Y XY — Y remains to be determined. Applying this trans-
formation on (3.1) we obtain

y=Lj+QF %)+ M@ (3.7)

with
Q(%,%) :== —LB(Z,7) iB(Ea?, %)+ B(Z, L7) + Q(F, %), (3.8)
M(Z) := B(Q(Z,%)+M (%), %) + B(Z, Q(F, %)+ M (%)) + M(). (3.9)

The terms of quadratic order with respect to z are given by Q. The terms of cubic and
higher order of = are subsummed by M.

Now we require for B = (B, By) to satisfy Q(#,7) = 0 for all # € Y. This is equivalent
to

By(Z,7) = Bi(LZ, %) + Bi(7, LT),

LBy(%,%) — By(L%,%) — By(7, LT) = Q(x, x).

Setting N _ s
BQ(JZ’,@/) = Bl(Ll',?j) +Bl(33', L@/), (310)

the first equation is fulfilled, and the second reads
LB\(%,%) — B\(L*%,%) — 2B, (L%, LT) — By(%, L*%) = Q(x, z),
i.e., by Bi(z,7) = Bi(z,&; x, &),
LBy (z,d;x,%)— By(Lx, Li;x, &) — 2By (&, Lx; &, Lv) — By (2, &; Lz, L) = Q(x,z). (3.11)

We determine B; : Y XY — ¢? via its Fourier transform. We denote the Fourier transform
of x € (? by 7 € L*(T) with T = R/27Z, where

FW) =Y xje™ fordeT.
jEL
The inverse of the Fourier transform is given by

1

:g .

Z(0) e dy  for j € Z.

Ly
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For the linear operator L defined by (1.3) it holds L7 := Lu: 0 —w?(¥)Z(Y). Using
the convolution
—_ 1 A~ A A~ AN
zy(v) = 2—/x(19—9)y(9) df .= (T +y)(W) for z,y € * 9T,
T

™

we obtain for @) defined by (3.2) the Fourier transform

Q7N = Q. n)(®) = 5= [ F0-0)a(0.0)5(60) 00 (312)
with y
q(v,0) = 2i Z Q2 [sin(md)— sin(m(9—0))— sin(md)] — Fa. (3.13)

m=1

The Fourier transform of By (T, y) with Z=(x1,12), y=(y1,y2) € Y=(*x{? has the general
form

1 . ~ b11(79 9) 512(79 9) @1(9)
=— (9-0), -0 ’ ’ 2 do
27 /11‘ (a:1 72(0-9)) (521(19:9) baa(V,0) ) \H2(0)
for ¢ € T. Thus, the Fourier transform of equation (3.11)
—w?B\(Z, 7,7, 2)+ B1(w*T, T T, ) — 2B (T, —w’T; 7, —w?2)+ B (T, 7, w7, w°7) = Q7,7

holds for all (Z,7) if and only if

2049 2 2 bll 612 w2(19—9)w2(9)622 —w2(19—9)621 . q 0
[w? (9—0)+w?(0)—w* (V)] (521 622) - 2( (0o b =10 0
holds for all (¢, 0) € (—m, x]%. This yields
aq 2q

b = el bay = peR L b1z = ba1 =0, (3.14)
with a(d,0) = w?(9—0) + w?(0) — w?(¥) and B(9,0) := 2w(I—0)w(d), provided that
(a?—3%)(9,0) # 0 for all (9,0) € (—m, 7|2 Hence, in this case By : Y XY — (2 is given
by

By(Z,y) = bi(z1,91) + ba(22,y2) for T = (z1,22), ¥ = (v1,Y2), (3.15)
where b; : (?x(? — (%, i = 1,2 are defined by
~ 1
10:(Z4,7:)] (V) = 7 /J:Z(ﬁ 0)bii(9,0)7:(0)dd  for 9 € T (3.16)
m

with the b; determined by (3.14). From (3.10) we obtain By : Y XY — (%
By(z,9) = bi(z2,y1) + bi(x1, y2) + ba(Lx1, yo) + ba(xe, Lyn) for T = (21, 22), ¥ = (y1, y2)-

(3.17)
This determines B : YxY — Y with B = (B, Bs).
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Since

(@?=32)(0,0) = [w(¥—0)~w(0)—w (V)] [w(I—0)—w(0)+w(¥)]
% [W(I—0)+w(0) —w ()] [w(V—0)+w(0)+w(¥)], (3.18)

the condition (a?—f%)(¢,60) # 0 is fulfilled for all (9,0) € (—n,n]?* if and only if our

uniform nonresonance condition is satisfied:

3R inf |w(9)+(—1)*w()+(—1)w(—0)| > Cai

s,t=1,2; 9,0€(—m,7]

(NRB)unif

mf mf

(In the case of only nearest-neighbour interactions M = 1 (NR3)uur is equivalent to
min{ 5, (16/3)a11+061} > 0, cf. (2.17) in Proposition 2.2.)

Since B = (B, B) is given via (3.15), (3.17), in order to obtain an estimate for B, we
use the following estimate for a (general) bilinear form b : £2x(* — (2.

Proposition 3.1 For a bilinear form b : (>x(% — (? with the Fourier transform

~ 1

[b(Z,y)](9) = o / 2(0—0)3(09,0)y(0)do  forx,y € > and ¥ € T,

where 3 € H3(TXT), there exists a ¢, > 0 depending on 3, such that the estimate holds:

Ib(z. y)lle < collzllezllylle for z.y € £,

Proof: The general form of b is given by

[b(x,y)] Z bklxkyl for j € Z.
k,IEZ

Using the translation operator 1" : ¢* — (* defined by (T'x); := z 41, we obtain Tb(x,y) =
b(Tz, Ty), since

T WL = 1 i 16~ NG N
To(z,y)(0) = "[b(F, 9)](¥) = o / W=0T(9-0)8(9,0)€5(0) 40 = [b(Tx, Ty)](9).
Thus, from
Z biz zyr = [Th(z,y)]; = [b(Tx, Ty)]; Z bk1$k+1yz+1 Z bi_u_lxkyl
k,l€Z k,l€Z k,l€Z

we obtain bil =t 1.1 and, hence, iteratively bkl by_j,; forall j k1 € Z.

Since bfal = [b(e*, €")];, where {e* : k € Z} with (eF); := 6;,; (0 the Kronecker-symbol) and

ck (9) = 7% is the orthonormal system of the Hilbert space (2, we have

1 1 . .
by, = [b(e, e)]o = > /T [b(e, e))](9) dv = oo /T /T e I0=0k 39, 0) e dg dv.
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Using the Fourier representation of 3

—i(9m+6n) h _ i(9m—+06n)
BI.0)= > bune with by = 7 //5199 dv dé,

m,nel

we obtain b)), = b_ ;. From 3 € H*(TxT) it follows

151ls
(14 m? 4 n2)s/2

|bmn| < C for all m,n € Z.

Hence, we obtain

1815

v b0 bi—wi]| <C
’ k,l’ ’ k—j,1— j’ ’J kk l’ = [1+(j—k)2+(k—l)2]5/2

for all j,k,l € Z.

By this, it holds

2
1b(, y HEQ < Z (Z ’bszkayl>

JEZ \k,€Z

<812y > (ZWE 1+ G <k ? W)

jeZ \keZ lez

20 21211, 112 ! 2
< 7185 1y Iz Z (Z ’xk’ ) ]s/4 Z [1+ (k_l)2]s/4>

jeZ \keZ lez

< CBIEI IR (1+26(5/2) Z<Z’“’ 1+ W“)

JEZ \k€Z

< C?||BI Nyl (1426 (s/2)) " lIZ

where we used

oyl < llelZlgl with (@ xy); =3 @

kez
ii for > 1
v p==
k=1

Choosing s = 3, our proposition holds with ¢, := C?||8]|3(1+2¢(3/2))*.

OJ

We can use the previous proposition in order to obtain an estimate for B = (B, Bs) in
the case where the uniform nonresonance condition (NR3)unir holds. By (3.18), and the
analyticity of w and ¢ given by (3.13), the b; (¥, 0), i = 1,2, defined by (3.14) are analytic

with respect to 9,6 € (—m, 7]. Hence, there exist ¢; > 0, such that

16i(x, )| 2 < cil|z||2||y|lee  for z,y € 0?2 i=1,2.
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By the definitions of B; (3.15) and B (3.17), and [|y||le := max{||ly1||e=, ||y2]le=}, we
obtain

1B1(@, PIIE < ([02(@1, yo) [l +[b2(22, y2) [l 2)
< (allzilletellzzle)’ 1715,
1B2(Z, 9) 172 < (lbr(@2, yo) e +[[b1 (. yo)llee H1b2(Lar, o)l +[|b2(22, Lyn) |l e2)?

< (at+eC) (lelle+lz2lle)* 1715,

where we used || Lz||z < C||z||e and ||Lz||ee < Cllz||s~. Thus, setting ¢ := max{ci, 2},
and using (3.5) and ||z1]|e+||z2|le < pl|Z]ly with p:= (u— +1)/u—, we obtain

IB@E DI < i IB@ Ple+1BF,9)7 < CEIFITI5 forT,5€Y  (3.19)
with C3 = 2212 +(14+C)?). By [|7]lee < pl|7]ly, this yields also

1B, y)lly < nCallZlylylly  for 7,y Y. (3.20)

Moreover, B : Y XY — Y is symmetric. Indeed, from ¢(¢,9—-0) = q(¥,0), a(9,9—0) =
a(9,0) and B(9,9—0) = 5(1,0), we obtain b;; (9, 9—0) = b; (9, 0) for i = 1,2 (cf. (3.14)).
By

BEDI0) = 5= [ F0-00u(0.005(0) 46 = 5 [ 3 )but2,0)5(0-6) 46 = (7. D))

it follows b;(z,y) = b;(y, x) for z,y € (2. By (3.15), (3.17), we obtain B;(7,y) = Bi(y,7),
ie, B(Z,y) = B(y,z) forz,y €Y.

Hence, in the case where the uniform nonresonance condition (NR3)yuir holds, we obtain
by the normal form transformation F' : Y — Y with F(Z) = = + B(z, ), where the
bilinear form B = (By, By) : Y XY — Y is defined via (3.15), (3.17), the system

y=Lj+M®) with M(Z)=2B(Q(F 7)+M%),7) + M(%). (3.21)

By the Implicit Function Theorem, the inverse mapping p := F~! of the transformation
F exists on a ball B, (0) C Y of radius €, > 0 and centre F'(0) = 0, and it holds
p € CH(B.,(0),Y) and Dp(0) = I. Hence, it exists a C, > 0, such that

o) —p(@)|ly < Collii—Tlly  for 71,52 € Y with |7y, |72]ly < &, (3.22)

Indeed, by the properties of B, the Fréchet derivative of F'is given by DF : Y — L(Y,Y)
with DF(z) = I + 2B(Z, ) and, thus, DF(0) = I. Moreover, (3.20) gives F' € C(Y,Y),
since

|DF@)~DF @)l = 21 BEFo. ey < 2uC5]1F-Folly for 77 € Y.

Thus, for sufficiently small 7 € Y the system (3.21) reads

y=Ly+ N(y) with N(y):= M(p(7)). (3.23)
By the definition of M and p(3) = ¥ + O(y?), the nonlinearity N of the transformed
system (3.23) has only cubic and higher order terms, but no quadratic ones. This is the
crucial motivation in applying the normal form transformation F' on the system (3.1),
since it enables us to apply the Gronwall type argument already used in [GiMO04] for
the justification of the NLSE associated to systems with cubic leading terms in their
nonlinearity (cf. Section 4.2).
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4 The justification of the NLSE

4.1 Estimate of the residual

The procedure of the formal derivation of NLSE consisted in equating the left and right
hand side coefficients of each term *E™ of the expansion in such terms of equation (2.2)
for k =1,...,p (and n = 0,...,k). Hence, for the improved approximation XA? with
the Ay, calculated in Section 2 the residual terms have by (2.3), (2.6) and (2.9) the form

res(Xf’p) = Xf’p - LXf’p - N(Xf’p) = P (pDP_plp_plVop) (4.1)

From (2.4) we obtain that there exists a Cp > 0, depending on w : ¥ — w(¥), ¥, and &g
such that for ¢ < g4 it holds

pt+4 p

(P71 <Cp Y D Z Y 1070E Agn(r, € (4.2)

k=p+1 1 n=—q nt+2v=k—q,
p+1 g= q vk

with 7 = &%, £ = e(j+w'(¥)t). Analogously, from (2.7) and (2.1 ) we obtain that there
exists a C' > 0, depending on w, ¥, V,,,, W € CP™(R) (m = 1,..., M) and &g, such that
for e < g9 and 22 € [0, 79| it holds

(2 P); O+ (), !<CZZZH35AM IToe ) X

s,r=0 (=1 n=0
p—1 p

l M p 1
X D NOF A (T O D Y 0D (108 A (7, €48, 2mem) |+ |0F Aru (1, E—0,mem)|)

r=0 [=1 n=0 m=1 [=1 n=0

with 0= € (0,1) (cf. (2.5)). For the estimation of vy, and w, in N(X/?) we used the

mean value theorem. Hence, the above estimate holds as long as [|0f Ay (7, *)[|Le®) < d
is satisfied for all 7 = 0,...,p,l=1,...,p,n=0,...,l and all 7 € [0, 7] (and C depends
also on d). By Sobolev’s imbedding theorem, this is fulfilled if || Ay, (7, )||np+1(r) < d for
T € [0, 70).

Thus, applying Proposition 3.3 of [GiM04]

. 8
> sup o (e(j+cts)* < Z|[¢lfnw for ¢ € H'(R), e € (0,1), c€R,
jez 1511 €
we obtain

p+l p p

l
lrE?@)lle + PP @)l < e72C ) D NOF Al ) s -

s=1 r=0 I=1 n=0

The same argument yields [|[rP?(t)||e = O(e7Y/?) for e < gy and €%t < 7, if and only if
the derivatives appearing in (4.2) satisfy [|0Y0f Agn(7, )|l ®) < ¢ for 7 € [0, 79] and some

¢ > 0. If this is the case, by (4.1) and res(X4#?) := (0, res(XA*)) we finally obtain
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[res(XAP)(1)]ly = |lres(X22)(8)||2 < Cre?*/2 for e < gy and €% < 7. (4.3)

Looking at our systems of determining equations for the functions A;, and taking into
account that 0; A, 0- Ay is equivalent to 65214, 65214271, respectively, we see that the needed
regularity conditions on A, are satisfied for A(7,-) € HS(R) if p = 3 (where Ay ; remained
undetermined and thus can be assumed as equivalently vanishing) and for A(r,-) € H'(R)
and As 1(7,-) € HS(R) if p = 4. From the determining equations of A and A, ; it follows by
standard arguments of the theory of semilinear wave equations (cf. e.g., [Paz83, Tem88|)
that there exists some 7y > 0 such that the required regularity on A and A ; is preserved
for 7 € [0, 7] if we assume initialy A(0,-) € H®(R) in the case p = 3 and A(0,-) € H'(R),
A21(0,-) € HY(R) in the case p = 4.

Obviously, under this regularity conditions we obtain by the same reasoning as above that
for XAP with p = 3,4 and the calculated coefficients Ay, (with Ay = Az, =0if p =3
and As; = Ayq = 0 if p = 4) there exists a C' > 0, depending on V,,,, W,w, 0, A, 7o (and
Asq if p = 4), such that
IX2P@) e, X2 (@)l X222y [ XEP(1) 2 < 2C for e < g < 1 and % < 7,
which leads by the definitions (3.4) and ||(x, y)||ec := max{||z||se, ||y|le=} to

I X22()]|oo < £C, | X221y <eY?Cy fore <ey<1and e < (4.4)
with Cy := C'(u2+1)Y2 (cf. (3.5)). Analogously, there exist Co, C3, C3 > 0 such that
IX2P () =X (@)ly < Cog®?, | X7 ()= X2 (D)]low < Co®, | X2P(0)=X22 (1)l < Cae™

(4.5)
for e <gp < 1, €%t < 1.

4.2 Justification under uniform nonresonance (NR3);¢

We consider the transformed system (3.23) y= Zg+ N(y) and the associated transformed

approximation _ _ B B B
VA8 i (RO = X894 B, 29)

The residual term of the approximation 17’54’3 is given by
res(V/49) 1= VA3 — LYY - N(VA) (46)
A9 4 2B(X45, XA - LRAD — LB(XA9,X9) — (X
= X%+ 2B(res(XM%), X2%) — X2 — QX213 XM — M(X2?)
= 1es(X23) + 2B(res(X2?), X29),

where we used (3.8) (with @ = 0) and (3.9). From (4.3) and (4.4), it follows by (3.19)
[res(Y A3 (1)|ly < Coe™? for e < eg, et <79 with C, := (14205Ce0)C,  (4.7)
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Inserting the error %2R := §j — Y43 between a solution J of the transformed system
(3.23) and the transformed approximation Y4* into (3.23), we obtain by the definition
of the residual term res(Y.*?) the differential equation for the error

R=LR+ e [NV 4% R) - N(VAY) —res(V,9)].

The semigroup associated to the linear problem R=LRis given by G(t) = etl, Hence,
the differential equation for the error can be transformed by the variation of constants
formula into te

R(t) = e'LR(0) + £73/2 / elt=s)L [N(}ZM(S)%?‘/?E(S))—N(zAﬁ(s))—res(iAﬁ(s)) ds.

’ (4.8)
Assuming [|Z(0)—X2(0)|ly < de3/2, we obtain by (4.5): [|Z(0)=X23(0)|ly < (d+C)e%/2,
and thus by (4.4): [|Z(0)+X23(0)|ly < [(d+C5)e0+2C,]e? for € < gy < 1. This yields,
by § — YA3 = 7 — XA3 4 B(T— X2, 7+X23) and (3.20),

|RO)lly = &*[5(0)=Y'*(0) |y <d fore < e <1 (4.9)

with d = (d-+Cs) {1-4uCp[(d+Cs)e+2C1 ey *}.

Now, let us assume for the moment that we can show, that there exist a constant Cy > 0
independent of a given D > 0, and an ¢y > 0 depending on D, such that it holds

INYA (D)4 R(t)) = N(YA3()) [y < Cne®[[€¥2R(t) |1y (4.10)
for e < g0, €%t < 79, | R(t)|ly < D.

Then, by |[e'Z|ly_y = 1, (4.7), (4.9) and (4.10), equation (4.8) yields
t ~
IRy <d+&? (CN/ | R(s)||y ds + tCr) for e < eg, et <1y
0

as long as ||R(s)|ly < D holds for s € [0,t]. By Gronwall’s inequality, it follows
IR(®)|ly < (d+e%tC,)e” N for £ < ey, €2t < 7

as long as ||R(s)|ly < D holds for s € [0,t]. This is fulfilled if we choose D :=
(d+75C,)e™N . Hence, for an gy > 0 associated to this D by (4.10), we have obtained

15 -Y22(@)lly = | R(1)[lye®? < De?* for & < eo, €% < 7.

For [[g(t)=Y (1) v, V%(t)lly < e,/2 it holds [§(t)]ly < e, Thus, since Z(t) = p(3(t))

and XA3(t) = p(YA3(t)), it follows from (3.22)

56~ 0y < ClIFH-TA4W)lly < CoD2 for & < e, 2 < .
Hence, we finally obtain by (4.5)

1Z(6)=XA#) |y < Ce¥? for et <1y, e <eg <1 with C := C,D+Ch.

[
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Thus, except for the proof of (4.10) that is presented below, we have established the
following theorem, which constitutes under the uniform nonresonance condition (NR3);¢
our justification of the validity of the NLSE (1.5) as a macroscopic limit for the oscillator
chain model (1.1).

Theorem 4.1 Assume that V,,, W € C3(R) in (1.1) have the form (1.2) and that the
stability condition (SC) and the nonresonance conditions (NR2)} —and (NR3)u hold.
Let A : [0, 7]xR — C, 79 > 0, be a solution of the NLSE (1.5) with A(0,-) € H%(R) and
let X2 be the formal approximation given in (1.4) with cgq = —w'. Then, for each d > 0
there exist g, C > 0 such that for all € € (0,e0) the following statement holds:

Any solution T of (3.1) with an initial condition T(0) satisfying
|(0)=X2(0)ly < d=*?,

fulfills the estimate
1Z()—XA@)|ly < Ce for te 0,70/

(In the case of nearest-neighbour interactions (NR2)j is implied by (SC) and (NR3)unit,
cf. Remark 2.1.)

Proof of (4.10): Fory, A € Y with |ly[[y+[|Ally < ¢, and 77 := p(y+A), T2 :=p(y) € Y
we have by (3.23) and (3.9)

N(y+A) = N(y) = M(z1) — M(») -
=2B(Q(71,71)~Q(Fa, T2), T1) + 2B(Q(Ta, ), 71— ) N
+2B(M (F1)~ M (F2), #1) + 2B(M (), 1-72) + M (31) — M(F2).

From (3.19) | B(z,9)|ly < Cg||Z]|s||¥]|y it follows

INy+2)=N)lly < 20|17 s (1@, 71)=Q(F2, T |y +IM (F0) - M (@) )

+2C5 <H@(52752)“oo+!\]\7(52)ﬂoo) |F1=Tally + |M(@) = M(@)]ly. (4.11)
By the definition of M (3.3), we have

1M (1) =M(z2) |72 = Y ([M(21)];=[M (x2)],)?

JEZ

M
= Z (Z [Vm,2( )m_xﬁ‘l))—vmz(xﬁ*l)—xﬁ»l_)m)—vm,z(xﬁ)m— 22))+vm g(x(Q)—xﬁ»Z_)m)]

JEZ \m=1

2
—Ws (xﬁ»l))—l—wg(xﬁg)))

with ) 1= z; € £2 for i = 1,2. Since v,,2(d) = O(d®) and wy(x) = O(2%) (cf. (2.8)), it
follows by the mean value theorem that for arbitrary o > 0 there exists a constant C' > 0
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depending on vy, 2, we, & such that for ||z1||sm, ||z2|[ee < 6/u— it holds

1 1 2 2 1 1 2 2
[Oma (28 =)~ 2 (25 =2 < O |t |22 ]| 20 ) [ — D =22 ),

1 2 1 2
wa(2$)) —ws ()] < C(||@] 2|22 ) |2t =2 ).

Hence, we obtain

1M (1) =M (22)llez < Clllnl|feHllz2llfe)lz1—2lle for [z e, |22l < 6/p
and thus, by M(’f) = (0, M(x)) , the definitions of || - ||y and || - ||e, and (3.5)

1M (@) =M @)y < Cu(F |2+ 2 F—Folly - for |Flly, [|Folly <6 (4.12)
with Cyy := C/u_. By M(O) = 0 (since v, 2(0) = wo(0) = 0), this yields also

M@)o < 1M @)y < CullSNZly for [F]y < 0. (4.13)

Analogously, since

1 1 2 2 1 2 1 2
(@ =y =@ =al?)’] < 2artasles (25 —ah oy =),

1 2 ' ’
PP P < il o=,

we obtain, by Q(Z,7) = (0, Q(z, x)), the definition of Q (3.2), and (3.5)
1Q(@1, 1)~ Q(F2, o) Iy < CollT14T2lloo |71~ Tl (4.14)

with Cg := C/u_, C* > 0 being a polynom of |a,,|, (m =1,..., M) and |8z|. Moreover,
it holds

M M
IO, )lloo = |Q(x, )i < (6> lom |+ Ba)[2ll7 < (6 levmal+[Ba])|ZI2-
m=1 m=1

(4.15)
Inserting (4.12)—(4.15) in (4.11), we obtain

IN(+2)=N(y)lly < ColllZs[3HIT2l2) 1F1=Tlly for [[Z1]ly, 2]y <9,

where C,, > 0 depends on Cg, V,,, W and 4, with arbitrary § > 0. For z; = p(y+A),
Ty = p(y) with [|y|ly+||Ally < €,, there exists a § > 0, such that [|z1||y, ||Zz]y < 9.
Hence, we obtain by (3.22)

IN(@+2)=N)lly < CalyllFl%+ T2l ANy for [lylly+IAly <&, (4.16)

with C,, > 0 depending on Cp, V,,, W and ¢,.
For y := YA3(t) = XA3(t) + B(XA3(t), XA3(t)), we obtain from (4.4) by (3.19)

lylly < CieV?(14+CpCe)  for €%t < 79, € < &.
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Let A := ¢¥?R with ||[R|ly < D, D > 0, and choose & sufficiently small, such that
lylly+l|Ally < €, Since Ty = p(y) = X23(t) and 71 = p(y+A), it follows by (4.4),
(3.22) and ||7 || < pf|Z]]y with p := 2tL

m )

171 lloe < I71=Ta oo+ [[Z2llcc < pllp(y+A)=p(y)lly + Ce

§u053/2D+05§ uCal/2D+Ce€ for 2t < 1y, € < ey, ||R||y < D.
P P=0

Decreasing ¢ > 0 further if needed, we obtain for given D > 0 e.g.
1Z1]]oo < 2Ce  for e%t < 19, € < &g, ||R|ly < D.

Inserting these estimates in (4.16), we obtain (4.10) with Cy := 5C,C,C?, which is
independent of D. O

4.3 Justification under the nonresonance condition (NR3)y,

In the previous section we proved Theorem 4.1 under the uniform nonresonance condition
(NR3)unit- Now we only assume the weaker local nonresonance condition (NR3)y, for the
given, fixed ¥y € T. Our approach follows closely ideas in [Sch98|. By the representation
(3.18) of v := a?—(3?%, (NR3)y, implies that there exist ¢,d > 0 such that

|7(9,0)| > ¢ for all (9,0) € TT with [J—1| < 26 (4.17)

(here and in the following the differences ¥—1, are taken mod 27), which certainly means
that it holds also

|v(¥, —0)| > ¢ for all (V,6) € TT with |[9—1y| < 26.
By the structure of v, and since w is an even function, we have the symmetries
’7(797 _0> = ’7(_07 79)7 ’7(797 0) = ’7(07 79)7 ’7(797 0) = ’7(197 19_0) for all (197 9) € TxT.

Thus, it holds
|7(9,0)| > ¢ for all (9,60) € I'(y, 20),

where

T'(9,8) :={(¥,0) € TXT : [9£0g| <& V |040| <6 V [9—0+,| < 6.

Now, we define B’ = (B}, B}) : Y XY — Y by (3.14)-(3.17) with the b; and b;;, i = 1,2,
replaced by b; and b, := xsb;i, respectively, where xs : TxT — [0, 1] is such that x5 €
H*(TxT), xs(9,0) = xs(9,9—0), and

Xs(9,0) =1 for (9,0) € T'(¥y,0), xs(,0) =0 for (J,0) € TxT\ I'(dy,26).

Analogously, we define Q = (0,Q") : YXY — Y by (3.12), replacing @ and ¢ by @’ and
¢ := Xxsq, respectively. The bilinear forms B’, )" inherit the symmetry of B, @ (i.e.,
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Figure 2: Sketch of I'(¥y, d) for ¥y € (—m, 7], 6 >0
q(9,60) = q(9,9-0), b (9,0) = by (9,9-0)), since (9,0) € ['(Yy,0) < (9,9—0) € T'(y, 9).
Moreover, in analogy to the uniformly nonresonant case (NR3)yy;, it holds
2B'(L%, %) — LB'(,2) + Q'(Z,%) = 0 (4.18)
(cf. (4.18)). Thus, applying to (3.1) the normal form transformation F’:Y — Y with
y=F'(z):=2+ B'(7,7),

we obtain

= Lj+ 5(7,7) + M (7) (4.19)

<

with
S(@.y) = Q@) - Q@)

M (%) :=2B'(Q(Z, %)+ M(T), %) + M (). (4.20)
By definition, :S'V(BE, y) = (0,S(x,y)) with S(z,y) = Q(z,y) — Q'(z,y) is bilinear and
symmetric, and has the Fourier transform

8@, 9)](0) = 5@ 9)(9) = — / F(0—0)s(9,0)5(9) a6,

2 T
with s := (1—xs)q. Since bl,, s € H3(TxT), we obtain by Proposition 3.1
1@, )lle < cllzlelylle (=12), IS ylle < clzlalyle  forz,ye .
(4.21)
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and thus

IB'@ v < Cal@lvldlee, ISE Dy < CslZlylFlle  forZyey  (422)

with Cs = ¢/p— and C; defined by Cp with ¢, ¢; replaced by ¢, ¢ (cf. (3.19)), which
yields also

IB' @9y < nCxllEIvlglly, 19@ DIy < uCsllzvlgly  forTyey (4.23)

(cf. (3.20)). Thus, like for p = F~1, it follows from the Implicit Function Theorem also
for p/ := (F’)~" the existence of constants C?, &/, > 0, such that

o' () =P (B)lly < Colli—1elly  for yu, 42 € Y with [[i1lly, [2lly <&,  (4.24)

(cf. (3.22)). Hence, for sufficiently small z € Y the system (4.19) reads in analogy to
(3.23)

y=Ly+5@y+ NG with 579 =S50 ).0 7)) NG =M (7). (4.25)

However, unlike (3.23), the system (4.25) posseses also quadratic nonlinear terms S’(y, y) #
0. Thus, it is clear that in order to prove a result similar to Theorem 4.1 we have to alter-
nate some parameters in the method used in Section 4.2, which was taylored to the case of
only cubic and higher order nonlinear terms. To this end, we start with an abstract form
of our method, where some parameters are unspecified, and deduce the needed values of
these parameters.

In Section 2 we carried out the formal derivation of the NLSE for the multiple scale ansatz
XAP given in (2.1) for p = 3 and p = 4. (In the uniformly nonresonant case p = 3 was
sufficient; in the present case it will turn out that we need p = 4.) This means that we
inserted (2.1) in our original microscopic model (1.1) and equated the left- and right-hand
side coefficients of each term e*E" for all k = 1,...,p, n = —k, ..., k. Thus, we obtained
determining equations for all macroscopic functions Ay, (or set Ay, = 0), and moreover,
as showed in Section 4.2, the estimate

[res(X2P)(t)|ly < Cre?™ /2 for e < gy and €%t < 70, (4.3)

under certain regularity conditions on Ay, and for potentials V;,, W € CP*(R). For
p = 4 it suffices to require V,,, W € C®(R), and A(0,-) € H'(R), A21(0,-) € H%(R) for
the solutions A of the NLSE (1.5) and As; of (1.7), which guarantees that there exist
constants Cy, 19 > 0 such that

kfg?i% ]\GlﬁgA( )HLQ(R + Hl;lii% H@ 3 AQJ(T, ')HLQ(R) S CA for 7 S T0 (426)

(cf. Section 4.1).

Then, considering the transformed system (4.25) and the associated transformed approx-
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imation YA? := F/(X4P) = X4% 4 B'(XA? XAP), the residual terms are given by

res(V A7) s= V0 = LY A7 = S(V22, VA7) = N(T20)
= YAP Lo (XA XAP) - [XA» _ [B/(X AP XAr) _ §(XAr, XAy _
— I (X4)
= X274 2B/ (res(X A7), XA7) — LXA» - QX% X A7) — M(X A7)
= res(X?) + 2B (res(X A7), X ),
where we used (4.18) and (4.20) with 7 = X4, From (4.3) and (4.4), it follows by (4.22);

[res(YAP)(1)|ly < ClePt/? for e < ep, €2t < 19 with C" := (14205Ce0)C,.  (4.27)

Inserting into (4.25) the error e*R’ := § — Y7 between a solution § of (4.25) and the
transformed approximation Y247, we obtain the differential equation for the error

R =LR + e[S (YA 4R YA 1R S' (Y47 Y A%)] +

+ e N (Y AP+ R) = N'(YP)] — e ®res(Y A7)

which, using the semigroup G(t) = etl associated to the linear problem R' = LR and the
variation of constants formula, yields

IR (0l <R (0)]lv+
+€‘°‘/0 (HS’(??“’(S)%‘“@(S),??’p(S)Jrff‘“E’(S))—S’(f”?’p(S),??’p(S))HYJr
HIN' (Y 22(5) 4R (5)) = N'(Y 22(5)) |y + HreS(f”?’p(S))Hy) ds.
(4.28)

Now, let us assume that there exist constants d', C/, C}y, Cs > 0 independent of a given
D’ >0, and an g9 > 0 depending on D', such that the estimates

~Hé’(O)HY <d, (4.29)
B ~ HreS(ij? Oy < Ce**, o (430)
IN' (VAP (1) +e R (1) =N' (Y27 (1)) ly < Cxe™ 2R (#)]]v
(4.31)
IS" (Y22 ()4 R (2), Y22 (£)+R(t)) =S (Y22 (1), Y22 (1) |y < Ce* || R (t)ly
(4.32)

hold for € < &g, €2t < 79, | R (t)||y < D'. Inserting these estimates in (4.28), we obtain by
Cronwall’s Lemma for D' := (d'4+75C")e™(Cn+C5) and its associated gy > 0 the estimate
|R'(t)|]y < D' for e < g, €% < 7, i.e.,

[7() =Y AP (t)|ly < D'e® fore < e, 2t < g
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(cf. the argument in Section 4.2). Thus, for gy > 0 such that [|7(£)=YA2(t)|y, [|[YA#(t)|ly
< g,/2 inequality (4.24) yields

|Z(t)—X22(t) ||y < CoD'e™ for € < &g, €% < 1,
and for a € (2,5/2] we obtain by (4.5)3

|Z(6)—X22(t)|ly < O™ for e <1, e<ep <1 with ' := CLD +¢)/>°Cs.

Let us now verify the estimates (4.29)—(4.32), and thereby deduce the required values of
a and p: Since N’ consists of the cubic and higher order nonlinear terms, the proof of
(4.31) follows along the same lines as that of (4.10) in Section 4.2: By (4 20), (4.22),,
(4.24), (4.25), we obtain for & := p/(YAP(t)+£ R (1)), Ty := p/ (YAP(t)) = X2#(t) under
the condition N N

YAy + R (@)lly << (4.33)

the estimate
IN'(Y22(t)+e“R (£)—N' (Y22 (1) ly < CLC (1T 2+ 1F5l1 %) 1R (8) |y

with Cj, > 0 depending only on Cj, V;,, W and ¢/, (cf. (4.16)). Moreover, for a > 1 we
can show, that for given D' > 0 there exists an 9 > 0 such that (4.33) and

|Z 2+ IT]12 < 5C2 for e < e, £ < 70, |[R(t)]ly < D'
are satisfied, with C' > 0 independent of D'. Setting C} := 5C},C}C* we obtain (4.31).

In order to prove (4.32), we decompose S’ using its bilinearity and symmetry (with 7, 2},
as before):

S/ (YAP(8)+e R (1), Y2 (1) +€" R (1)) — S' (Y27 (8), V22 (1))
= S(@, %) - S(&, ) = S(F\~h, ¥ —75) + 25(F, T\ —7)
S(F) T, T —F) + 29X (6) = X2 (1), ) —T) + 25 (XA (1), B~ 7).

By (4.24) it holds under condition (4.33) ||z|—o}|y < aaC/’JHE’(t)Hy. This yields by
(4.23),
I1S(@ ~75, T =7) Iy < **uCs(C’ IR ()]}

and by (4.5)2 and (4.22),
IS(X2A () = XA (1), 2, =) ly < e CsCCy|| R 1)y

for e < gy < 1, €2t < 79. Finally, let us assume for the moment that we can show that
there exists a Cp > 0 such that

IS(XA#),2)|ly < CsCpe?||Zlly for Ze€Y and e < &g, €% < 7. (4.34)
Then, for given D' > 0 there exists a g9 > 0 satisfying (4.33) and

IS' (Y27 (1) 4R (1), VAP (1) 4R (1) — S' (Y22 (1), Y22 (1)) Iy
< P2 0O (57 uC D' + 205 + 20p) | R (t)|ly  for e < &0, % < 70, [|[R'(t)|ly < D'
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Thus, in order to obtain (4.32) with a constant C§ independent of D', e.g., C§ =
2CsC(nC)+Cy+Cp), which for given D" can be achieved by controlling €9, we have
to require o > 2.

The estimate (4.30) for the residual res(Y4#) follows from (4.27) if p+1/2 > a + 2, with
Cl = C{,SgH/Q_a_Z. Since we need a > 2, we require necessarily p > 3/2, i.e. at least
p = 4, which is also sufficient for o < 5/2, and optimal for a = 5/2.

Finally, estimate (4.29) is equivalent to ||7(0)=Y 42(0)|y < e*d for e < g9. By j—Y4» =
T— XA 4 B(G—XAP 7—XAP) 4 2B/ (T— XA, XA?), and (4.23);, (4.4),, it has to hold
1Z(0)—XA2(0)|y < ed for e < gy and a d > 0. For a € (2,5/2] this is by (4.5)s
equivalent to the assumption ||Z(0)—X22(0)||y < e®¢ for ¢ < o and a ¢ > 0.

Hence, except for the estimate (4.34), we have proven the following result based on the
nonresonance condition (NR3)y,

Theorem 4.2 Assume that V,,, W € C%(R) in (1.1) have the form (1.2) and that the
stability condition (SC) and the nonresonance conditions (NR2)j and (NR3)g, hold. Let
A, Asq:[0,79]xR — C, 10 > 0, be the solutions of the NLSE (1.5) with A(0,-) € H'(R)
and of (1.7) with A21(0,-) € HS(R), respectively, and let X2 be the formal approzimation
(1.6). Then, for each ¢ > 0 there exist g9, C' > 0 such that for all ¢ € (0, &) the following
statement holds:

Any solution T of (3.1) with an initial condition z(0) satisfying
1Z(0)—X22(0)|ly < de®  with o € (2,5/2]
fulfills the estimate

1Z(6)—X22(t)|ly < C'e*  for t€[0,70/e7).

(In the case of nearest-neighbour interactions (NR2)y is implied by (SC) and (NR3)g,,
cf. (2.16) in Proposition 2.2.)

Proof of (4.34): It suffices to prove the existence of a C},, > 0 such that
IS(XA(t), 2)|le < cCpe?||2]le for z € £% and € < g0, €%t < 7.
with the ¢s > 0 given by (4.21)5. We define P : (* — (? by Pz := Pz := 77 with

0 for ¥ € T with |9+ < 6,
v(9) ==
1 else

with the § > 0 given in (4.17). Thus, by the definitions of S and I'(dy,0), we obtain
Y(9—0)s(9,0) = s(9,0)v(0) = s(,0) for all (9,0) € TxT, which implies S(PZ,y) =
S(z,Py) = S(x,y), and hence S(Pzx,y) = S(x, Py) = S(z,y). This yields by (4.21)

15(z, 2)lle < eslPfle< |2l
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Since ||z||2. < ||zl = [|Z]|?20 = 5= [+ |Z(9)]? A9, it remains to show
i v L2(T) T
]\ﬁ)?f(t)HLQ(T) < Cpe? fore < g, % < 7. (4.35)

Setting a; := a(ej) := A(e%*,e(j+w't)) for j € Z, we obtain
[X2(1)](0) = ee“'a(—y) + ee 1a(—0—1y),

and hence

[XAB)@)* < 22(ja(W—0)[*+a(—d—o) ).
By the definition of 73, this yields

P 1 R
IPXE@ e < 4o [@(n)|* dn.

T Js<|n|<m

Considering ¢ € * with ¢9 = 1, ¢y = ¢_1 = —1/2 and ¢, = 0 for k € Z, |k| > 2, we
obtain ¢(n) =1 — cosn and

~ 1 ™ N ) B o
/5§|n|gw’a(”>’2d”§ m/_ [@(n)a(n)[*dn = WW*(LH@

™

’(¢* a)j’2 = ’Z¢kaj k’ __(aj+1+aj 1)’2 = i[(aﬂl—aj)—(aj—aj_l)ﬁ

kEZ

_ Z_Zya'(mp _ —}/ () daf’ < 24(/;“;@"(53:);(13:)2

—1
< —/ '(ex)|? dw

with 27 € (j —1,7), 27 € (j,j + 1), we obtain
16 * all2 < &* / a(e2) 2 de = &° / @) A€ = | RAEE, )| Page.

Hence, by (4.26) we obtain (4.35), and thus (4.34), with C), := 5(1)/220,4/(1— cosd). O
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