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Abstra
tThe passage from mi
ros
opi
 systems to ma
ros
opi
 ones is studied bystarting from spatially dis
rete latti
e systems and deriving several 
ontinuumlimits. The latti
e system is an in�nite-dimensional Hamiltonian system dis-playing a variety of di�erent dynami
al behavior. Depending on the initial 
on-ditions one sees quite di�erent behavior like ma
ros
opi
 elasti
 deformationsasso
iated with a
ousti
 waves or like propagation of opti
al pulses. We showhow on a formal level di�erent ma
ros
opi
 systems 
an be derived su
h as theKorteweg-de Vries equation, the nonlinear S
hrödinger equation, Whitham'smodulation equation, the three-wave intera
tion model, or the energy trans-port equation using the Wigner measure. We also address the question howthe mi
ros
opi
 Hamiltonian and the Lagrangian stru
tures transfer to simi-lar stru
tures on the ma
ros
opi
 level. Finally we dis
uss rigorous analyti
al
onvergen
e results of the mi
ros
opi
 system to the ma
ros
opi
 one by eitherweak-
onvergen
e methods or by quantitative error bounds.1 Introdu
tionA major topi
 in the area of multis
ale problems is the derivation of ma
ros
opi
,
ontinuum models from mi
ros
opi
, dis
rete ones. The prototype of a dis
retemany-parti
le system is a periodi
 latti
e for modeling a 
rystal. Starting fromthe seminal work of Fermi, Pasta, and Ulam ([FPU55℄), a lot of interest and workhas been attra
ted to the study of the stati
al and dynami
al behavior of ordereddis
rete systems. In the dynami
al situation one is interested in ma
ros
opi
 limitsthat are obtained by 
hoosing well-prepared initial 
onditions: We 
hoose the initialdata in a spe
i�ed 
lass of fun
tions and want to obtain an evolution equation withinthis fun
tion 
lass, whi
h we 
all the ma
ros
opi
 limit problem. This approa
h ismotivated by the theory of modulation equations, whi
h evolved in the late 1960'sfor problems in �uid me
hani
s (see e.g. [Mie02℄ for a survey on this subje
t). If thelinearized model has a spa
e-time periodi
 solution, one asks how initial modulationsof this pattern evolve in time. The modulations o

ur on mu
h larger spatial andtemporal s
ales; thus the modulation equation is a ma
ros
opi
 equation.In mathemati
ally rigorous terms this 
an be des
ribed by studying the following
oarse graining diagram:
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mi
ros
opi
 Sε−−−−−→ ma
ros
opi
initial data t = 0 z0
ε

ε → 0−−−−−−−−→ A0time evolution yt > 0 τ > 0

y

zε(τ/εσ)
ε → 0−−−−−−−−→ A(τ)dis
rete, atomisti
 
oarse graining 
ontinuumHere zε : [0, τ∗/ε

σ] → Zε denotes the solution of the mi
ros
opi
 model depending onthe mi
ros
opi
 time t and A : [0, τ∗] → Z0 is the solution of the ma
ros
opi
 model.In the best 
ase the diagram 
ommutes, i.e., if the 
oarse graining Sεzε(τ/εσ) →
A(τ) holds at time τ = 0, then it also holds for all τ ∈ [0, τ∗]. Examples of su
hresults will be Theorems 5.1, 5.2, 7.1 and 7.2.Before establishing these results, we survey methods to derive ma
ros
opi
 models onthe formal level by using a suitable multis
ale ansatz and expanding the 
oe�
ientsof equal powers of the small parameter and of the harmoni
s of the mi
ros
opi
�u
tuation to 0. The emphasis is to survey the theory and to explain the mainte
hniques and results on simple models like the FPU 
hain or the Klein-Gordon
hain, see Se
tion 2.3.Naturally, our survey 
an only 
over a small part of the ri
h subje
t of dynami
sin dis
rete systems. We will totally omit any of the works on stati
 solutions forlatti
es, see e.g. [FJ00, BG02b, BG02a, S
h05a, Ble05, MBL06℄. Moreover, thereis a huge body of work 
on
erning the understanding of spe
ial solution 
lasseslike traveling or standing pulses with or without periodi
 modulations, see [FW94,MA94, Kon96, FP99, Ioo00, IK00, FM02, FP02, FM03, Jam03, FP04a, FP04b,IJ05, DHM06℄. The response of os
illator 
hains to a simple initial disturban
e orto Riemann initial data is studied in [DKV95, DKKZ96, DK00, BCS01, DHR06℄,where in parti
ular 
ompletely integrable systems like the Toda latti
e are of interest.Finally in the framework of non-equilibrium statisti
al me
hani
s (
f. for a surveye.g. [Spo91, Bol96℄) one is interested in highly disordered systems, where onlystatisti
al averages satisfy ni
e ma
ros
opi
 equations.2 The dis
rete modelsIn the �rst subse
tion we write down the 
lass of systems that 
an be treated withthe methods surveyed below. This in
ludes general polyatomi
 latti
es in any spa
edimension. The intera
tions 
an be general and 
an o

ur between several atoms,not just pair potentials, and 
an have arbitrary range. In the se
ond subse
tionwe treat the linearizations, whi
h simplify a lot and 
an be treated in parti
ular byFourier transform methods. There, the 
entral stru
ture are the di�erent dispersion2



relations, whi
h will be used heavily in the subsequent analysis. Finally we presenttwo simple model problems that represent most of the interesting features. Thesemodels will be addressed in most of the following results to illustrate the generalresults.2.1 General latti
es systemsWe model a perfe
tly period 
rystal based on a d-dimensional Bravais latti
e Γembedded into Rd. This latti
e is homeomorphi
 to the additive group Zd butmight have a di�erent metri
 stru
ture. Ea
h latti
e point γ ∈ Γ denotes a unit 
ellin the a
tual 
rystal and, hen
e, the ve
tors xγ ∈ Rm and ẋγ are 
olle
tions of allthe relevant positions and velo
ities, respe
tively, of the atoms inside this unit 
ell.By (x, ẋ) ∈ ℓ2(Γ)m × ℓ2(Γ)m we denote the state of the system, where x = (xγ)γ∈Γand ẋ = (ẋγ)γ∈Γ. By M ∈ Rm×m we denote the mass matrix for ea
h 
ell, whi
his assumed to be symmetri
 and positive de�nite. The total kineti
 energy in the
rystal is
K(ẋ) = 1

2
〈〈M ẋ, ẋ〉〉 def

=
∑

γ∈Γ
1
2
〈Mẋγ , ẋγ〉.The potential energy V(x) is obtained by adding up all 
ontributions a
ting on one
ell via a single potential Vcell : ℓ2(Γ)m → R given the for
es of the state x on the
ell at γ = 0:

V(x) =
∑

α∈Γ Vcell(Tαx).Here Tα is the translation operator with Tαx = (xα+γ)γ∈Γ. In the 
ase of �nite-range intera
tion the potential Vcell only depends on �nitely many 
omponents, e.g.,
Vcell(x) = V0(x0) +

∑
0<|γ|≤R Vγ(xγ−x0) for pair intera
tions.The Newtonian equations for this latti
e model are given as

Mẍγ = −DxγV(x) = −∑
α∈Γ ∇xγ−αVcell(Tαx) for γ ∈ Γ. (1)Of 
ourse this system is invariant under the translations Tα, α ∈ Γ, and has the totalenergy E(x, ẋ) = K(ẋ) + V(x) as �rst integral. Moreover, it is a 
anoni
al Hamilto-nian system with momenta p = M ẋ, Hamiltonian fun
tion H, and symple
ti
 form

ωcan:
H(x,p) = 1

2
〈〈M−1p,p〉〉 + V(x) and

ωcan

(
(v1,q1), (v2,q2)

)
= 〈〈v1,q2〉〉 − 〈〈v2,q1〉〉.

(2)Clearly, the Newtonian equations (1) are equivalent to the Hamiltonian equations
ẋ = ∂pH(x,p), ṗ = −∂xH(x,p). Moreover, they 
an be obtained as the Euler-Lagrange equation for the Lagrangian

L(x, ẋ) = K(ẋ) − V(x). (3)
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2.2 Linear systems and dispersion relationsLinearization leads us to linearized systems, where the potential V is a quadrati
form. The linear equation takes the form
Mẍγ = −∑

β∈Γ Aβxγ+β =
∑

α∈Γ Aγ−αxα for γ ∈ Γ, (4)where the intera
tion matri
es satisfy the symmetry 
ondition Aβ = A⊤
−β and ade
ay 
ondition like ‖Aβ‖ ≤ Ce−b|β|. The quadrati
 potential energy then reads

V(x) = 1
2

∑
α,γ∈Γ〈Aγ−αxα, xγ〉.An essential feature of su
h harmoni
 latti
es is the presen
e of many traveling wavesolutions in the form of plain waves:
xγ(t) = ei(θ·γ+ωt)Φ where θ ∈ R

d
∗ and (A(θ) − ω2M)Φ = 0. (5)The wave ve
tors θ are taken from the torus TΓ, whi
h is obtained by fa
toring

Rd
∗ = Lin(Rd) with respe
t to the dual latti
e. The symbol matrix A(θ) reads

A(θ) =
∑

β∈Γ eiθ·βAβ ∈ Cm×m for θ ∈ TΓ.Hen
e, A(θ) is Hermitian, and we always impose the basi
 assumption of stabilityin the form A(θ) ≥ 0 for all θ ∈ TΓ.Plane-wave solutions as in (5) exist if ω and θ satisfy the dispersion relation
0 = Disp(ω, θ)

def
= det

(
ω2M − A(θ)

)
.Under our stability 
ondition, there are always m non-negative eigenvalue 
urves

ω = Ωk(θ), k = 1, . . . , m,whi
h we order su
h that 0 ≤ Ω1 ≤ Ω2 ≤ · · · ≤ Ωm. The index k is 
alled the bandindex. Two velo
ities will be important below, the phase velo
ity cph and the groupvelo
ity cgr:
cph = cph,k(θ)

def
= Ωk(θ)

|θ|2 θ and cgr = cgr,k(θ)
def
= ∇Ωk(θ).The dynami
s of the linear system is 
ompletely determined by M and the symbolmatrix A : TΓ → C

m×m
≥0 . This is easily seen by transforming (5) into wave ve
torspa
e. For this de�ne X(θ) = Fx : TΓ → Cm via Fx

def
=

∑
γ e−iθ·γxγ , then X(t) =

Fx(t) : TΓ → Cm satis�es the equation
M∂2

t X(t, θ) = −A(θ)X(t, θ) (6)if and only if x satis�es (5). However, the latter equation is an ODE for ea
h �xed
θ ∈ TΓ.For studying the qualitative behavior of the solutions in the subsequent se
tions,this is not su�
ient, and we need to understand the ba
k-transform for large times
t. Then, the smoothness properties of the dispersion relations will be important, seeSe
tions 5.3 and 6.2. 4



2.3 The 
hain models of FPU and KGTo illustrate our abstra
t theory we will frequently refer to the simple s
alar andone-dimensional 
ase, viz., Γ = Z ⊂ R and xj ∈ R. The models have the generalform
ẍj = −V ′

0(xj) +
∑K

k=1

(
V ′

k(xj+k−xj) − V ′
k(xj−xj−k)

)
, j ∈ Z. (7)Here V0 is 
alled the on-site potential that 
ouples the atoms to a ba
kground �eld.The intera
tion is assumed to be pairwise and involves K neighboring atoms.The Fermi-Pasta-Ulam 
hain (FPU) is obtained by omitting the on-site potentialand 
hoosing K = 1:̈

xj = V ′
1(xj+1−xj) − V ′

1(xj−xj−1), j ∈ Z. (8)The importan
e of this model is its Galilean invarian
e, i.e., for all ξ, c ∈ R thetransformation (x, ẋ) 7→ (xj+ξ + ct, ẋj+c)j∈Z leaves (8) invariant.Another simple 
lass is obtained by assuming again K = 1 with linear nearest-neighbor intera
tion and a nonlinear ba
kground potential. In analogy to the Klein-Gordon equation this model is 
alled Klein-Gordon 
hain (KG):
ẍj = xj+1 − 2xj + xj−1 − V ′

0(xj), j ∈ Z. (9)In these two models the dispersion relation has the stru
ture
0 = Disp(ω, θ) = ω2 − a − 2b(1− cos θ) with a = V ′′

0 (0) and b = V ′′
1 (0),where a, b ≥ 0 is equivalent to our stability 
ondition. The solution reads

ω = Ω(θ) =
(
a + 2b(1− cos θ)

)1/2
,whi
h is smooth for a > 0. For a = 0 we �nd Ω(θ) =

√
b 2 |sin(θ/ 2)|, whi
h is notdi�erentiable at θ = 0, but the two limits ±√

b of Ω′ at θ = 0 are the ma
ros
opi
wave speeds.3 Formal derivation of 
ontinuum models3.1 General multis
ale approa
hWe dis
uss here the derivation of ma
ros
opi
 models that appear for solutionshaving a relatively small amplitude, but we refer to [DHR06℄ and Se
tion 3.7 forresults on large amplitude solutions.The basi
 ansatz relies on modulations of basi
 plane waves ei(ωt+θ·γ)Φ on largespatial s
ales and suitably 
hosen slow time s
ales. We 
hoose ε > 0 to be the small5



parameter that relates the mi
ros
opi
 and the ma
ros
opi
 temporal and spatials
ales, i.e., we set
τ = εst and y = εγ ∈ R

d for γ ∈ Γ ⊂ R
d.Of 
ourse, there are 
ases where di�erent s
alings in di�erent spatial dire
tions areuseful, but for simpli
ity we restri
t ourselves to this 
ase.We now 
hoose a �nite set of wave ve
tors θ1, . . . , θN ∈ TΓ and asso
iated bandindi
es k1, . . . , kN ∈ {1, . . . , m} and 
onsider the asso
iated plane waves

xγ(t) = En(t, γ)Φn, where En(t, γ)
def
= ei(ωnt+θn·γ)with ωn = Ωkn(θn) and Φn = Φkn(θn).This may in
lude the 
ase θ = 0 and ω = 0, whi
h relates to the ma
ros
opi
 limitof solutions without mi
rostru
ture.The two-s
ale method now starts from the ansatz

(xγ(t), ẋγ(t)) = Rε(A)γ(t), where A = (A1, . . . , AN) and
Rε(A)γ(t) =

∑N
n=1 εσnAn(εst, εγ)En(t, γ)Φn

+
∑N

n,k=1 εσn+σkΨn,k(ε
st, εγ)EnEk

+
∑N

n,k,l=1 εσn+σk+σlΨn,k,l(ε
st, εγ)EnEkEl + h.o.t.

(10)Here the powers s, σ1, . . . , σN ∈ R have to be 
hosen appropriately. We refer to thevariety of di�erent models that 
an be obtained in this way. To obtain real-valuedsolutions one 
hooses An = AN−n and similarly for the higher order terms. In 
aseswith θn 6= 0 the fun
tions An are the modulating amplitudes of the basi
 periodi
plane wave.The aim is to derive suitable equations for A1, . . . , AN , whi
h make this ansatz(10) 
onsistent with the dis
rete model (1). The obtained equations are partialdi�erential equations 
ombined with some algebrai
 relations. These equations are
alled the ma
ros
opi
 equations, be
ause they are posed in terms of the ma
ros
opi
variables τ = εst and y = εγ. Inserting the ansatz (10) into the nonlinear system(1) we have to expand both sides in terms of the produ
ts εeqΠN
n=1E

qn
n with q̃ =∑N

n=1 σnqn. Here we have to expand di�eren
e quotients xγ+α − xγ in terms ofspatial derivative of An. Moreover, the resonan
es between the plane waves areimportant to allow for nontrivial nonlinear intera
tion. They are 
hara
terized byve
tors q ∈ N
N su
h that ΠN

n=1E
qn
n ≡ 1, see Se
tion 7.2 for a general theory.We arrive at a hierar
hy of equations that 
an be parametrized by the multi-index

q = (q1, ..., qN ) ∈ N
N . These equations de
ompose into two groups. If the term

Eq = ΠN
n=1E

qn
n is nonresonant, i.e., di�erent from all the terms ei(ωt+θ·γ) that satisfythe dispersion relation, then the equation for Ψq(τ, y) is uniquely solvable. Theresonant groups asso
iate with the terms Eq = ΠN

n=1E
qn
n that equal one of theterms ei(Ωj(θ)t+θ·γ), whi
h without loss of generality is already in our list, let us say

Em. Naturally, the 
oe�
ient Ψq 
annot be determined uniquely, be
ause the plane6



wave EmΦm solves the linear problem. Thus, by Fredholm's alternative we obtaina solvability 
ondition for the terms on the left-hand side that 
ontains only lowerorder terms that are already determined. This gives either a PDE or an algebrai
equation on the previously 
hosen fun
tions. Moreover, the general solution 
ontainsa new s
alar fun
tion Bq, namely Ψq = BqΦm + Ψ0
q.We refer to [Mie02, GM04, GM06℄ for a more detailed des
ription of this pro
edure.In fa
t, without doing any expli
it 
al
ulation on the spe
i�
 dis
rete latti
e system(1) it is possible to des
ribe the form of the ma
ros
opi
 equations as follows:If ωk 6= 0 : ∂τAk =

∑
q∈Mk(s) cqΠ

N
n=1A

qn
n ,If ωk = 0 : ∂2

τAk =
∑

q∈Mk(2s) c̃qΠ
N
n=1A

qn
n ,

(11)where Mk(s)
def
= {q | σk+s=

∑N
1 σnqn, 0=

∑N
1 ωnqn,

∑N
1 qnθn = 0 on TΓ }. Formore details see [Gia06, GMS06℄ and Se
tion 7.2.The following Se
tions 3.2 to 3.7 treat a list of examples, whi
h highlight the gen-erality of the approa
h.3.2 The quasilinear wave equationA simple but important ma
ros
opi
 model for FPU 
hains results by the followingmultis
ale ansatz with hyperboli
 s
aling:

xj(t) = ε−1 X(εt, εj), τ = εt, y = εj. (12)Note that here xj denotes the spatial position of atom j rather than its displa
ement.We insert the ansatz (12) into (8) and eliminate the relative displa
ements by theTaylor expansion xj±1 − xj ≈ ±ε∂yX(εt, εj). Using ∂τ = ε∂t we 
an identify thema
ros
opi
 modulation equations as the nonlinear wave equation
∂ττX − ∂yV

′
1(∂yX) = 0. (13)Via r = ∂yX and v = ∂τX it transforms into the quasilinear �rst-order system

∂τr − ∂yv = 0, ∂τv − ∂yV
′
1(r) = 0. (14)These equations des
ribe the ma
ros
opi
 evolution of non-os
illatory solutions ofFPU. However, due to the nonlinearity V ′

1 smooth solutions of (14) 
an form sho
ksin �nite times, and in this 
ase the quasilinear wave equation is not longer anappropriate ma
ros
opi
 model for FPU. This problem is addressed in [DHR06℄.3.3 The Korteweg-de Vries equationAnother example for ma
ros
opi
 modulation equations, see [SW00, FP99℄, relieson the KdV-ansatz
xj(t) = ε U

(
ε3t, ε(j+ct)

) (15)7



with s
aling τ = ε3t, y = ε(j+ct). We insert the ansatz into (8) and use Taylorexpansion up to order O(ε6). Comparing the leading order terms we �nd that c isgiven by c2 = V ′′
1 (0). Sin
e the next order terms all 
an
el, the modulation equationis determined by the terms 
orresponding to ε5, and �nally we obtain

2 c ∂τyU − 1
12

c2 ∂yU ∂yyU − V ′′′
1 (0) ∂yyyyU = 0, (16)whi
h is a KdV equation for ∂yU .3.4 The nonlinear S
hrödinger equationWe 
onsider the s
alar, d-dimensional latti
e (1) (i.e., d ∈ N and m = 1)

ẍγ =
∑

0<|β|≤R[V ′
β(xγ+β−xγ)−V ′

β(xγ−xγ−β)] − V ′
0(xγ), γ ∈ Γ, (17)and are interested in the ma
ros
opi
 deformations of a modulated plane wave so-lution of the linearized system

xγ(t) = εA(τ, y)E(t, γ) + c.c. + O(ε2) with E(t, γ) = ei(ωt+θγ) (18)(
.
.: 
onjugate 
omplex) for a �xed wave ve
tor θ ∈ TΓ with frequen
y ω satisfyingthe dispersion relation ω2 = Ω2(θ) > 0.Sin
e the system is dispersive and nonlinear and the amplitude A is weakly s
aledby 0 < ε ≪ 1, we need a slow ma
ros
opi
 time s
ale τ = ε2t 
omparing to thema
ros
opi
 spa
e s
ale y = ε(γ−cgrt), in order to see the evolution of A as timepasses. This is the so 
alled dispersive s
aling. The 
hoi
e of y also re�e
ts that weare moving with the pulse at its mi
ros
opi
al group velo
ity cgr = ∇θΩ(θ). By thiss
aling it turns out that the evolution of A is given by the nonlinear S
hrödingerequation
i∂τA = Divy(

1

2
D2

θΩ(θ)∇yA) + ρ|A|2A. (nlS)For the justi�
ation of this equation we refer to Se
tion 7.1.3.5 Three-wave intera
tionFor the latti
e (17) we are now interested in a ma
ros
opi
 des
ription for the evo-lution of the amplitudes An, n = 1, 2, 3, of three nonlinearly intera
ting modulatedplane waves with di�erent wave numbers θn and frequen
ies ωn, where ω2
n = Ω2(θn).Thus, ansatz (10) takes the spe
ial form

xγ(t) = ε
∑3

n=1 An(τ, y)En(t, γ) + c.c. + O(ε2) with En(t, γ) = ei(ωnt+θn·γ)but now using the hyperboli
 s
aling τ = εt, y = εγ again. It turns out that, if thewave ve
tors θn and frequen
ies ωn are in resonan
e, viz.,
θ1 + θ2 + θ3 = 0 mod TΓ and ω1 + ω2 + ω3 = 0, (19)8
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ω1∂τA1 = ω1∇θΩ(θ1)·∇yA1 + cA2A3,

ω2∂τA2 = ω2∇θΩ(θ2)·∇yA2 + cA1A3,

ω3∂τA3 = ω3∇θΩ(θ3)·∇yA3 + cA1A2,

(20)with c = 2
∑

0<|β|≤R V ′′′
β (0)

∑3
n=1 sin(θn · β) + iV ′′′

0 (0). Ea
h equation 
onsists ofa transport part via the group velo
ity and a nonlinear 
oupling to the two othermodes. Figure 3.1 illustrates the behavior. Without the resonan
e 
ondition (19) be-ing ful�lled, nonlinear terms would not arise and the pulses would just pass throughea
h other. For the justi�
ation of this equation we refer to 7.2.3.6 Coupled systemsWhile the two examples above apply to a system with or without ba
kground poten-tial V0, we are now looking at systems with Galilean invarian
e, where the 
anoni
alexample is FPU from (8). The aim is to understand the 
oupling between ma
ro-s
opi
 deformations and mi
ros
opi
ally os
illating pulses. Sin
e in general thema
ros
opi
 wave speeds and the mi
ros
opi
 group velo
ity are di�erent, we usethe hyperboli
 time s
ale τ = εt. Ansatz (10) redu
es to
xγ(t) = εαX(τ, y) + εβA(τ, y)E + εβA(τ, y)E + h.o.t.with E = ei(ωt+θ·γ) and ω = Ω(θ). Here α and β might be di�erent and depend onthe nonlinearities as well as the s
aling of the initial data. We treat the 
ase of theFPU 
hain with V1(r) = a

2
r2 + b

3
r3 + c

4
r4 with a > 0 and b, c ∈ R.As a �rst example we 
onsider the 
ase α = 0, β = 1 and �nd the system

∂2
τX = c2

m∂2
ξ X, i∂τA = icgr∂yA − ρ0(∂yX) A9



with cm := Ω′(0) =
√

a, cgr := Ω′(θ) and ρ0 := 2bΩ(θ)/a. Sin
e the 
ontributions Xand A s
ale di�erently, the 
oupling of X and A takes pla
e only in one equation.We have the two 
onserved quantities
H(A) =

∫
R

ω2|A|2 dy and E(X, Xτ ) =
∫

R

1
2
X2

τ + c2m
2

X2
y dy.The se
ond example has α = 0 and β = 1/2, whi
h leads to the system

Xττ =
(
c2
mXy + ρ1|A|2

)
y
, 2iωAτ = iωcgrAy −

(
ρ1Xy + 2ρ2|A|2

)
A,where ρ1 := 2b(1− cos θ) and ρ2 := 3c(1− cos θ)2 . This system is a Lagrangian andHamiltonian system in the sense to be dis
ussed in Se
tion 4. The Lagrangian reads

L(X, A, Xτ , Aτ )

=
∫

R
ω Im

(
A(2Aτ−cgrAy)

)
+ 1

2
X2

τ − c2m
2

X2
y − |A|2

(
ρ1Xy+ρ2|A|2

)
dy.There are two �rst integrals

H(A) =
∫

R
ω2|A|2 dy,

E(X, A, Xτ )=
∫

R
ωcgr Im(AAy)+

1
2
X2

τ + c2m
2

X2
y+|A|2

(
ρ1Xy+ρ2|A|2

)
dy.The symple
ti
 stru
ture of the asso
iated Hamiltonian system for (X, A, Xτ ) isnon-
anoni
al and 
an easily be dedu
ed as in Se
tion 4.2.3.7 Whitham's modulation equationIn [Whi74℄ Whitham studies 
ertain nonlinear PDEs and relying on the hyperboli
s
aling he develops a theory that is 
apable to des
ribe the ma
ros
opi
 evolution oflarge mi
ros
opi
 os
illations. Here we apply Whitham's approa
h to three di�erent
hain models. We start with KG, 
f. (7), and make the following multis
ale ansatz

xj(t) = X
(
εt, εj, ε−1 Θ(εt, εj)

)
, (21)where X is assumed to be 2π-periodi
 with respe
t to the phase variable φ = ε−1Θ. Inthis ansatz both the wave number θ and the frequen
y ω depend on the ma
ros
opi

oordinates (τ, y) and are de�ned by the modulated phase Θ via θ = ∂yΘ and

ω = ∂τΘ. It 
an be shown that to leading order the fun
tion X must satisfy thefollowing nonlinear advan
e-delay-di�erential equation
ω2 ∂2

φX = ∇−θ∇+θX − V ′
0(X) (22)with (∇±θX)(φ) = ±X(φ ± θ)∓X(φ). As usual we refer to solutions of this equationas traveling waves. The existen
e problem for solutions of (22) with small amplitudesis investigated in [IK00℄. For 
onvex potentials V0 we 
an provide existen
e ofsolutions by adapting an idea from [FV99℄, 
ompare with the similar problem forFPU in [DHR06℄. A

ording to (22), the a
tion L of a traveling wave is given by

L(θ, ω) = 1
2π

∫ 2π

0
ω2

2
(∂φX)2 − (∇+θX)2 − V0(X)dφ. (23)10



To identify the ma
ros
opi
 modulation equations it is 
onvenient to use the La-grangian formalism, see [Whi74℄ and Se
tion 4.1, be
ause dire
t expansions in pow-ers of ε turn out to be quite 
ompli
ate. With some simple averaging the totala
tion of the 
hain 
an be expressed by a fun
tional L, whi
h depends on (Θ, ∂τΘ)only, and we 
an derive the modulation equations by the prin
iple of least a
tion. It
omes out that the modulation equations are equivalent to the following nonlinearsystem of 
onservations laws
∂τθ − ∂yω = 0, ∂τS + ∂yg = 0, (24)where S = ∂ωL and g = ∂θL. In parti
ular, the system (24) is 
losed by the equationof state (23) and the Gibbs equation dL = Sdω+gdθ.The modulation theory for FPU, see [DHM06, DHR06℄ and the referen
es therein, ismore 
ompli
ate than in the KG 
ase due to the nonlinearity of V1, and the Galileaninvarian
e of (8). In parti
ular, we must 
ombine (12) and (21) as follows

xj(t) = ε−1 X(εt, εj) + X
(
εt, εj, ε−1 Θ(εt, εj)

)
, (25)where as before the pro�le fun
tion X is assumed to be 2π-periodi
 with respe
t to

φ = ε−1Θ. This ansatz gives rise to four important ma
ros
opi
 �elds, namely thewave number θ = ∂yΘ, the frequen
y ω = ∂τΘ, the spe
i�
 length r = ∂yX, andthe ma
ros
opi
 velo
ity v = ∂τX. To leading order, the pro�le fun
tion X mustsatisfy the traveling wave equation
ω2 ∂2

φ X = ∇−θV
′
1(∇+θ X). (26)For 
onvex potentials V1 the existen
e of solutions 
an be proved by an 
onvex opti-mization problem, see [DHR06℄, and rigorous results without 
onvexity assumptions
an be found in [FW94, PP00, Ioo00℄. The derivation of the modulation equationsfor (25) again relies on Lagrangian redu
tion, see for instan
e [Her04, DHM06℄, andleads to the following nonlinear system

∂τr − ∂yv = 0, ∂τv + ∂yp = 0, ∂τθ − ∂yω = 0, ∂τS + ∂yg = 0. (27)These equations 
an be interpreted as the ma
ros
opi
 
onservation laws of mass,momentum, wave number and entropy. As for KG, the 
onstitutive relations for(27) result from a 
areful investigation of the thermodynami
 properties of travelingwaves. More pre
isely, it 
an be shown, at least formally, that (26) provides anequation of state U = U(r, θ, S) as well as the universal Gibbs equation dE =
ωdS − pdr − gdθ + vdv, where U and E = 1

2
v2 + U denote the internal and totalenergy, respe
tively.The third example is the dis
rete nonlinear S
hrödinger equation

−i ȧj + aj+1 − 2 aj + aj−1 + ̺ |aj |2 aj = 0, j ∈ Z, (28)with 
omplex valued aj and real parameter ̺. This equation has exa
t solutions(traveling waves) of the form aj = B ei(θj+ωt) with real amplitude B if ω obeys the11



nonlinear dispersion relation ω + cos θ − 2 + ̺ B2 = 0. The modulation theory forseveral variants of (28) was studied in [HLM94℄ and bases on the multis
ale ansatz
aj(t) = B(εt, εj) ei Θ(εt, εj)/ε, where as before we set θ = ∂yΘ and ω = ∂τΘ. Oneobtains the ma
ros
opi
 balan
e laws

∂τ

(
A2

)
− ∂y

(
2 A2 sin θ

)
= 0, ∂τθ + ∂y

(
̺ A2 + cos θ

)
= 0, (29)where the se
ond evolution equation is equivalent to ∂τθ − ∂yω = 0. We mentionthat (29) 
an also be derived by means of Hamiltonian or Lagrangian redu
tiondis
ussed in the next se
tion, see [HLM94℄ for the details.4 Hamiltonian and Lagrangian stru
turesThe derivation of ma
ros
opi
 equations for dis
rete models (or 
ontinuous modelswith mi
rostru
ture) 
an be seen as a kind of redu
tion of the in�nite dimensionalsystem to a simpler sub
lass. If we 
hoose well ordered initial 
onditions, we hopethat the solution will stay in this order and evolve a

ording to a slow evolution withma
ros
opi
 e�e
ts only. We may interprete this as a kind of (approximate) invariantmanifold, and the ma
ros
opi
 equation des
ribes the evolution on this manifold,the fun
tions A1, ..., AN de�ning kind of 
oordinates. For su
h a redu
tion pro
edureit is a natural question how the original Hamiltonian and Lagrangian stru
tures, asdes
ribed in Se
tion 2.1, �redu
e� to the ma
ros
opi
 equation. Here we just surveythe main ideas and some examples and refer to [GHM06℄ for the full details.Before addressing this question we �rst address the exa
t redu
tion of a Hamiltonianand Lagrangian systems to exa
tly invariant manifolds (
f. e.g. [Mie91℄). First 
on-sider the Lagrangian setting for L de�ned on TQ. Assume that we have an invariantmanifold M ⊂ TQ given in the form

M = { (q, q̇) = S(p, ṗ) ∈ TQ | (p, ṗ) ∈ TP }.Then, we may de�ne the redu
ed Lagrangian Lred = L◦S : TP → R. An easy
al
ulation proves that any solution p of the redu
ed Lagrangian system
0 = − d

dt

(
∂ṗL

red(p, ṗ)
)

+ ∂pL
red(p, ṗ)leads to a solution (q, q̇) = S(p, ṗ) of the original Lagrangian system. Vi
e versa,any solution of the latter system that also lies in M solves the redu
ed Lagrangiansystem.In the Hamiltonian 
ase the tangent bundle stru
ture of Z = TQ is generalized to ageneral symple
ti
 stru
ture ω on the state spa
e Z. Together with the Hamiltonian

H the Hamiltonian system reads
Ω(z)ż = DH(z) or ż = J(z)DH(z),12



where ωz(v1, v2) = 〈Ω(z)v1, v2) and J(z) = Ω(z)−1 : T∗
zZ → TzZ. For a symple
ti
,�ow-invariant submanifold M = { z = R(y) ∈ Z | y ∈ Y } we de�ne the redu
edsymple
ti
 stru
ture Ωred and the redu
ed Hamiltonian Hred via

Ωred(y) = DR(y)∗Ω(R(y))DR(y) and Hred(y) = H(R(y)).Using the �ow-invarian
e of M it is easy to see that any solution of the redu
edHamiltonian system Ωred(y)ẏ = DHred(y) solves the original system and vi
e versaif starting on M.Our appli
ations will of 
ourse use the ansatz Rε from (10) for the redu
tion, whi
h
an be seen as an approximation of an invariant manifold.4.1 Lagrangian redu
tionThe multis
ale ansatz (10) dis
ussed above was 
hosen su
h that it is formally
onsistent and in many 
ases it is possible to justify the ansatz by a rigorous erroranalysis, as surveyed in Se
tions 6.1 and 7. Hen
e, we 
onsider the multis
ale ansatzas a parametrization of an (approximate) invariant manifold. Inserting the ansatz(10) into the Lagrangian L de�ned in (3) we obtain a redu
ed Lagrangian in theform
Lred(ε,A, ∂τA) = ερ

L(A, ∂τA) + O(ερ+1), where A = (A1, . . . , AN).Here Lred is still an in�nite sum over γ ∈ Γ. However, when expanding in powersof ε, the multis
ale ansatz leads to a limit that is an integral over the ma
ros
opi
spa
e variable y ∈ Rd. The in�nite sum 
an be 
onsidered as a Riemann sum forthe spatial integral.Sin
e Lred is independent of τ , the solutions of the redu
ed Euler-Lagrange equation
onserve the asso
iated energy E obtain as
E(A,Aτ ) = 〈〈∂τA, ∂Aτ L(A,Aτ)〉〉 − L(A,Aτ).It is proved in [GHM06℄ that the Lagrangian equation for A asso
iated with thelowest order term L of the redu
ed Lagrangian Lred(ε, ·) really provides exa
tly thema
ros
opi
 equation (11) derived in Se
tion 3.1.Here we illustrate this result using a simple example based on the Klein-Gordon
hain (9) with the potential V0(x) = a

2
x2 + b

4
x4. We 
onsider a single modulatedpulse in the form

xj(t) = ε1/2A(εt, εj)E + ε1/2A(εt, εj)E with E = ei(ωt+θj), (30)where ω = Ω(θ). Inserting this ansatz into L and using ϑ = eiθ−1 we �nd
Lred(ε, A, Aτ) =

∑
Z

(
ε
2
ω2|AE−AE|2 + ε2iω(AE−AE)

(
AτE+AτE

)

− ε
2
|AϑE+A ϑE|2 − ε2

(
AϑE+A ϑE

)(
AyE+AyE

)

−εa
2
|AE+AE|2 − ε2b

4
|AE+AE|4 + O(ε3)

)

= εL(A, Aτ ) + O(ε2) with
L(A, Aτ ) =

∫
R

iω
(
AAτ−AAτ

)
−

(
ϑAAy+ϑAAy

)
− 3b

2
|A|4 dy.13



The important observation for this 
al
ulation is that the lowest order terms 
an
el,whi
h 
an be seen as a manifestation of equipartition of kineti
 and potential energyin the plane waves. Moreover, the terms involving Ek with k 6= 0 also drop out byperiodi
ity. This averaging is a formal pro
edure here, but we will see in the nextsubse
tion that in a two-s
ale setting with an extra phase variable it 
an be madeexa
t.Using ϑ−ϑ = 2i sin θ = 2iω(θ)ω′(θ) the Euler-Lagrange equation reads
0 = −∂τ

(
∂Aτ

L
)
− ∂y

(
∂Ay

L
)

+ ∂AL = −2iωAτ + 2iωω′ Ay − 3b|A|2A. (31)Of 
ourse, this is exa
tly the desired ma
ros
opi
 modulation equation, whi
h 
anbe obtained as in Se
tion 3.1. Moreover, be
ause of invarian
e in τ , there is a �rstintegral, namely the asso
iated energy
E(A, ∂τA) =

∫
R

iωω′
(
AAy − AAy

)
+ 3b

2
|A|4 dy.4.2 Hamiltonian redu
tionIn the Hamiltonian setting we might also try the derive the redu
ed Hamiltonianby inserting the multis
ale ansatz (10) into the Hamiltonian H de�ned in (2). Weobtain

H̃(ε,A, ∂τA) = ε̺
H(A, ∂τA) + O(ε̺+1).In the example of the previous subse
tion we immediately �nd ̺ = 0 < ρ = 1 and

H(A, ∂τA) =
∫

R
2ω2|A|2 dy. Moreover, the symple
ti
 form 
an be redu
ed and weobtain

Ωred
ε = Ω0 + O(ε) with Ω0 = 2iω.It is easy to see that the fun
tion H is also a �rst integral of the ma
ros
opi
 system(31). However, it is not the desired energy E, and the �ow asso
iated with theHamiltonian system Ω0∂τA = DH(A) is the phase translation A(0, ·) 7→ e−2iωtA(t, ·).The dis
repan
y is easily understood, be
ause in H the leading terms of the kineti
and potential theory are added while they 
an
el in L. Note that H is asso
iatedwith the phase symmetry of (31) that is not present in the original dis
rete system.It is introdu
ed into the problem via the multis
ale ansatz and it manifests itselfonly in the limit.Thus, to treat the Hamiltonian limit 
orre
tly it is suitable to embed the dis
reteHamiltonian system into a 
ontinuous one that has the 
orresponding symmetries.In this systems we 
an 
ompensate for drifts in the phases via the phase velo
ity andfor drifts with the group velo
ities by going into suitably moving frames. On thelevel of Hamiltonians this leads to a subtra
tion of the 
orresponding �rst integrals.The terms balan
e in exa
tly the right way su
h that the same 
an
ellations o

uras in the Lagrangian setting. This is the 
ontent of the following 
lassi
al result inthe theory of Hamiltonian systems with symmetry.14



Proposition 4.1. Let (Z,H,Ω) be a Hamiltonian system, whi
h is equi-variant withrespe
t to the one-parameter symmetry group (Tα)α∈R with asso
iated �rst integral
I. Then z : [0, T ] → Z solves Ωż = DH(z) if and only if z̃ : t 7→ Tctz(t) solves
Ω ˙̃z = DH̃c(z̃), where H̃c,ω = H−cI.We illustrate the idea in the pulse propagation problem treated in the previoussubse
tion. The 
ontinuous Hamiltonian system is de�ned on the 
ylinder spa
e-phase Ξ = R × S1 and has the 
on�guration spa
e L2(Ξ). For fun
tions u ∈ L2(Ξ)we 
onsider the system

∂2
t u = ∆(1,0)u − au + bu3 with a > 0 and

∆(ε,δ)u(η, φ) = u(η+ε, φ+δ) − 2u(η, φ) + u(η−ε, φ−δ).
(32)Introdu
ing p = ∂τu this is a 
anoni
al Hamiltonian system with

Hcont(u, p) =
∫
Ξ

1
2
p2 + 1

2

(
∇(1,0)u

)2
+ a

2
u2 + b

4
u4 dηdφ. (33)Here the important fa
t is that this system 
ontains the KG 
hain exa
tly, be
ausethe system de
ouples 
ompletely into an un
ountable family of KG 
hains just dis-pla
ed by (η, φ) ∈ [0, 1) × S1. Moreover, (32) is invariant under translations in thespatial dire
tion η as well as in the phase dire
tion φ. This leads to the two �rstintegrals

Isp(u, p) =
∫
Ξ

p ∂ηudηdφ and Iph(u, p) =
∫
Ξ

p ∂φudηdφ. (34)The �ows asso
iated with the 
anoni
al symple
ti
 stru
ture and with one of these�rst integral leads to the transport along the 
orresponding dire
tion with 
onstantspeed one.Using the symmetry of Hcond we 
an go into a frame moving with the phase speed
cph = ω/θ. A

ording to Proposition 4.1 the 
orresponding Hamiltonian is Hph(u, p) =
Hcont(u, p)− ωIph(u, p). Into this Hamiltonian we insert the suitably adjusted mul-tis
ale ansatz (30), namely

u(t, η, φ)= ε1/2A(εt, εη)Eph + ε1/2A(εt, εη)Eph,

p(t, η, φ)= ε1/2iω
(
A(εt, εη)Eph − A(εt, εη)Eph

)

+ε3/2
(
∂τA(εt, εη)Eph + ∂τA(εt, εη)Eph

)
,where Eph = ei(φ+θε) does no longer depend on time. Through the subtra
tion ofthe properly 
hosen multiple of the 
orresponding �rst integral we exa
tly obtainthe 
an
ellation of the leading terms. Moreover, integration over φ ∈ S

1 makes allterms Ek
ph with k 6= 0 exa
tly 0. Hen
e, the resulting redu
ed Hamiltonian has theexpansion

Hred
ε (A, ∂τA) = εE(A) + O(ε2)with E from above. A simple 
al
ulation shows that Ω0∂τA = DE(A) is exa
tly thema
ros
opi
 equation (31). 15



4.3 Derivation of KdV from the FPU 
hainHere we apply both the Lagrangian and Hamiltonian redu
tion from above to theFPU 
hain with KdV-multis
ale ansatz, see (15). For simpli
ity we restri
t to thein�nite 
hain with V1(0) = V ′
1(0) = 0, and we always assume that all arising integralsdo exist.Following the idea in [BP06℄ we embed the dis
rete system into a 
ontinuous one.For this example we 
hoose the 
ontinuous 
on�guration spa
e Q to be L2(R) andidentify ea
h dis
rete 
on�guration (xj)j∈Z

with an pie
ewise linear fun
tion w =

w(η) ∈ L2(R) de�ned by xj = w(j). Sin
e (15), i.e. w(t, η) = εU(ε3t, ε(η+ct)),des
ribes slow ma
ros
opi
 modulations without fast os
illations, there is no needfor introding phase variables. The Lagrangian L of the 
ontinuous system is givenby L(w, ẇ) = K(ẇ) − V(w), with
V(w) =

∫
R

V1(∇+w)dη, K(ẇ) =
∫

R
ẇ2 dη (35)with (∇+w)(η) = w(η+1) − w(η). The 
ontinuous system is invariant under thegroup of translations, and this gives rise to a further 
onserved quantity I. Exploit-ing Noether's theorem we �nd the �rst integral I(w, ẇ) =

∫
R

ẇ ∂ηw dη, whi
h hasno 
ounterpart in the dis
rete mi
ros
opi
 FPU 
hain.Inserting the ansatz (15) into the energies and using ∫
R

∂yU∂yyUdy = 0, ∫
R

∂yU∂yyyUdy =

−
∫

R
(∂yyU)2dy, and c2 = V ′′

1 (0) we �nd
K(ẇ) = ε3 1

2
H(U) + ε5

I(U, ∂τU) + O(ε7),

V(w) = ε3 1
2

H(U) + ε5
E(U) + O(ε7),

I(w, ẇ) = ε3 c−1
H(U) + ε5 c−1

I(U, ∂τU) + O(ε7),where
H(U) = c2

∫
R

(∂yU)2 dy, I(U, ∂τU) = c
∫

R
∂τU ∂yUdy,

E(U) = − 1
24

c2
∫

R
(∂yyU)2dy + 1

6
V ′′′

1 (0)
∫

R
(∂yU)3dy.Consequently, with L = I − E we �nd

L(w, ẇ)= ε5 L(U, ∂τU) + O(ε7),

H(w, ẇ)= ε3 H(U) + ε5 I(U, ∂τU) + ε5 E(U) + O(ε7),

H(w, ẇ) − c I(w, ẇ)= ε5 E(U) + O(ε7),and it follows that the redu
ed Lagrangian equation equals (16).In the next step we redu
e the Hamiltonian stru
ture. For the mi
ros
opi
 
on-tinuous system the 
anoni
al momentum is given by p = ẇ with Hamiltonian
H(w, p) = K(p) + V(w). For (w, p) the multis
ale ansatz (15) means

(w, p) = Rε(U)(η) =
(
εU(εη), ε4 ∂τU(εη) + ε2 c ∂yU(εη)

)
,where the last term is due to the frame moving with speed c. Redu
tion of the
anoni
al symple
ti
 form Ω with 〈Ω (w, p), (w̃, p̃)〉 =

∫
R

wp̃−w̃pdη leads to
〈ΩRε(U), Rε(Ũ)〉 = ε2〈ΩredU, Ũ〉 + O(ε4) with
〈ΩredU, Ũ〉 = c

∫
R

(
U∂yŨ−Ũ∂yU

)
dη = −2 c

∫
R

∂yU Ũ dη.16



From this we 
on
lude Ωred = −2 c ∂y. Note that Ωred is de�ned on L2(R), whereas Ωlives on L2(R)×L2(R). This dimension redu
tion is natural, be
ause the multis
aleansatz (15) yields a 
oupling of w and p in leading order. Finally it follows imme-diately that the redu
ed Hamiltonian equation ΩredUτ = DE(U) is again equivalentto (16).4.4 Derivation of nlS from the KG 
hainWe 
onsider the KG 
hain (9) with V0(x) = a
2
x2 + b

4
x4. The sum of the kineti
 andpotential energy gives the Hamiltonian

H(x, ẋ) =
∑

j∈Z

(
1
2
ẋ2

j+
1
2
(xj+1−xj)

2+a
2
x2

j+
b
4
x4

j

)
.Sin
e we are interested in modulated pulses, we pro
eed as in Se
tion 4.2 and embedthe dis
rete 
hain on Z into the 
ylinder Ξ = R×S1 leading to the 
ontinuousHamiltonian system (32) with Hamiltonian Hcont in (33).Again we have the two symmetries of spatial translations T sp and phase transla-tions T ph leading to the two �rst integrals Isp and Iph given in (34). However,we pro
eed di�erently, be
ause we are interested in a dispersive ansatz u(t, η) =

εA(ε2t, ε(η+ct))E+c.c.+h.o.t., where c = cgr, 
f. (18). Thus, we apply Proposition4.1 using the symmetry transformation
(ũ, p̃) = T sp

ct T ph
(ω−cθ)t(u, p), H̃ = H− cIsp − (ω−cθ)Iph.The asso
iated 
anoni
al Hamiltonian system Ωcan(ũ, p̃) = DH̃(ũ, p̃) on L(Ξ)2 is stillfully equivalent to a family of un
oupled KG 
hains.Inserting the s
aling exposes the ma
ros
opi
 behavior. For this de�ne

(u(η, φ), p(η, φ)) = (εU(εη, φ−θη), εP (εη, φ−θη)),whi
h keeps the 
anoni
al stru
ture, if we move a fa
tor the ε, whi
h arises from thetransformation rule dy = εdη, into a the time parametrization τ = ε2t. We obtainthe new Hamiltonian
Hε(U, P ) =

∫
Ξ

1
2ε2

([
P−ωUφ−εcUy

]2
+

(
∇(ε,θ)U

)2

+aU2 −
[
ωPUφ+εcPUy

]2
)
+ b

4
U4 dydφ,where ∇(ε,θ)U(y, φ) = U(y+ε, φ+θ) − U(y, φ). Now we see that the suitably trans-formed version of the modulational ansatz (18), viz.,

(U(y, φ), P (y, φ)) = Rε(A)(y, φ) = (Re A(y)eiφ, ω Re A(y)eiφ) + O(ε),leads to the expansion
Hε(Rε(A)) = HnlS(A) + O(ε) with HnlS(A) =

∫
R

ωω′′|Ay|2 + 3b
8
|A|4 dyand the redu
ed symple
ti
 stru
ture Ωred = 2iω. Thus, we re
over the one-dimensional version of nlS given in Se
tion 3.4.17



5 Weak 
onvergen
e methodsFor stati
 problems there is a ri
h literature 
on
erning the Γ-
onvergen
e of po-tential energy fun
tionals of dis
rete models to 
ontinuum models (
f. [FJ00, FT02,BG02a, BG02b, MBL06℄). Here we want to summarize some �rst results for dynami
problems that rely on weak 
onvergen
e.5.1 An abstra
t weak 
onvergen
e resultIn [Mie06a℄ it was shown that linear elastodynami
s 
an be derived from a generallinear latti
e model as des
ribed in Se
tion 2. However, this result used exa
t period-i
ity and linearity in an essential way. The abstra
t approa
h presented here will bedis
ussed in [Mie06b℄ in full details. Its main advantage lies in the �exibility, whi
hallows for appli
ations in nonlinear and ma
ros
opi
ally heterogeneous settings.We 
onsider a family of Hamiltonian systems parametrized by ε ∈ [0, 1],
Ωε(z)ż = DHε(z), (36)and we are interested in the limit behavior for ε → 0. Again, ε measures the ratiobetween the mi
ros
opi
 and the ma
ros
opi
 spatial s
ales, viz., y = εγ.We 
onsider the situation that all Hε are de�ned on one re�exive Bana
h spa
e Z,but may take the value +∞ outside the subspa
e Zε. It is a question of generalinterest to 
hara
terize the further 
onditions on the 
onvergen
e of Hε to H0 andof Ωε to Ω0 su
h that suitable limits z of solutions zε of (36) are solutions of thelimit problem (36) for ε = 0. A �rst guess would be that H0 is the Γ-limit of Hε,i.e. (G1) zε ⇀ z =⇒ H0(z) ≤ lim inf

ε→0
Hε(zε),(G2) ∀ z ∈ Z ∃(z̃ε)ε∈(0,1) : z̃ε ⇀ z and H0(z) = lim

ε→0
Hε(z̃ε).However, we will see below that it 
annot be expe
ted in general.We assume that the subspa
es Zε ⊂ Z are 
losed and that Hε ∈ C1(Zε, R) for

ε ∈ [0, 1]. Moreover, there exist mappings Gε ∈ Lin(Z0, Zε) su
h that we have
Zε ∋ zε ⇀ z ∈ Z0 =⇒ G∗

εDHε(zε) ⇀ DH0(z) in Z∗
0 . (37)Finally we assume that the symple
ti
 operators Ωε are independent of z ∈ Z andthat there exists a larger Bana
h spa
e W su
h that Z embeds 
ontinuously anddensely into W su
h that Ωε : W → Z∗ has an inverse operator for all ε ∈ [0, 1] withthe norm bounded independently of ε. For the 
onvergen
e we ask the 
ondition

Zε ∋ zε ⇀ z ∈ Z0 =⇒ G∗
εΩεzε ⇀ Ω0z in Z∗. (38)Now we use the fa
t that solutions zε of (36) also solve the weak equation

∫ T

0
〈DHε(zε(t)), ϕε(t)〉 + 〈Ωεzε(t), ϕ̇ε(t)〉dt − 〈Ωεzε, ϕε〉

∣∣T
0

= 0 (39)18



for all ϕε ∈ C1([0, T ], Zε). Choosing ϕε(t) = Gεϕ(t) for some ϕ ∈ C1([0, T ], Z0)and using suitable a priori bounds on zε in C0([0, T ], Z) ∩ C1([0, T ], W ) it is pos-sible to extra
t a weakly 
onvergent subsequen
e with zε(t) ⇀ z(t) for some z ∈
C0([0, T ], Zw)∩L∞([0, T ], W ). By the assumptions (37) and (38) we pass to the limitin (39) and obtain

∫ T

0
〈DH0(z), ϕ〉 + 〈Ω0z, ϕ̇〉dt − 〈Ω0z, ϕ〉

∣∣T
0

= 0.Under suitable assumptions it then follows that z solves (36) for ε = 0.5.2 Elastodynami
sThe program des
ribed in the previous subse
tion 
an be applied to polyatomi
Klein�Gordon 
hains, whi
h we also allow to have large-s
ale variations in the sti�-ness and masses. The KG 
hains under 
onsideration are assumed to have a pe-riodi
ity of N on the mi
ros
opi
 level, and all quantities may 
hange also on thema
ros
opi
 s
ale y = εj. For k ∈ ZN = { j modN | j ∈ Z } we have given fun
tions
mk, ak, bk, ck ∈ L∞(R), whi
h are all bounded from below by a positive 
onstant.The KG 
hain is then given by the 
anoni
al Hamiltonian system on ℓ2 × ℓ2

Hdiscr
ε (x,p) =

∑
j∈Z

(
p2

j

2m[j](εj)
+

a[j](εj)

2
(xj+1−xj)

2

+
ε2b[j](εj)

2
x2

j +
ε2c[j](εj)

4
x4

j

)
,

(40)where [j] = j mod N . To derive a suitable 
ontinuum model we embed ℓ2 × ℓ2 into
Z = Z0 = H1(R) × L2(R) via

Zε = { (u, v) ∈ Z | u|[εj,εj+ε] a�ne, v|(εj−ε/2, εj+ε/2) 
onstant }and
(u, v) = Eε(x,p) with (u(εj), v(εj)) = (xj , pj) for all j ∈ Z.

(41)The asso
iated Hamiltonian Hε 
oin
ides with Hdiscr
ε up to a fa
tor ε, whi
h relatesto the time res
aling, namely Hε(u, v) =

∫
R

v(y)2

2M(y,y/ε)
+ A(y,y/ε)

2
u′(y)2 dy +

∑
j∈Z

ε
(

B(εj,j)
2

u(εj)2 + C(εj,j)
4

u(εj)4
)
,where M(y, z) = m[k](y) for z ∈ (k−1/2, k+1/2), A(y, z) = a[k](y) for z ∈ (k, k+1)for k ∈ Z, with similar formulas for B and C.The important step in the analysis is the 
onstru
tion of the operator Gε: Z0 → Zε.We de�ne (uε, vε) = Gε(u, v) via vε(y) = M(y,y/ε)

M∗(y)
v(y) and

∫
R

A(y, y/ε)u′
ε(y)ũ′(y)+uε(y)ũ(y)dy =

∫
R

A∗(y)u′ũ′+uũdyfor all ũ with (ũ, 0) ∈ Zε, see (41). Here A∗ is the averaged sti�ness and M∗ theaveraged masses
A∗(y) =

(
1
N

∫ N

0
A(y, z)−1 dz

)−1 and M∗(y) = 1
N

∫ N

0
M(y, z)dz.It is then possible to prove the abstra
t 
onditions 37 and 38, whi
h leads to thefollowing results, 
f. [Mie06b℄. 19



Theorem 5.1. Let Eε : ℓ2×ℓ2 → Z = H1(R) be the embedding in (41). Let (xε, pε) :
[0, T/ε] → ℓ2 × ℓ2 be solutions of the 
anoni
al Hamiltonian system asso
iated with
Hdiscr

ε in (40). If for τ = 0 we have
(

I 0
0 M(·, ·/ε)

)
Eε

(
xε(τ/ε)
εpε(τ/ε)

)
⇀

(
u(τ)

M∗(·)v(τ)

) in Z,then this 
onvergen
e holds for all τ ∈ [0, T ], where (u, v) : [0, T ] → Z is a solutionof the ma
ros
opi
 wave equation arising from the 
anoni
al Hamiltonian systemwith
H0(u, v) =

∫
R

1
2M∗(y)

v2 + A∗(y)
2

(u′)2 + B∗(y)
2

u2 + C∗(y)
4

u4 dy,where B∗(y) = 1
N

∫ N

0
B(y, z)dz and C∗(y) = 1

N

∫ N

0
c(y, z)dz.It should be noted that H0 is not the Γ-limit of Hε when using 
anoni
al variables.However, if we use the Lagrangian 
oordinates (uε, u̇ε) = (uε, M(·, ·/ε)−1pε), then itis the Γ-limit.5.3 Energy transport via Wigner-Husimi measuresWaves in dispersive media travel with a speed that depends on their wave length.We now dis
uss this for the general linear model introdu
ed in Se
tion 2.2. Wavepropagation is driven by the group velo
ity cgr = ∇Ωj(θ), whi
h depends on the waveve
tor θ ∈ TΓ and the band number j ∈ {1, . . . , m}. Thus, at ea
h ma
ros
opi
 point

y ∈ Rd we need to know how mu
h energy is lo
ated in whi
h band and in whi
hwave-ve
tor regime.The relevant mathemati
al tool is the Wigner measure or the Husimi measure,whi
h was used in [Gér91, LP93, MMP94, GMMP97, TP04℄ to study transportof os
illations (relating to energy, density, or other physi
al quantities). The 
aseof dis
rete latti
es is analyzed in detail in [Ma
04, Mie06a℄. For this we rewrite (6)into diagonal and res
aled form
∂

∂τ
Uε(τ, θ) = B(ε, θ)Uε(τ, θ) with B(ε, θ) =

i

ε
diag(Ω1(θ), ..., Ωm(θ)). (42)The Wigner transform W ε[uε] of uε = F−1Uε is now de�ned as a matrix-valueddistribution on R × TΓ. For the diagonal entries it is possible to pass to the limit

ε → 0 and one �nds the Wigner measure µW
j = lim

ε→0
(W ε[u3])jj. More pre
isely, wehave the following result, see [Mie06a℄.Theorem 5.2. Let uε : [0, T ] → L2(TΓ, Cm) be a family of solutions for (42) with

‖uε(0)‖L2 ≤ C. Let j ∈ {1, ..., m} and Sj ⊂ TΓ be given su
h that Ωj ∈ C1(TΓ\Sj).If for τ = 0 we have
lim
ε→0

(W ε[uε](τ))jj = µW
j (τ) in D(Rd×TΓ) and µW

j (0, Rd×Sj) = 0,20
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xxxxFigure 5.1: Right: energy distribution at t = 200 for the linear 
hain ẍj = xj+1 −

2xj + xj−1 with initial data xj(0) = δj and ẋj(0) = 0. Right: Energy distributionfor the square latti
e Z
2 with simple nearest-neighbor intera
tion at time t = 120.then this 
onvergen
e holds for all τ ∈ [0, T ], where µW

j : [0, T ] → M(Rd×TΓ) is asolution of the energy-transport equation
∂τµ

W
j = ∇Ωj(θ) · ∂yµ

W
j on [0, T ]×R

d×TΓ.Using this result it is possible to obtain the energy distribution by integration over
θ, namely

e(τ, y)dy =
m∑

j=1

∫
θ∈TΓ

µW
j (0, y−∇Ωj(θ)τ, dθ).The above theorem is restri
ted to the 
ase that no mass 
on
entrates on the singularset Sj, where the dispersion relation is not smooth and, hen
e, the group velo
ityis not de�ned. However, using the Husimi measure as developed in [Mie06a℄ it ispossible to treat this 
ase also in some 
ases.6 Quantitative estimates via Gronwall estimatesAnother te
hnique for the justi�
ation of 
ontinuum models uses quantitative esti-mates to 
ontrol the error between the ma
ros
opi
 equation and the mi
ros
opi
equation. We present the abstra
t idea in Se
tion 6.1 and apply in Se
tion 7. Thismethod 
an also be used to prove dispersive stability results as dis
ussed Se
tion6.2.We work totally in the original mi
ros
opi
 latti
e model

ż = Lz + N (z), (43)where Z is the Bana
h spa
e for the state z(t), and L : Z → Z is the linear part,whi
h is assumed to generate a bounded semigroup (eLt)t≥0, i.e.
∃CL > 0 ∀ t ≥ 0 ∀ z ∈ Z : ‖eLtz‖ ≤ CL‖z‖. (44)21



We also rely on our standard assumption that the solution z = 0 is energeti
allystable, as the Hamiltonian energy is 
onserved. Here it means
∃CE > 0 ∀ sln. z of (43) ∀ t ≥ 0 : ‖z(t)‖ ≤ CE‖z(0)‖. (45)The nonlinearity N : Z → Z is assumed to be lo
ally Lips
hitz. However, theessential features have to be addressed by using additional Bana
h spa
es Y and Wsu
h Y ⊂ Z ⊂ W with 
ontinuous embeddings and(i) ∀ z ∈ Z: ‖z‖W ≤ ‖z‖ (ii) ∀ z̃ ∈ Y : ‖z̃‖ ≤ ‖z̃‖Y . (46)In appli
ations to latti
es we have in mind

Y = ℓ1(Γ, Rk)2, Z = ℓ2(Γ, Rk)2, W = ℓ∞(Γ, Rk)2. (47)In Se
tion 6.1 the importan
e is that N satis�es
∃C > 0 ∃ ν > 0 ∀ z1, z2 ∈ Z with ‖z1‖W , ‖z2‖W ≤ 1 :

‖N (z1) −N (z2)‖ ≤ CN

(
‖z1‖W+‖z2‖W

)ν‖z1−z2‖.
(48)In Se
tion 6.2 the importan
e of Y is the dispersive de
ay estimate

∃κ ∈ (0, 1) ∃CW > 0 ∀ z ∈ Y ∀ t > 0 : ‖eLtz‖W ≤ CW

(1 + t)κ‖z‖Y . (49)of the linear semigroup. For the nonlinearity we then use
∃CN > 0 ∃α, ν > 0 ∀ z ∈ Z : ‖N (z)‖Y ≤ CN‖z‖ν

W‖z‖α. (50)With Y, Z and W as in (47) a standard nonlinearity N ((xγ)γ∈Γ) = (n(xγ))γ∈Γ with
|n(ξ1) − n(ξ2)| ≤ C(|ξ1| + |ξ2|)β|ξ1 − ξ2| will satisfy (48) with ν = β and (50) with
ν = β−1 and α = 2.6.1 Error 
ontrol for approximate solutionsThe basi
 idea is to 
onstru
t an approximate solution zapp, whi
h in fa
t will begiven in the form zapp = Rε(A), and to derive an estimate for the asso
iated error.For any z ∈ C1([0, T ], Z) we de�ne the residual via

Res(z)(t) = ż(t) − Lz(t) −N (z(t)). (51)The following result shows that the smallness of the residual together with thestability 
ondition (44) implies that the error between zapp and an exa
t solution issmall.
22



Theorem 6.1. Assume that the 
onditions (44), (46i) and (48) hold. Moreover,let CR, CA, τ∗, σ, α, ̺ > 0 be given as well as a family (zε
app)ε∈(0,1) of approximatesolutions zε

app ∈ C1([0, τ∗/ε
σ], Z) satisfying

‖zε
app(t)‖W ≤ CAεα and ‖Res(zε

app)(t)‖ ≤ CRε̺ (52)for all t ∈ [0, τ∗/ε
σ]. Moreover, assume

̺ > α + σ and να ≥ σ. (53)Then, for ea
h d > 0 there exist ε0 ∈ (0, 1) and D > 0 su
h that for all ε ∈ (0, ε0]any exa
t solution z of (43) with ‖z(0)−zε
app(0)‖ ≤ dε̺−σ satis�es

‖z(t) − zε
app(t)‖ ≤ Dε̺−σ for t ∈ [0, τ∗/ε

σ]. (54)In (53) the 
ase να > σ is not really interesting, as in this regime the nonlinearityis not really a
tive. In the �rst inequality ̺ may be as big as we like, what improvesthe order of approximation in (54) but does not allow us to extend the length of thetime interval, i.e, to make σ bigger, be
ause it is restri
ted by the se
ond inequality.Proof: For the 
onstru
tion of ε and D we de�ne C1 = CL(d + CRτ∗) and C2 =
CLCN (3CA)ν and let D = 2C1e

C2τ∗ and ε0 = min{1, (CA/D)δ}, where δ = 1/(̺ −
α − σ) > 0.We write the exa
t solution z of (43) in the form z(t) = zε

app(t) + εβR(t) with
β = ̺−σ. Clearly ‖R(0)‖ ≤ d and we have to show ‖R(t)‖ ≤ D for all t ∈ [0, τ∗/ε

σ].Inserting this ansatz into (43) and applying the variation-of-
onstants formula we�nd
R(t) = eLtR(0) +

∫ t

0
eL(t−s)

εα

(
N (zε

app(s) + εβR(s)) −N (zε
app(s)) − Res(zε

app)(s)
)
ds.De�ning r(t) = ‖R(t)‖ and using the available estimates give

r(t) ≤ CLd +
∫ t

0
CL

(
CN [CAεα + CAεα + εβD]νr(s) + CRε̺−β

)
ds,where we assumed r(s) ≤ D on [0, tD] and t ≤ tD. Note that d < D and r is
ontinuous, whi
h implies tD > 0. We will show that tD = τ∗/ε

σ.Assuming ε ∈ (0, ε0] we arrive at r(t) ≤ CLd + CLCRεσt + C2ε
αν

∫ t

0
r(s)ds. Be
auseof εσt ≤ τ∗ we �nd r(t) ≤ C1 + εσC2

∫ t

0
r(s) ds and Gronwall's lemma gives r(t) ≤

C1e
C2εσt ≤ C1e

C2τ∗ = D/2 for all t ∈ [0, tD]. However, this shows that r(t) 
annotrea
h D. As a 
onsequen
e we may 
hoose tD = τ∗/ε
σ and we are done.6.2 Dispersive stabilityHere we present 
onditions whi
h guarantee that the dispersive de
ay estimate (49)for the linear semigroup 
an be transfered to the full nonlinear problem. We followideas from [S
h96, MSU01℄ and refer to [Pat06℄ for more satisfa
tory results.23



Theorem 6.2. Assume that (45), (49), and (50) hold with νκ > 1. Then, thereexist C, η > 0 su
h that all solutions z of (43) with ‖z(0)‖Y ≤ η satisfy
‖z(t)‖W ≤ C

(1 + t)κ
‖z(0)‖Y for all t > 0. (55)Proof: We follow the ideas in [MSU01℄ Lemma 3 and adapt it to the more general
ase. We rely on 0 < κ < 1 < νκ, whi
h yield the estimate

∫ t

0
ds

(1+s)κν (1+t−s)κ ≤ cν,κ

(1+t)κ with cν,κ =
(

2κ

κν−1
+ 2κν

1−κ

)
. (56)This is easily obtained by estimating ∫ t/2

0
and ∫ t

t/2
separately. Using the variation-of-
onstants formula together with the available estimates we �nd

‖z(t)‖W ≤ CW

(1+t)κ ‖z(0)‖Y +
∫ t

0
CW

(1+t−s)κ CN‖z(s)‖ν
W‖z(s)‖α ds.With r(t) = max{ (1 + s)κ‖z(s)‖W | s ∈ [0, t] } and δ = ‖z(0)‖Y we obtain

(1 + t)κ‖z(t)‖ ≤ CW δ +
∫ t

0

CW CN Cα
Er(t)νδα

(1+t−s)κ(1+s)κν ds.Employing (55) and using that r is nonde
reasing we �nd
r(t) ≤ CW δ + C∗δ

αr(t)ν for all t ≥ 0, where C∗ = cν,κCWCNCα
E.We now 
hoose η su
h that C∗η

α(3CWη)ν ≤ CWη and 
laim that r(t) remains lessthan 3CW δ if ‖z(0)‖Y = δ ≤ η, i.e., the desired assertion holds with C = 3CW . Let
tW = sup{ t ≥ 0 | ∀ s ∈ [0, t] : r(s) ≤ 3CW δ }, then for t ∈ [0, tW ] and 0 < δ ≤ η wehave

r(t) = CW δ + C∗δ
α(3CW δ)ν ≤ 2CW δ < 3CW δ.Sin
e r is also 
ontinuous, we 
on
lude tW = ∞.The typi
al appli
ation of the above result involves the spa
es Y = ℓ1 and Z = ℓ2 and

W = ℓ∞. Hen
e, for a nonlinearity with N (x) = (n(xj))j∈Γ and |n(xj)| ≤ Cn|xj|βwe have (50) with α = 2 and ν = β−2. Moreover, the theory in [Pat06℄ providesexpli
ity values of κ, whi
h 
an be determined dire
tly for the properties of thedispersion relations ω = Ωm(θ) dis
ussed in Se
tion 2.2. For this note that eLt 
anbe written as a dis
rete 
onvolution
eLt(x, ẋ) =

(∑
α∈Γ Gγ−α(t)(xα, ẋα)

)
γ∈Γ

,where the Green's fun
tions Gγ(t) ∈ R2m×2m satisfy G0(0) = id and Gγ(0) = 0 for
γ 6= 0. Ea
h 
omponent of ea
h Gγ(t) 
an be 
al
ulated via os
illatory integrals ofthe type ∫

θ∈TΓ
ei(Ωk(θ)t+θ·γ)g(θ)dθwith given smooth fun
tions g. Uniform de
ay properties in γ ∈ Γ for su
h integralsstrongly depend on the non-degenera
y of D2Ωk(θ). Integrating over balls in TΓ,24



where det D2Ωk(θ) is bounded away from 0, we easily obtain a de
ay like t−d/2.However, due to periodi
ity, degenera
ies must o

ur, and the uniform de
ay isalways worse.For instan
e, the one-dimensional FPU and the KG 
hains from Se
tion 2.3 lead to
κ = 1/3, be
ause Ω : S1 → R has turning points and the third derivatives is nonzeroin these points. As a 
onsequen
e the above method leads to the following verypreliminary dispersive de
ay result.Proposition 6.3. Consider the KG 
hain (9) with V0 of the form V ′

0(x) = ax +
O(|x|β) for |x| → 0 with a > 0 and β > 5. Then, there exists δ > 0 and C > 0 su
hthat for ea
h initial 
ondition (x(0), ẋ(0)) we have

‖(x(0), ẋ(0))‖ℓ1 ≤ δ =⇒ ‖(x(t), ẋ(t))‖ℓ∞ ≤ C‖(x(0),ẋ(0))‖ℓ1

(1+t)1/3 for all t ≥ 0.This result is still very weak in terms of the restri
tion on β, and we refer to [Pat06℄for improved results . See also [Zua05, IZ05℄ for related dispersive de
ay results indis
rete approximations of PDEs.7 Justi�
ation of modulation equationsIn this se
tion we provide rigorous justi�
ation results for two examples. In 
ontrastto Se
tion 5 we will use the quantitative estimates provided in Se
tion 6.1. The ideasare based on the justi�
ation theory developed for general modulation equations,see [KSM92, S
h94, S
h98℄ and the surveys [MSU01, Mie02℄. In parti
ular, wemention the papers [S
h95, S
h05b℄, whi
h 
ontain examples, where the modulationequations, derived formally as in Se
tion 3, fail to predi
t the dynami
s of themi
ros
opi
 system 
orre
tly. Thus, the justi�
ation results are needed to validatethe formally obtained ma
ros
opi
 equations.To explain the main ideas and still stay su�
iently simple we 
onsider for bothsubsequent examples the d-dimensional, s
alar model (17). The main observationabout the multis
ale ansatz xA,ε
γ = εσA(εγ)E + c.c. is that it satis�es the estimates

‖(xA,ε
γ )γ∈Γ‖ℓ2 ≤ Csε

σ−d/2‖A‖Hs and ‖(xA,ε
γ )γ∈Γ‖ℓ∞ ≤ Csε

σ‖A‖Hs,for any s > d/2. Thus, our solutions z = (x, ẋ) will be small only in W = ℓ∞(Γ)2 butmay be large in Z = ℓ2(Γ)2. However, for using the abstra
t approa
h provided inTheorem 6.1 we need to make the residual of the approximate solution zapp = Rε(A)small in Z. This means that the order of approximation of the formal ansatz Rε in(10) has to be taken su�
iently high depending on the dimension d.7.1 Nonlinear S
hrödinger equationWe want to justify the nonlinear S
hrödinger equation
i∂τA = divy(

1

2
D2

θΩ(θ)∇yA) + ρ|A|2A (nlS)25



as a ma
ros
opi
 modulation equation for the mi
ros
opi
 latti
e system (17), forthe formal derivation see Se
tion 3.4. We use the dispersive s
aling τ = ε2t and
y = ε(t−cgrt) for the basi
 periodi
 pattern E = ei(ωt+θ·γ), where ω = Ω(θ) and cgr =
Ω′(θ). To derive an evolution equation for the ma
ros
opi
 modulation amplitude
A : [0,∞)×Rd → C we have to use the improved ansatz

xγ(t) = RK
ε (A)γ(t) :=

∑K
k=1 εk

∑k
n=−k Ak,n(τ, y)En,where all the 
oe�
ient fun
tionsAk,n 
an be 
al
ulated formally if the non-resonan
e
ondition of order K holds, namely

n2Ω(θ)2 6= Ω(nθ)2 for n = 0, 2, 3, ..., K. (57)Of 
ourse, we have A = A1,1, where A satis�es (nlS). The other 
oe�
ient fun
tionssatisfy Ak,−n = Ak,n and are either algebrai
 expressions of fun
tions ∂r
τ∂

s
yA

q
p,n with

r+2|s|+pq = k, p ≤ k−1 or (for n = 1, where the non-resonan
e 
ondition fails)they satisfy some linear inhomogeneous S
hrödinger-type equations.Sin
e all 
oe�
ients of the terms εkEn with k = 1, ..., K are equated to 0, theresidual of the ansatz zapp = (RK
ε (A), d

dt
RK

ε (A)) : [0, τ∗/ε
2] → Z = ℓ(Γ)2 satis�es

‖Res(zapp)(t)‖ℓ∞ ≤ CεK+1‖A‖Hs and ‖Res(zapp)(t)‖ℓ2 ≤ CεK+1−d/2‖A‖Hsfor any suitable s > K+2+d/2. Thus, we have all the ingredients to apply Theor em6.1. However, we note that the dispersive time s
ale τ = ε2t needs σ = 2, while theamplitude ‖zapp(t)‖ℓ∞ ∼ εα with α = 1. Now 
ondition (53) only holds for ν ≥ 2.Thus, the nonlinearity N needs to be 
ubi
 (
f. (48)). The following result realizesthis 
ondition by assuming V ′′′
β (0) = 0, see [GM04℄ for the 
ase d = 1.Theorem 7.1. Let K ∈ N with K > 2+d/2 and assume that the s
alar d-dimensionallatti
e model (17) has potentials Vβ ∈ CK+2(R) with Vβ(0) = V ′

β(0) = V ′′′
β (0) = 0.Choose a wave ve
tor θ ∈ TΓ satisfying the non-resonan
e 
onditions (57). Let

A ∈ C([0, τ∗], H
K+3(Rd, C)) ∩ C1([0, τ∗], H

K+1(Rd, C)) be an arbitrary solution of(nlS). Then, for ea
h d > 0 there exist ε0 ∈ (0, 1) and D > 0 su
h that for all
ε ∈ (0, ε0] any exa
t solution x of (17) with

‖(x(0), ẋ(0)) − (RK−2
ε (A)(0), ṘK−2

ε (A)(0))‖ℓ2 ≤ dεK−1−d/2satis�es, for all t ∈ [0, τ∗/ε
2],

‖(x(t), ẋ(t)) − (RK−2
ε (A)(t), ṘK−2

ε (A)(t))‖ℓ2 ≤ DεK−1−d/2.The 
ondition V ′′′
β (0) = 0 allows us to apply the simple abstra
t result of Se
tion6.1. However, this 
ondition is not ne
essary. In the 
ase of nonlinearities that alsohave a quadrati
 part it is still possible to derive a similar result if we impose morerestri
tive non-resonan
e 
onditions. To treat that 
ase one uses ideas from thetheory of normal forms to transform the system via a near identity transform into asystem that has the same linear part but no quadrati
 part in the nonlinearity. Werefer to [S
h98, GM06℄ for positive results and mention also [S
h05b℄ for an example,where the result fails due to fa
t that the more restri
tive non-resonan
e 
onditionis violated. 26



7.2 Intera
tion of several modulated pulsesWe report on results in [Gia06℄ and 
onsider the s
alar d-dimensional model (17)for whi
h we want to show how the three-wave intera
tion equations (20) 
an bejusti�ed in terms of expli
it error estimates. Given are three wave ve
tors θn ∈ TΓand asso
iated frequen
ies ωn with ω2
n = Ω2(θn), whi
h are in resonan
e, namely

θ1 + θ2 + θ3 = 0 in TΓ, ω1 + ω2 + ω3 = 0. (58)Following [Gia06, GMS06℄ we use the following type of non-resonan
e 
ondition forother 
ombinations of these wave ve
tors. We set θ−n := −θn and ω−n := −ωn andsay that the mode system {(θn, ωn) : n = 1, 2, 3} is 
losed of order K, if for all
k ∈ {1, ..., K} and all n1, ..., nk ∈ Ñ = {−3,−2,−1, 1, 2, 3} the following holds:

(∑k
1 ωnl

)2
= Ω

(∑k
1 θnl

)2 ⇐⇒
{

∃n∗ ∈ Ñ : θn∗
=

∑k
1 θnland ωn∗

=
∑k

1 ωnl
.

(59)Here we use the hyperboli
 s
aling τ = εt and y = εγ and, as explained at thebeginning of Se
tion 7, we need the improved multis
ale ansatz
x(t) = RK

ε (A)(t) =
∑K

k=1 εk
∑

n1,...,nk∈ eN Bn1,...,nk
(τ, y)En1 . . .Enk

(60)with A = (A1, A2, A3), En = ei(ωnt+θn·γ), Bn = An and Bn1,...,nk
= B−n1,...,−nk

. Thus,to leading order we have three wave pa
kets, whi
h we expe
t to travel with theirgroup velo
ities and to have intera
tions with the other wave pa
kets.As explained in Se
tion 3.1 it is possible to determine the 
oe�
ient fun
tions
Bn1,...,nk

in su
h a way that the approximate solution zapp = (RK
ε (A)(t), ṘK

ε (A)(t))and the residual Res(zapp) satisfy
‖zapp(t)‖ℓ∞ ≤ Cεα with α = 1 and ‖Res(zapp)(t)‖ℓ2 ≤ CεK+1−d/2if the triple A = (A1, A2, A3) : [0, τ∗] → L2(Rd, C)3 is a su�
iently smooth solutionof the three-wave intera
tion equation (20). Sin
e τ = εσt with σ = 1, we may applyTheorem 6.1 with ν = 1, whi
h means that nonlinearities with quadrati
 parts areallowed.The pre
ise statement from [Gia06℄ reads as follows.Theorem 7.2. Let K ∈ N with K > 1 + d/2 and assume that the d-dimensional,s
alar latti
e model (17) has potentials Vβ ∈ CK+2(R) with Vβ(0) = V ′

β(0) = 0 for
|β| < R. Assume that the mode system {(θn, ωn) : n = 1, 2, 3} satis�es the resonan
e
ondition (58) and is 
losed of order K (
f. (59)). Let A ∈ C([0, τ∗], H

K+2(Rd; C))∩
CK+1([0, τ∗], H

1(Rd; C)) be an arbitrary solution of (20). Then, for ea
h d > 0 thereexist ε0 ∈ (0, 1) and D > 0 su
h that for all ε ∈ (0, ε0] any exa
t solution x of (17)with
‖(x(0), ẋ(0)) − (RK−1

ε (A)(0), ṘK−1
ε (A)(0))‖ℓ2 ≤ dεK−d/2satis�es, for all t ∈ [0, τ∗/ε],

‖(x(t), ẋ(t)) − (RK−1
ε (A)(t), ṘK−1

ε (A)(t))‖ℓ2 ≤ DεK−d/2.27



The whole theory 
an be generalized in several aspe
ts. First we may 
onsider modesystems with N di�erent wave ve
tors, where N ≥ 4. Then, we obtain a system of
N equations for A1, ..., AN , where only those quadrati
 terms An2An3 o

ur in theequation for ∂τAn1 if the three modes (θnl

, ωnl
)l=1,2,3 satisfy the resonan
e 
ondition(58). Other triple intera
tions do not matter on this time s
ale either be
ause thefrequen
ies or the wave ve
tors do not resonate. Quadruple or higher intera
tionsare too small in amplitude to in�uen
e the ma
ros
opi
 behavior (
f. [Gia06℄).Se
ond it is possible to do the very same analysis for systems rather than for a s
alarproblem. Of 
ourse, then we have to pay attention to the di�erent frequen
y bands.We also refer to [GMS06℄, where multipulse intera
tions are treated for nonlinearS
hrödinger equations with periodi
 potentials, see [CMS04, Spa06℄.Similar phenomena arise in su
h di�erent subje
ts as phonon 
ollisions (
f. [Spo05℄)and in surfa
e water waves (
f. [SW03℄).A
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