Weierstraf3-Institut
fiir Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 8633

Continuum descriptions for the dynamics in discrete

lattices: derivation and justification

Johannes Giannoulis!, Michael Herrmann?, Alexander Mielke!?

submitted: 26th April 2006

L Weierstral-Institut 2 TInstitut fir Mathematik
fir Angewandte Analysis Humboldt-Universitdt zu Berlin
und Stochastik Rudower Chaussee 25
Mohrenstrafse 39 12489 Berlin-Adlershof
10117 Berlin, Germany Germany
E-Mail: giannoul@wias-berlin.de E-Mail: michaelherrmann@math.hu-berlin.de

mielke@wias-berlin.de

No. 1126
Berlin 2006

wiilal s

2000 Mathematics Subject Classification. 34C20, 34E13, 37K60, 37K05, 7T0F45, 70K 70.

Key words and phrases. Discrete lattice systems, modulation equations, Hamiltonian structure,
multiscale ansatz, dispersive wave propagation.

Research supported by the DFG Priority Program SPP 1095 Analysis, Modeling and Simula-
tion of Multiscale Problems under Mi 459/3.



Edited by

Weierstra-Institut fiir Angewandte Analysis und Stochastik (WIAS)
Mohrenstrafe 39

10117 Berlin

Germany
Fax: + 49 30 2044975
E-Mail: preprint@wias-berlin.de

World Wide Web:  http://www.wias-berlin.de/



Abstract

The passage from microscopic systems to macroscopic ones is studied by
starting from spatially discrete lattice systems and deriving several continuum
limits. The lattice system is an infinite-dimensional Hamiltonian system dis-
playing a variety of different dynamical behavior. Depending on the initial con-
ditions one sees quite different behavior like macroscopic elastic deformations
associated with acoustic waves or like propagation of optical pulses. We show
how on a formal level different macroscopic systems can be derived such as the
Korteweg-de Vries equation, the nonlinear Schrédinger equation, Whitham’s
modulation equation, the three-wave interaction model, or the energy trans-
port equation using the Wigner measure. We also address the question how
the microscopic Hamiltonian and the Lagrangian structures transfer to simi-
lar structures on the macroscopic level. Finally we discuss rigorous analytical
convergence results of the microscopic system to the macroscopic one by either
weak-convergence methods or by quantitative error bounds.

1 Introduction

A major topic in the area of multiscale problems is the derivation of macroscopic,
continuum models from microscopic, discrete ones. The prototype of a discrete
many-particle system is a periodic lattice for modeling a crystal. Starting from
the seminal work of Fermi, Pasta, and Ulam (|[FPU55|), a lot of interest and work
has been attracted to the study of the statical and dynamical behavior of ordered
discrete systems. In the dynamical situation one is interested in macroscopic limits
that are obtained by choosing well-prepared initial conditions: We choose the initial
data in a specified class of functions and want to obtain an evolution equation within
this function class, which we call the macroscopic limit problem. This approach is
motivated by the theory of modulation equations, which evolved in the late 1960’s
for problems in fluid mechanics (see e.g. [Mie02] for a survey on this subject). If the
linearized model has a space-time periodic solution, one asks how initial modulations
of this pattern evolve in time. The modulations occur on much larger spatial and
temporal scales; thus the modulation equation is a macroscopic equation.

In mathematically rigorous terms this can be described by studying the following
coarse graining diagram:



microscopic IR macroscopic
initial data ¢t = 0 z0 _e=0 A°
[time evolution| lt >0 T > Ol
- e—0
z(7 /%) — A(T)
discrete, atomistic ‘coarse graining‘ continuum

Here z. : [0, 7../e?] — Z. denotes the solution of the microscopic model depending on
the microscopic time ¢ and A : [0, 7] — Zj is the solution of the macroscopic model.
In the best case the diagram commutes, i.e., if the coarse graining S.z.(7/¢%) —
A(7) holds at time 7 = 0, then it also holds for all 7 € [0, 7.]. Examples of such
results will be Theorems 5.1, 5.2, 7.1 and 7.2.

Before establishing these results, we survey methods to derive macroscopic models on
the formal level by using a suitable multiscale ansatz and expanding the coefficients
of equal powers of the small parameter and of the harmonics of the microscopic
fluctuation to 0. The emphasis is to survey the theory and to explain the main
techniques and results on simple models like the FPU chain or the Klein-Gordon
chain, see Section 2.3.

Naturally, our survey can only cover a small part of the rich subject of dynamics
in discrete systems. We will totally omit any of the works on static solutions for
lattices, see e.g. [FJ00, BG0O2b, BG02a, Sch05a, Ble05, MBL06|. Moreover, there
is a huge body of work concerning the understanding of special solution classes
like traveling or standing pulses with or without periodic modulations, see |[FW94,
MA94, Kon96, FP99, Ioo00, IK00, FM02, FP02, FM03, Jam03, FP04a, FP04b,
1J05, DHMO6]. The response of oscillator chains to a simple initial disturbance or
to Riemann initial data is studied in [DKV95, DKKZ96, DK00, BCS01, DHR06|,
where in particular completely integrable systems like the Toda lattice are of interest.
Finally in the framework of non-equilibrium statistical mechanics (cf. for a survey
e.g. |Spo91, Bol96|) one is interested in highly disordered systems, where only
statistical averages satisfy nice macroscopic equations.

2 The discrete models

In the first subsection we write down the class of systems that can be treated with
the methods surveyed below. This includes general polyatomic lattices in any space
dimension. The interactions can be general and can occur between several atoms,
not just pair potentials, and can have arbitrary range. In the second subsection
we treat the linearizations, which simplify a lot and can be treated in particular by
Fourier transform methods. There, the central structure are the different dispersion
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relations, which will be used heavily in the subsequent analysis. Finally we present
two simple model problems that represent most of the interesting features. These
models will be addressed in most of the following results to illustrate the general
results.

2.1 General lattices systems

We model a perfectly period crystal based on a d-dimensional Bravais lattice I’
embedded into R?. This lattice is homeomorphic to the additive group Z¢ but
might have a different metric structure. Each lattice point v € I denotes a unit cell
in the actual crystal and, hence, the vectors z, € R™ and 1, are collections of all
the relevant positions and velocities, respectively, of the atoms inside this unit cell.
By (x,%x) € lo(I')™ x £5(I')™ we denote the state of the system, where x = (2.) er
and X = (&4)yer. By M € R™™ we denote the mass matrix for each cell, which
is assumed to be symmetric and positive definite. The total kinetic energy in the

crystal is
.\, def

K(x) = 5(M%,%) = 32 cp 3(Miy, &)
The potential energy V(x) is obtained by adding up all contributions acting on one

cell via a single potential Vg : £o(I")™ — R given the forces of the state x on the
cell at v =0:

V(x) = ser Ven(ToX).

Here T, is the translation operator with 7,x = (Z44~)yer. In the case of finite-
range interaction the potential V. only depends on finitely many components, e.g.,
Veen(x) = Vo(@o) + << r VA (24 —0) for pair interactions.

The Newtonian equations for this lattice model are given as
M"i"y = _Dxa,v(x) = - Zaef‘ Vx«,,a‘/cell(TaX) for S I (1)

Of course this system is invariant under the translations T, a € I', and has the total
energy £(x,x) = KC(x) + V(x) as first integral. Moreover, it is a canonical Hamilto-
nian system with momenta p = Mx, Hamiltonian function H, and symplectic form
wcan:
H(x,p) = 3{(M~'p,p)) + V(x) and
wcan((vhql)v (V27<12)) = (vi, d2)) — (v2,q1))

Clearly, the Newtonian equations (1) are equivalent to the Hamiltonian equations
x = OpH(x,p), p = —0xH(x,p). Moreover, they can be obtained as the Euler-
Lagrange equation for the Lagrangian

(2)

L(x,%) = K(%x) = V(x). (3)



2.2 Linear systems and dispersion relations

Linearization leads us to linearized systems, where the potential V' is a quadratic
form. The linear equation takes the form

Mz, =— Zﬁef‘ Aptyip = Zaer Ay _atq foryel, (4)

where the interaction matrices satisfy the symmetry condition Ag = Afﬁ and a
decay condition like |[Ag|| < Ce 8Pl The quadratic potential energy then reads

V(%) = 5 Xaqer(Ay-ata, Ty).

An essential feature of such harmonic lattices is the presence of many traveling wave
solutions in the form of plain waves:

z,(t) = @D D  where § € R and (A(0) — w*M)® = 0. (5)

The wave vectors 6 are taken from the torus 7r, which is obtained by factoring
R? = Lin(R?) with respect to the dual lattice. The symbol matrix A(f) reads

A) = Y ger €Ay e C™ for € Tr.

Hence, A(f) is Hermitian, and we always impose the basic assumption of stability
in the form A(#) > 0 for all 6 € Tr.

Plane-wave solutions as in (5) exist if w and 6 satisfy the dispersion relation
0 = Disp(w, 0) 2 det <w2M — A(O)).
Under our stability condition, there are always m non-negative eigenvalue curves
w=0), k=1,...,m,

which we order such that 0 < Qy < Qy < ... <Q,,. The index k is called the band
index. Two velocities will be important below, the phase velocity cp, and the group
velocity Cg:

Coh = Cph(0) o Q";ff) 0 and ¢y = o i(6) o VQ,(0).

The dynamics of the linear system is completely determined by M and the symbol

matrix A : 7p — CI7™. This is easily seen by transforming (5) into wave vector

space. For this define X(0) = Fx : 7r — C™ via Fx o > e 7z, then X(t) =

Fx(t) : ITr — C™ satisfies the equation

if and only if z satisfies (5). However, the latter equation is an ODE for each fixed
0 e Tr.

For studying the qualitative behavior of the solutions in the subsequent sections,
this is not sufficient, and we need to understand the back-transform for large times
t. Then, the smoothness properties of the dispersion relations will be important, see
Sections 5.3 and 6.2.



2.3 The chain models of FPU and KG

To illustrate our abstract theory we will frequently refer to the simple scalar and
one-dimensional case, viz., I' = Z C R and z; € R. The models have the general
form

i = —Vy() + Somey (Vi(@jen—25) = Vi(zj—,-1)), j €L (7)

Here Vj is called the on-site potential that couples the atoms to a background field.
The interaction is assumed to be pairwise and involves K neighboring atoms.

The Fermi-Pasta-Ulam chain (FPU) is obtained by omitting the on-site potential
and choosing K = 1:

iy = Vi(zjm—=;) = Vi(z;—zjn), JEL (8)
The importance of this model is its Galilean invariance, i.e., for all £,¢ € R the
transformation (x, %) — (x;4+& + ct, &;+c)jez leaves (8) invariant.

Another simple class is obtained by assuming again K = 1 with linear nearest-
neighbor interaction and a nonlinear background potential. In analogy to the Klein-
Gordon equation this model is called Klein-Gordon chain (KG):

/

iy = x50 — 225+ x50 — Vo), JjEZ (9)

In these two models the dispersion relation has the structure
0 = Disp(w, #) = w?* — a — 2b(1— cos @) with a = V'(0) and b = V/(0),
where a,b > 0 is equivalent to our stability condition. The solution reads
1/2
w = Q0) = (a+2b(1—cosh)) ",

which is smooth for a > 0. For a = 0 we find Q(#) = v/b2sin(f/ 2)|, which is not
differentiable at # = 0, but the two limits £v/b of Q' at § = 0 are the macroscopic
wave speeds.

3 Formal derivation of continuum models

3.1 General multiscale approach

We discuss here the derivation of macroscopic models that appear for solutions
having a relatively small amplitude, but we refer to [DHRO06| and Section 3.7 for
results on large amplitude solutions.

The basic ansatz relies on modulations of basic plane waves @00 on large
spatial scales and suitably chosen slow time scales. We choose € > 0 to be the small



parameter that relates the microscopic and the macroscopic temporal and spatial
scales, i.e., we set

r=¢t and y=eycR? foryel c R
Of course, there are cases where different scalings in different spatial directions are

useful, but for simplicity we restrict ourselves to this case.

We now choose a finite set of wave vectors 6;,...,0y € 7r and associated band
indices ki,...,ky € {1,...,m} and consider the associated plane waves

ZEv(t) = En(t, 7)‘I>n, where En(t, 7) def el(wnt+6n-7)
with w,, = Qy, (0,) and ®,, = Oy, (6,).

This may include the case § = 0 and w = 0, which relates to the macroscopic limit
of solutions without microstructure.
The two-scale method now starts from the ansatz

(x4(t),2,(t)) = R:(A),(t), where A = (Ay,..., Ay) and

Re(A), (1) = X €7 An(e°t,27)En(t, 7) @

10
+ Zilv,kZI 80n+0k\1’n,k(88t7 6/-y):E)n:E)k: ( )
+ ZnN,k,lzl grtotad, pi(e°t, ey)E EyE; + hot.
Here the powers s,01,...,05 € R have to be chosen appropriately. We refer to the

variety of different models that can be obtained in this way. To obtain real-valued
solutions one chooses A, = Ay_,, and similarly for the higher order terms. In cases
with 6, # 0 the functions A, are the modulating amplitudes of the basic periodic
plane wave.

The aim is to derive suitable equations for Aq,..., Ay, which make this ansatz
(10) consistent with the discrete model (1). The obtained equations are partial
differential equations combined with some algebraic relations. These equations are
called the macroscopic equations, because they are posed in terms of the macroscopic
variables 7 = £°t and y = 7. Inserting the ansatz (10) into the nonlinear system
(1) we have to expand both sides in terms of the products /lIY_E? with ¢ =
Zivzl 0nqn. Here we have to expand difference quotients z,,, — 2 in terms of
spatial derivative of A,. Moreover, the resonances between the plane waves are
important to allow for nontrivial nonlinear interaction. They are characterized by
vectors ¢ € NV such that IIY_ E9" = 1, see Section 7.2 for a general theory.

We arrive at a hierarchy of equations that can be parametrized by the multi-index
q = (q1,...,qy) € NV, These equations decompose into two groups. If the term
E, = IY_ E% is nonresonant, i.e., different from all the terms e!“+%7) that satisfy
the dispersion relation, then the equation for Uq(7,y) is uniquely solvable. The
resonant groups associate with the terms E, = II)_,E? that equal one of the
terms €400 which without loss of generality is already in our list, let us say
E,,. Naturally, the coefficient ¥, cannot be determined uniquely, because the plane
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wave E,,®,, solves the linear problem. Thus, by Fredholm’s alternative we obtain
a solvability condition for the terms on the left-hand side that contains only lower
order terms that are already determined. This gives either a PDE or an algebraic
equation on the previously chosen functions. Moreover, the general solution contains
a new scalar function By, namely W, = By®,, + \Ilg.

We refer to [Mie02, GM04, GMO06| for a more detailed description of this procedure.
In fact, without doing any explicit calculation on the specific discrete lattice system
(1) it is possible to describe the form of the macroscopic equations as follows:

~ 11

where My(s) dof {q| ox+s= Ziv OnGn, 0= Zjlv WnGn, Zjlv Gnb, = 0 on 7p }. For
more details see [Gia06, GMS06| and Section 7.2.

The following Sections 3.2 to 3.7 treat a list of examples, which highlight the gen-
erality of the approach.

3.2 The quasilinear wave equation
A simple but important macroscopic model for FPU chains results by the following
multiscale ansatz with hyperbolic scaling:

zi(t) =e ' X(et, ej), T=¢ct, y=cj. (12)

Note that here z; denotes the spatial position of atom j rather than its displacement.
We insert the ansatz (12) into (8) and eliminate the relative displacements by the
Taylor expansion x4 — x; & +c0,X (¢t, €j). Using 0, = €0, we can identify the
macroscopic modulation equations as the nonlinear wave equation

0. X — 0,V{(0,X) = 0. (13)
Via r = 9,X and v = 0, X it transforms into the quasilinear first-order system
oyr — Oy =0, 0v—39,V(r)=0. (14)

These equations describe the macroscopic evolution of non-oscillatory solutions of
FPU. However, due to the nonlinearity V{ smooth solutions of (14) can form shocks
in finite times, and in this case the quasilinear wave equation is not longer an
appropriate macroscopic model for FPU. This problem is addressed in [DHRO06|.

3.3 The Korteweg-de Vries equation

Another example for macroscopic modulation equations, see [SW00, FP99|, relies
on the KdV-ansatz

z;(t) = e U(e%, e(j+ct)) (15)



with scaling 7 = &3, y = e(j+ct). We insert the ansatz into (8) and use Taylor
expansion up to order O(g°). Comparing the leading order terms we find that c is
given by ¢* = V//(0). Since the next order terms all cancel, the modulation equation
is determined by the terms corresponding to €°, and finally we obtain

2¢0:,U — 35 2 0,U 8,,U — V/"(0) Oy, U = 0, (16)

which is a KdV equation for 9,U.

3.4 The nonlinear Schrodinger equation

We consider the scalar, d-dimensional lattice (1) (i.e., d € N and m = 1)

T, = Zo<|5\gR[Vﬁ,(%+ﬁ_%)—Vﬁl(%_%—ﬁ)] —Volxy), €T, (17)

and are interested in the macroscopic deformations of a modulated plane wave so-
lution of the linearized system

2, (t) = eA(T,y)E(t,y) + c.c. + O(e?)  with E(t,7) = /@) (18)

(c.c.: conjugate complex) for a fixed wave vector § € T with frequency w satisfying
the dispersion relation w? = Q2(9) > 0.

Since the system is dispersive and nonlinear and the amplitude A is weakly scaled
by 0 < ¢ < 1, we need a slow macroscopic time scale 7 = €2t comparing to the
macroscopic space scale y = e(y—cgt), in order to see the evolution of A as time
passes. This is the so called dispersive scaling. The choice of y also reflects that we
are moving with the pulse at its microscopical group velocity ¢, = V4€2(#). By this
scaling it turns out that the evolution of A is given by the nonlinear Schrodinger
equation

i0,A = Divy(%D(%Q((‘))VyA) + plAJPA. (nlS)

For the justification of this equation we refer to Section 7.1.

3.5 Three-wave interaction

For the lattice (17) we are now interested in a macroscopic description for the evo-
lution of the amplitudes A,,, n = 1,2, 3, of three nonlinearly interacting modulated
plane waves with different wave numbers 6,, and frequencies w,, where w? = Q%(0,,).
Thus, ansatz (10) takes the special form

2, (t) =32 AT, y)En(t, ) + c.c. + O(e?) with E,(t,7) = el@nt+tn)

but now using the hyperbolic scaling 7 = €t, y = ¢y again. It turns out that, if the
wave vectors #,, and frequencies w,, are in resonance, viz.,

91+‘92+93:0 IIlOd’]}* and w1+w2+w320, (19)
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Figure 3.1: Left: typical initial condition. Right: energy distribution in space-time.

the amplitudes A,,, n = 1,2, 3, satisfy the so called three-wave interaction equations

wlaTAl = W1VQQ(91)'vyA1 + CZQZg,
w20TA2 = WQVGQ(QQ)‘vyAQ + Czlzg, (20)
W307A3 = w;J,V@Q(Qg)'vyAg + czlﬁ%

with ¢ = 237 15<, V5" (0) S sin(6, - B) +1V7"(0). Each equation consists of
a transport part via the group velocity and a nonlinear coupling to the two other
modes. Figure 3.1 illustrates the behavior. Without the resonance condition (19) be-
ing fulfilled, nonlinear terms would not arise and the pulses would just pass through
each other. For the justification of this equation we refer to 7.2.

3.6 Coupled systems

While the two examples above apply to a system with or without background poten-
tial V), we are now looking at systems with GGalilean invariance, where the canonical
example is FPU from (8). The aim is to understand the coupling between macro-
scopic deformations and microscopically oscillating pulses. Since in general the
macroscopic wave speeds and the microscopic group velocity are different, we use
the hyperbolic time scale 7 = et. Ansatz (10) reduces to

zy(t) = e X(1,y) + " A(r,y)E + " A(7,y)E+ hot.

with E = /@97 and w = Q(#). Here o and 8 might be different and depend on
the nonlinearities as well as the scaling of the initial data. We treat the case of the
FPU chain with Vi(r) = &r? + &r% + $r* with a > 0 and b,c € R.

As a first example we consider the case « = 0, # = 1 and find the system

PPX = ABEX, (0,4 = icgd, A — po(0,X) A



with ¢, := Q'(0) = a, ¢y = Q'(0) and po := 20€2(F)/a. Since the contributions X
and A scale differently, the coupling of X and A takes place only in one equation.
We have the two conserved quantities

H(A) = [, w?A]*dy and E(X,X,)= [piX?+ rr‘dey.

The second example has a = 0 and § = 1/2, which leads to the system
X = (C?an + pl‘A|2)y, 2wA; = iwcg Ay — (ple + 2p2|A\2) A

where p; := 2b(1— cos6) and py := 3c¢(1—cosf)? . This system is a Lagrangian and
Hamiltonian system in the sense to be discussed in Section 4. The Lagrangian reads

L(X, A X, A,)
= waIm (Z(2AT—CgrAy)) + %Xz - %“Xg - |A\2(p1Xy+p2\A|2) dy

There are two first integrals

= Jpw?lA[*dy,
N 2
E(X, A, X;) = [pweg Im(AA,)+35 X2+% X2+ AP (01 Xy +p2 | A]?) dy

The symplectic structure of the associated Hamiltonian system for (X, A, X,) is
non-canonical and can easily be deduced as in Section 4.2.

3.7 Whitham’s modulation equation

In |Whi74| Whitham studies certain nonlinear PDEs and relying on the hyperbolic
scaling he develops a theory that is capable to describe the macroscopic evolution of
large microscopic oscillations. Here we apply Whitham’s approach to three different
chain models. We start with KG, cf. (7), and make the following multiscale ansatz

z;(t) = X(et, ej, e O(et, €5)), (21)

where X is assumed to be 27-periodic with respect to the phase variable ¢ = ¢71©. In
this ansatz both the wave number 6 and the frequency w depend on the macroscopic
coordinates (7, y) and are defined by the modulated phase © via § = 0,0 and
w = 0,0. It can be shown that to leading order the function X must satisfy the
following nonlinear advance-delay-differential equation

w? 03X = V_gV 40X — V5 (X) (22)

with (VpX)(¢) = £X(¢ £ 0) FX(¢p). As usual we refer to solutions of this equation
as traveling waves. The existence problem for solutions of (22) with small amplitudes
is investigated in [IK00]. For convex potentials V[, we can provide existence of
solutions by adapting an idea from [FV99|, compare with the similar problem for
FPU in |[DHRO06|. According to (22), the action L of a traveling wave is given by

L0, w) = 3 [;7 % (0%)" = (V49%)" — Vo(X)do. (23)
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To identify the macroscopic modulation equations it is convenient to use the La-
grangian formalism, see [Whi74| and Section 4.1, because direct expansions in pow-
ers of € turn out to be quite complicate. With some simple averaging the total
action of the chain can be expressed by a functional L, which depends on (0, 0,0)
only, and we can derive the modulation equations by the principle of least action. It
comes out that the modulation equations are equivalent to the following nonlinear
system of conservations laws

0.0 — 9w =0, 0.5+ 0,9=0, (24)

where S = 0, L and g = 0pL. In particular, the system (24) is closed by the equation
of state (23) and the Gibbs equation dL = Sdw+gd6.

The modulation theory for FPU, see [DHMO06, DHR06| and the references therein, is
more complicate than in the KG case due to the nonlinearity of V;, and the Galilean
invariance of (8). In particular, we must combine (12) and (21) as follows

zi(t) =" X(et, j) + X(et, 5, e O(et, 7)), (25)

where as before the profile function X is assumed to be 2m-periodic with respect to
¢ = ¢71O. This ansatz gives rise to four important macroscopic fields, namely the
wave number § = 0,0, the frequency w = 0.0, the specific length » = 9,.X, and
the macroscopic velocity v = 9, X. To leading order, the profile function X must
satisfy the traveling wave equation

w2 83) X = V_gvl/(v_;_g %) (26)

For convex potentials V; the existence of solutions can be proved by an convex opti-
mization problem, see [DHRO6|, and rigorous results without convexity assumptions
can be found in [FW94, PP00, Too00]. The derivation of the modulation equations
for (25) again relies on Lagrangian reduction, see for instance [Her04, DHMO06|, and
leads to the following nonlinear system

or—0v=0, Ov+9dp=0, 0,0—-0w=0 05+0,9=0. (27)

These equations can be interpreted as the macroscopic conservation laws of mass,
momentum, wave number and entropy. As for KG, the constitutive relations for
(27) result from a careful investigation of the thermodynamic properties of traveling
waves. More precisely, it can be shown, at least formally, that (26) provides an
equation of state U = U(r, 0, S) as well as the universal Gibbs equation dF =
wdS — pdr — gdf + vdv, where U and F = %vz + U denote the internal and total
energy, respectively.

The third example is the discrete nonlinear Schréodinger equation
—ia; + a0 = 205+ a1+ olag[Pa; =0, jEZ, (28)

with complex valued a; and real parameter o. This equation has exact solutions
(traveling waves) of the form a; = Bel(®*“) with real amplitude B if w obeys the

11



nonlinear dispersion relation w + cos@ — 2 + o B2 = 0. The modulation theory for
several variants of (28) was studied in [HLM94| and bases on the multiscale ansatz
a;(t) = B(et, ej) e ®CteD/e where as before we set § = 9,0 and w = 9,0. One
obtains the macroscopic balance laws

0 (A2) — 0, (2 A? sin 9) =0, 0.0+ 0y(gA2 + cos 9) =0, (29)

where the second evolution equation is equivalent to 0,0 — J,w = 0. We mention
that (29) can also be derived by means of Hamiltonian or Lagrangian reduction
discussed in the next section, see [HLM94| for the details.

4 Hamiltonian and Lagrangian structures

The derivation of macroscopic equations for discrete models (or continuous models
with microstructure) can be seen as a kind of reduction of the infinite dimensional
system to a simpler subclass. If we choose well ordered initial conditions, we hope
that the solution will stay in this order and evolve according to a slow evolution with
macroscopic effects only. We may interprete this as a kind of (approximate) invariant
manifold, and the macroscopic equation describes the evolution on this manifold,
the functions Ay, ..., Ay defining kind of coordinates. For such a reduction procedure
it is a natural question how the original Hamiltonian and Lagrangian structures, as
described in Section 2.1, “reduce” to the macroscopic equation. Here we just survey
the main ideas and some examples and refer to [GHMO6]| for the full details.

Before addressing this question we first address the exact reduction of a Hamiltonian
and Lagrangian systems to exactly invariant manifolds (cf. e.g. [Mie91]). First con-
sider the Lagrangian setting for £ defined on T@). Assume that we have an invariant
manifold M C T given in the form

M= {(q,q) = S(p,p) € TQ | (p,p) € TP }.

Then, we may define the reduced Lagrangian L' = LoS : TP — R. An easy
calculation proves that any solution p of the reduced Lagrangian system

0=—2(9;L*(p,p)) + 0, L (p, p)

leads to a solution (q,q) = S(p,p) of the original Lagrangian system. Vice versa,
any solution of the latter system that also lies in M solves the reduced Lagrangian
system.

In the Hamiltonian case the tangent bundle structure of Z = T() is generalized to a
general symplectic structure w on the state space Z. Together with the Hamiltonian
‘H the Hamiltonian system reads

Q(z)2=DH(z) or Zz=J(z)DH(z),

12



where w, (vy,v9) = (Q(2)vy,v9) and J(2) = Q(2)7 : T:Z — T.Z. For a symplectic,
flow-invariant submanifold M = {2z = R(y) € Z |y € Y } we define the reduced
symplectic structure 274 and the reduced Hamiltonian H™¢ via

Q*(y) = DR(y)"QR(y))DR(y) and  H™(y) = H(R(y)).

Using the flow-invariance of M it is easy to see that any solution of the reduced
Hamiltonian system €™(y)y = DH™4(y) solves the original system and vice versa
if starting on M.

Our applications will of course use the ansatz R. from (10) for the reduction, which
can be seen as an approximation of an invariant manifold.

4.1 Lagrangian reduction

The multiscale ansatz (10) discussed above was chosen such that it is formally
consistent and in many cases it is possible to justify the ansatz by a rigorous error
analysis, as surveyed in Sections 6.1 and 7. Hence, we consider the multiscale ansatz
as a parametrization of an (approximate) invariant manifold. Inserting the ansatz
(10) into the Lagrangian £ defined in (3) we obtain a reduced Lagrangian in the
form

LY e, A, 0.A) = e"LL(A, 0, A) + O(e*™), where A = (Ay,..., Ay).

Here L4 is still an infinite sum over v € I'. However, when expanding in powers
of e, the multiscale ansatz leads to a limit that is an integral over the macroscopic
space variable y € R?. The infinite sum can be considered as a Riemann sum for
the spatial integral.

Since L' is independent of 7, the solutions of the reduced Euler-Lagrange equation
conserve the associated energy [E obtain as

E(A7 A'T) = <<87'A7 aA-,—]L’(‘A7 A'T)>> - ]L(Av AT)

It is proved in [GHMO6] that the Lagrangian equation for A associated with the
lowest order term IL of the reduced Lagrangian L*4(g, ) really provides exactly the
macroscopic equation (11) derived in Section 3.1.

Here we illustrate this result using a simple example based on the Klein-Gordon
chain (9) with the potential Vp(z) = 2% + 22*. We consider a single modulated
pulse in the form

z;(t) = e A(et, ) )E + e/*A(et,e§)E  with E = /@09 (30)
where w = Q(#). Inserting this ansatz into £ and using 9 = e—1 we find
Led(e, A, A) =S, <§w2|AE—ZE\2 + c2iw(AE—AE) (A, BE+A4,E)
£ |AJE+ATEP - ?(AVE+ ATE) (A,E+4,E)
~ 2| AE+AE|]? - Y| AE+AE|* + 0(53))
=clL(A, A;) + O(e?) with
L(A A,) = [piw(AA,—AA;) — (VAA,+9 AA,) — 2| A|*dy.

13



The important observation for this calculation is that the lowest order terms cancel,
which can be seen as a manifestation of equipartition of kinetic and potential energy
in the plane waves. Moreover, the terms involving EF with k& # 0 also drop out by
periodicity. This averaging is a formal procedure here, but we will see in the next
subsection that in a two-scale setting with an extra phase variable it can be made
exact.

Using 9—1 = 2isin § = 2iw(#)w’(9) the Euler-Lagrange equation reads
0=—08,(04. L) = 9,(04,L) + 04 = —2iwA; + 2iww’ A, — 30| A]?A. (31)

Of course, this is exactly the desired macroscopic modulation equation, which can
be obtained as in Section 3.1. Moreover, because of invariance in 7, there is a first
integral, namely the associated energy

E(A,0,A) = [, iww’ (AA, — AA,) + 2| A dy.

4.2 Hamiltonian reduction

In the Hamiltonian setting we might also try the derive the reduced Hamiltonian
by inserting the multiscale ansatz (10) into the Hamiltonian H defined in (2). We
obtain

H(e, A, 0.A) = c?H(A, 0, A) + O(t).

In the example of the previous subsection we immediately find o = 0 < p =1 and
H(A,0;A) = [, 2w?|A[*dy. Moreover, the symplectic form can be reduced and we
obtain

Q= Qp +0(e) with Qy = 2iw.

It is easy to see that the function H is also a first integral of the macroscopic system
(31). However, it is not the desired energy E, and the flow associated with the
Hamiltonian system 9, A = DH(A) is the phase translation A(0, ) — e 2“tA(t,-).
The discrepancy is easily understood, because in H the leading terms of the kinetic
and potential theory are added while they cancel in £. Note that H is associated
with the phase symmetry of (31) that is not present in the original discrete system.
It is introduced into the problem via the multiscale ansatz and it manifests itself
only in the limit.

Thus, to treat the Hamiltonian limit correctly it is suitable to embed the discrete
Hamiltonian system into a continuous one that has the corresponding symmetries.
In this systems we can compensate for drifts in the phases via the phase velocity and
for drifts with the group velocities by going into suitably moving frames. On the
level of Hamiltonians this leads to a subtraction of the corresponding first integrals.
The terms balance in exactly the right way such that the same cancellations occur
as in the Lagrangian setting. This is the content of the following classical result in
the theory of Hamiltonian systems with symmetry.
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Proposition 4.1. Let (Z, H, Q) be a Hamiltonian system, which is equi-variant with
respect to the one-parameter symmetry group (Ty)aer with associated first integral
Z. Then z : [0,T] — Z solves Qz = DH(z) if and only if Z : t — T2(t) solves
07 = D’F(C(Eﬁ, where ﬁcw =H—cT.

We illustrate the idea in the pulse propagation problem treated in the previous
subsection. The continuous Hamiltonian system is defined on the cylinder space-
phase = = R x S! and has the configuration space L*(Z). For functions u € L?(Z)
we consider the system

Ofu = A gyu — au+ bu®  with a > 0 and

(32)
A(a,&)u(/’% ¢) = U(’r/—l—E, ¢+5) - 2“(777 ¢) + U(U—5> ¢_5)
Introducing p = 0, u this is a canonical Hamiltonian system with
2 a
He (u,p) = [z 30+ 5(Vaou)” + Su? + Sutdndg. (33)

Here the important fact is that this system contains the KG chain exactly, because
the system decouples completely into an uncountable family of KG chains just dis-
placed by (n,$) € [0,1) x S'. Moreover, (32) is invariant under translations in the
spatial direction 1 as well as in the phase direction ¢. This leads to the two first
integrals

IP(u,p) = [zpOdyudnde and I*(u,p) = [ZpIyudnde. (34)

The flows associated with the canonical symplectic structure and with one of these
first integral leads to the transport along the corresponding direction with constant
speed one.

Using the symmetry of H°" we can go into a frame moving with the phase speed
cph = w/0. According to Proposition 4.1 the corresponding Hamiltonian is HP" (u, p) =
H (4, p) — wIPM(u,p). Into this Hamiltonian we insert the suitably adjusted mul-
tiscale ansatz (30), namely

u(t,n, ¢) =c'2A(et,en) By, + Y2 A(et, en)Epp,
p(tv 7, ¢) = 81/2iw (A(ét, 677):Eph - Z(&t, 87])Eph)
+&%/2(0, A(et, en)Epn + 0, A(et, en)Epy),

where E,;, = e!®+%) does no longer depend on time. Through the subtraction of
the properly chosen multiple of the corresponding first integral we exactly obtain
the cancellation of the leading terms. Moreover, integration over ¢ € S makes all
terms E’;h with k& # 0 exactly 0. Hence, the resulting reduced Hamiltonian has the
expansion

H™(A,0.A) = eE(A) + O(£?)

with E from above. A simple calculation shows that €20, A = DE(A) is exactly the
macroscopic equation (31).
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4.3 Derivation of KdV from the FPU chain

Here we apply both the Lagrangian and Hamiltonian reduction from above to the
FPU chain with KdV-multiscale ansatz, see (15). For simplicity we restrict to the
infinite chain with V;(0) = V{(0) = 0, and we always assume that all arising integrals
do exist.

Following the idea in [BP06] we embed the discrete system into a continuous one.
For this example we choose the continuous configuration space @ to be L%(R) and
identify each discrete configuration (l’j)jez with an piecewise linear function w =
w(n) € L*(R) defined by z; = w(j). Since (15), i.e. w(t,n) = eU(%, e(n+ct)),
describes slow macroscopic modulations without fast oscillations, there is no need
for introding phase variables. The Lagrangian £ of the continuous system is given
by L(w, w) = K(w) — V(w), with
with (V,iw)(n) = w(n+1) — w(n). The continuous system is invariant under the
group of translations, and this gives rise to a further conserved quantity Z. Exploit-
ing Noether’s theorem we find the first integral Z(w, w) = [, w 0w dn, which has
no counterpart in the discrete microscopic FPU chain.
Inserting the ansatz (15) into the energies and using [, 9,U0,,Udy = 0, [, 9,U0,,,Udy =
— [5 (0,,U)%dy, and ¢ = V{"(0) we find
K(w) =&+ H(U) 4+’ I(U, 9,U) + O(e"),
V(w) =e* $H(U) + e’ E(U) 4+ O(e7),
T(w, w) =¥ c P H(U) + e’ I(U, 0,U) + O(£7),

where )

H(U)=¢ [, (0,U)"dy, LU, 0.U) = c [, 8,;U 9,Udy,

E(U) = _ﬁ c? fR (8yyU)2dy + % V"(0) fR (8yU)3dy-
Consequently, with . =1 — [E we find

L(w, )=’ L(U, 0,U) + O(g"),
H(w, w)=e3H(U) + > 1(U, 8,U) + e*E(U) + O(e7),
H(w, w) — cZ(w, w)= e’ E(U) + O(e),
and it follows that the reduced Lagrangian equation equals (16).

In the next step we reduce the Hamiltonian structure. For the microscopic con-
tinuous system the canonical momentum is given by p = w with Hamiltonian
H(w,p) = K(p) + V(w). For (w,p) the multiscale ansatz (15) means

(w,p) = R.(U)(n) = (U(en), £* 8, U(en) + e c9,Ul(en)),

where the last term is due to the frame moving with speed c. Reduction of the
canonical symplectic form Q with (Q (w, p), (@0, p)) = [, wp—wpdny leads to

(QR.(U),R.(U)) = (U, U) + O(c*) with
(U, U) = c [, (U9,U-U9,U)dn = —2c [, 0,U Udn.
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From this we conclude Q! = —2 ¢ d,. Note that 2™ is defined on L2(R), whereas 2
lives on L?(R)xL?(R). This dimension reduction is natural, because the multiscale
ansatz (15) yields a coupling of w and p in leading order. Finally it follows imme-
diately that the reduced Hamiltonian equation QU = DE(U) is again equivalent
to (16).

4.4 Derivation of nlS from the KG chain

We consider the KG chain (9) with Vo(z) = 2x% + 22, The sum of the kinetic and
potential energy gives the Hamiltonian

H(x,%) = 3 cp (58745 (2j01—25) + 523+ §j)

Since we are interested in modulated pulses, we proceed as in Section 4.2 and embed
the discrete chain on Z into the cylinder = = RxS! leading to the continuous
Hamiltonian system (32) with Hamiltonian H" in (33).

Again we have the two symmetries of spatial translations 7°P and phase transla-
tions TP leading to the two first integrals I and IP! given in (34). However,
we proceed differently, because we are interested in a dispersive ansatz u(t,n) =
cA(*, e(n+ct))E+c.c. + h.o.t., where ¢ = ¢, cf. (18). Thus, we apply Proposition
4.1 using the symmetry transformation

(@,p) =TT g (w,p),  H=H—cI® — (w—cf)I?".
The associated canonical Hamiltonian system (%, ) = DH(%, p) on L(Z)? is still
fully equivalent to a family of uncoupled KG chains.

Inserting the scaling exposes the macroscopic behavior. For this define

(U(Wa ¢)7p(n7 ¢)) = (5U(57Ia ¢—977)7 5P(5777 ¢—977)),

which keeps the canonical structure, if we move a factor the €, which arises from the
transformation rule dy = edn, into a the time parametrization 7 = £2t. We obtain
the new Hamiltonian

H.(U, P) = J 52 ([P—wUs=2cU,]* + (Vo U)’
+aU? — [wPUy+ecPU,) ) +50 dydo,

where V. o/Ul(y, ¢) = U(y+e, 9+6) — U(y, ¢). Now we see that the suitably trans-
formed version of the modulational ansatz (18), viz.,

(U(y. ¢), P(y. ¢)) = R-(A)(y,¢) = (Re A(y)e'?,wRe A(y)e'?) 4+ O(e),

leads to the expansion
H-(R-(A)) = Hys(A) + O(e) with Hys(A) = fR ww"|Ay|* + 3§I’|A|4dy

and the reduced symplectic structure 274 = 2iw. Thus, we recover the one-
dimensional version of nlS given in Section 3.4.
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5 Weak convergence methods

For static problems there is a rich literature concerning the I'-convergence of po-
tential energy functionals of discrete models to continuum models (cf. [FJ00, FT02,
BG02a, BG02b, MBLO06]). Here we want to summarize some first results for dynamic
problems that rely on weak convergence.

5.1 An abstract weak convergence result

In [MieO6a| it was shown that linear elastodynamics can be derived from a general
linear lattice model as described in Section 2. However, this result used exact period-
icity and linearity in an essential way. The abstract approach presented here will be
discussed in [Mie06b| in full details. Its main advantage lies in the flexibility, which
allows for applications in nonlinear and macroscopically heterogeneous settings.

We consider a family of Hamiltonian systems parametrized by € € [0, 1],
Q.(2)¢ = DH.(2), (36)

and we are interested in the limit behavior for ¢ — 0. Again, € measures the ratio
between the microscopic and the macroscopic spatial scales, viz., y = 7.

We consider the situation that all H, are defined on one reflexive Banach space 7,
but may take the value 400 outside the subspace Z.. It is a question of general
interest to characterize the further conditions on the convergence of H. to Hy and
of . to Qg such that suitable limits z of solutions z. of (36) are solutions of the
limit problem (36) for ¢ = 0. A first guess would be that Hy is the I'-limit of H.,
ie.

(G1) ze =2z = Hy(z) < lirari)iélfHE(zE),

(G2)  VzeZ3IZ)eca): 2 — zand Hy(z) = lir% H(Z:).
e—
However, we will see below that it cannot be expected in general.

We assume that the subspaces Z. C Z are closed and that H. € C'(Z.,R) for
e € [0, 1]. Moreover, there exist mappings G. € Lin(Zy, Z.) such that we have

Z:>z.—z€ 2y = GIDH.(z) = DHy(z) in Z;. (37)

Finally we assume that the symplectic operators €2, are independent of z € Z and
that there exists a larger Banach space W such that Z embeds continuously and
densely into W such that €. : W — Z* has an inverse operator for all € € [0, 1] with
the norm bounded independently of . For the convergence we ask the condition

Z:dz.—z€Zy = Gz — Qzin 27, (38)
Now we use the fact that solutions z. of (36) also solve the weak equation
. T
Jo (DH(z(1)), 9=(8)) + (Qeze(t), @) At — (Qezer e, =0 (39)
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for all . € C'([0,7],Z.). Choosing ¢.(t) = G.p(t) for some ¢ € C([0,T], Zy)
and using suitable a priori bounds on z. in C°([0,7],2) N CY([0,T], W) it is pos-
sible to extract a weakly convergent subsequence with z.(f) — z(t) for some z €
CO([0, T, Zy)NL>®([0, T], W). By the assumptions (37) and (38) we pass to the limit
in (39) and obtain

Sy (DHo(2), 0) + (o2, ¢} dt — (Qoz, @)g = 0.

Under suitable assumptions it then follows that z solves (36) for ¢ = 0.

5.2 Elastodynamics

The program described in the previous subsection can be applied to polyatomic
Klein Gordon chains, which we also allow to have large-scale variations in the stiff-
ness and masses. The KG chains under consideration are assumed to have a pe-
riodicity of N on the microscopic level, and all quantities may change also on the
macroscopic scale y = j. For k € Zy = { jmod N | j € Z } we have given functions
My, Ak, b, ¢ € L2°(R), which are all bounded from below by a positive constant.
The KG chain is then given by the canonical Hamiltonian system on £? x (2

discr p? agj)(e7) 2
Ha (X7 p) == Z:Z 2m[j](€j) + 2 (xj+1—$]> (40)
VIS
2 () 20 (e
4+ b[g(ey)x? 4 € [Ji(ey)x;;)’

where [j] = jmod N. To derive a suitable continuum model we embed ¢* x (2 into
Z = Zy =H'(R) x L*(R) via

Ze = { (u,v) € Z | ujzjejte affine, v|j_c/2 j4e/2) constant jand
(1,0) = Ex(x,p) with (u(ej), v(e)) = (z3.py) for all j € Z.

The associated Hamiltonian H. coincides with Hg“scr up to a factor €, which relates
to the time rescaling, namely H.(u,v) =

v(y)? . c
ity + AWy + T (PG Ru(e)? + CGu(E)),

(41)

where M(y, z) = myy(y) for z € (k—1/2, k+1/2), A(y, 2) = ap(y) for z € (k, k+1)
for k € Z, with similar formulas for B and C.

The important step in the analysis is the construction of the operator G.: Zy — Z..

We define (u.,v.) = G.(u,v) via v.(y) = Mﬂgﬁ’?;)e)v(y) and

Je Aly,y/e)ul(y)u (y)+u(y)ily) dy = [ A*(y)u'd'+uiidy

for all w with (w,0) € Z., see (41). Here A* is the averaged stiffness and M* the
averaged masses

= (3 ) AW a) T and M) = & [ M

It is then posmble to prove the abstract conditions 37 and 38, which leads to the
following results, cf. [MieO6b].
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Theorem 5.1. Let B, : (*x(* — Z = HY(R) be the embedding in (41). Let (x°, p°) :
[0, T'/e] — €2 x (% be solutions of the canonical Hamiltonian system associated with
HEsr i (40). If for 7 = 0 we have

I 0 x°(1/e) ) < u(T) ) .
E, . — . in Z,
( 0 M(-/e) ) ( ep*(7/e) M (-)o(r)
then this convergence holds for all T € [0,T], where (u,v) : [0,T] — Z is a solution

of the macroscopic wave equation arising from the canonical Hamiltonian system
with

A* * o*
Ho(u,v) = Jg 2M}*(y)U2 + 2(y) (w)? + Bz(y)u2 ™ 4(y)u4dy,

where B*(y) = + fONB(y, z)dz and C*(y) = + fON c(y, z)dz.

It should be noted that Hj is not the I'-limit of H. when using canonical variables.
However, if we use the Lagrangian coordinates (u®, u%) = (u®, M(-,-/e)~'p®), then it
is the I'-limit.

5.3 Energy transport via Wigner-Husimi measures

Waves in dispersive media travel with a speed that depends on their wave length.
We now discuss this for the general linear model introduced in Section 2.2. Wave
propagation is driven by the group velocity ¢, = V$;(6), which depends on the wave
vector § € 7r and the band number j € {1,...,m}. Thus, at each macroscopic point
y € R? we need to know how much energy is located in which band and in which
wave-vector regime.

The relevant mathematical tool is the Wigner measure or the Husimi measure,
which was used in [Gér91, LP93, MMP94, GMMP97, TP04] to study transport
of oscillations (relating to energy, density, or other physical quantities). The case
of discrete lattices is analyzed in detail in [Mac04, MieO6a|. For this we rewrite (6)
into diagonal and rescaled form

9 .

S-U*(7,6) = B(e,0)U" (., 9) with B(=, 0) = édiag(Ql(Q), nOn(0). (42)
-

The Wigner transform W¢[uf] of u® = F~'U® is now defined as a matrix-valued

distribution on R x 7r. For the diagonal entries it is possible to pass to the limit

e — 0 and one finds the Wigner measure p}" = lir%(WE[u?’])jj. More precisely, we

have the following result, see [Mie06a.

Theorem 5.2. Let u® : [0,T] — L*(7r,C™) be a family of solutions for (42) with
|uf(0)||2 < C. Let j € {1,....,m} and S; C Tr be given such that Q; € CY(Tr\S;).
If for T =0 we have

Hm(We[u)(7));; = 1) () in D(R'xTy) and p)' (0,Rx.S;) =0,

e—0
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Figure 5.1: Right: energy distribution at ¢ = 200 for the linear chain Z; = x;;; —
2x; + x;_1 with initial data x;(0) = ¢, and 2;(0) = 0. Right: Energy distribution
for the square lattice Z? with simple nearest-neighbor interaction at time t = 120.

then this convergence holds for all T € [0, T], where )" : [0,T] — M(R*xTy) is a
solution of the energy-transport equation

Oy = VQ(0) - 0y on [0, T]xRIXTp.

Using this result it is possible to obtain the energy distribution by integration over

0, namely
m

e(ry)dy = [ (0, y—VQ;(0)7,db).

j=1 €T
The above theorem is restricted to the case that no mass concentrates on the singular
set S;, where the dispersion relation is not smooth and, hence, the group velocity
is not defined. However, using the Husimi measure as developed in |[Mie06a| it is
possible to treat this case also in some cases.

6 Quantitative estimates via Gronwall estimates

Another technique for the justification of continuum models uses quantitative esti-
mates to control the error between the macroscopic equation and the microscopic
equation. We present the abstract idea in Section 6.1 and apply in Section 7. This
method can also be used to prove dispersive stability results as discussed Section
6.2.

We work totally in the original microscopic lattice model
z=Lz+N(z), (43)

where Z is the Banach space for the state z(¢), and L : Z — Z is the linear part,
which is assumed to generate a bounded semigroup (e!);>, i.e.

3O, >0Vt>0VzeZ:  |lebz]| < Cp2l. (44)
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We also rely on our standard assumption that the solution z = 0 is energetically
stable, as the Hamiltonian energy is conserved. Here it means

JCp >0V sln. zof 43)VE>0:  |z(8)] < Cpl2(0)]. (45)

The nonlinearity N' : Z — Z is assumed to be locally Lipschitz. However, the
essential features have to be addressed by using additional Banach spaces Y and W
such Y C Z C W with continuous embeddings and

) VzeZ: [lzllw <z () VzeY:|[z] <zl (46)
In applications to lattices we have in mind

Y =0(0,RF)? Z = 6,(0,RF)?, W = (o (T, R (47)

In Section 6.1 the importance is that A satisfies

JC >03dv > 0Vz2, 2 € Z with ||Zl||Wa ||Z2||W <1:

IV (1) = M)l < Ol Il ) =] o
In Section 6.2 the importance of Y is the dispersive decay estimate
3k €(0,1)IC >0VzeYVt>0: |2y < (127‘4;)5”2”;/ (49)
of the linear semigroup. For the nonlinearity we then use
ICy >03a,v>0Vze Z: [NR)Iy < Chllzllvllzl® (50)

With Y, Z and W as in (47) a standard nonlinearity N'((2,),er) = (n()) er with
In(&) — n(&)] < C(l&] + |&))PI€ — &| will satisfy (48) with v = 3 and (50) with
v=[0—1and a = 2.

6.1 Error control for approximate solutions

The basic idea is to construct an approximate solution z,,,, which in fact will be
given in the form z,,, = R.(A), and to derive an estimate for the associated error.
For any z € C!([0,T],Z) we define the residual via

Res(2)(t) = £(t) — La(t) — N (2(t)). (51)

The following result shows that the smallness of the residual together with the
stability condition (44) implies that the error between z,,, and an exact solution is
small.
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Theorem 6.1. Assume that the conditions (44), (46i) and (48) hold. Moreover,
let Cr, Cya, s, 0, a, 0 > 0 be given as well as a family (zgpp)ge(o,l) of approzimate
solutions z5,, € C'([0,7./¢%], Z) satisfying

[2app (D) lw < Cag® and  |[Res(z;,,)(0)]| < Cre? (52)
for all t € [0, 7./e%]. Moreover, assume
o>a+o and va>o. (53)

Then, for each d > 0 there exist g € (0,1) and D > 0 such that for all € € (0, o]
any exact solution z of (43) with ||2(0)—z5,,(0)| < de®=7 satisfies

12(2) = 2o ()] < D7 for t € [0,7./€%). (54)

In (53) the case vaw > o is not really interesting, as in this regime the nonlinearity
is not really active. In the first inequality o may be as big as we like, what improves
the order of approximation in (54) but does not allow us to extend the length of the
time interval, i.e, to make o bigger, because it is restricted by the second inequality.

Proof: For the construction of € and D we define C; = Cp(d + Cg7.) and Cy =
CrLON(3CA) and let D = 2C1e2™ and gy = min{1, (C4/D)°}, where § = 1/(0 —
a—o)>0.

We write the exact solution z of (43) in the form z(t) = 2z, (t) + €’ R(t) with
B = o—o. Clearly ||R(0)|| < d and we have to show ||R(t)|| < D forall t € [0, ./€7].

Inserting this ansatz into (43) and applying the variation-of-constants formula we
find

R(t) = M R(0) + [ U (N (25,,(s) + P R(s)) — N (25,,(s)) — Res(25,,)(s)) ds.

app
Defining r(t) = || R(t)|| and using the available estimates give

’l“(t) < CLd + f(; CL (CN[CA&?a + CA€Q + EﬁD]VT’(S) + CR&?Q_ﬁ) dS,
where we assumed 7(s) < D on [0,tp| and ¢t < tp. Note that d < D and r is
continuous, which implies tp > 0. We will show that tp = 7./¢7.

Assuming e € (0, go] we arrive at r(t) < Cprd+ CpCret + Coe® fo s)ds. Because

of €7t < 7, we find r(t) < Cy +£7Cy fo s)ds and Gronwall’s lemma gives r(t) <
C1e2=7t < Cre?™ = D/2 for all t € [0, tD] However, this shows that r(¢) cannot
reach D. As a consequence we may choose tp = 7, /¢ and we are done. ]

6.2 Dispersive stability
Here we present conditions which guarantee that the dispersive decay estimate (49)
for the linear semigroup can be transfered to the full nonlinear problem. We follow

ideas from [Sch96, MSUO1] and refer to [Pat06] for more satisfactory results.
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Theorem 6.2. Assume that (45), (49), and (50) hold with vk > 1. Then, there
exist C;n > 0 such that all solutions z of (43) with ||z(0)|y < n satisfy

[2@)]lw < 12(0)ly for all > 0. (55)

(1+1)~

Proof: We follow the ideas in [MSU(1| Lemma 3 and adapt it to the more general
case. We rely on 0 < kK < 1 < vk, which yield the estimate

d Con o _ (2~ 2V

fO (1+s)"‘”(i+t—s)" =< (1+t)" with Cow = (m/—l + 1—&)' (56)
This is easily obtained by estimating fot/z and ftt/2 separately. Using the variation-
of-constants formula together with the available estimates we find

l®llw < @25 12Oy + i s Curllz(s) Il ll=(s)]|* ds.
With r(¢) = max{ (1 + s)*||z(s)|lw | s € [0,t] } and 6 = ||z(0)||y we obtain

. t Cw O Car(t)” 6
(1+ )| 2()]| < Cwo + f AT s,

Employing (55) and using that r is nondecreasing we find
r(t) < Cwd + C.o%r(t)” for all t > 0, where C, = ¢, ,CwCnC5.

We now choose 7 such that C.n®(3Cwn)” < Cyn and claim that r(¢) remains less
than 3Cy0 if ||2(0)|ly = d <, i.e., the desired assertion holds with C' = 3Cy. Let
tw =sup{t>0|Vse[0,t: r(s) <3Cwd}, then for ¢t € [0,t] and 0 < § < n we
have

r(t) = Cywd + C.6%(3Cw3)” < 20w < 3Cw0.

Since r is also continuous, we conclude ty, = oo. m

The typical application of the above result involves the spaces Y = ¢ and Z = /5 and
W = (. Hence, for a nonlinearity with N'(x) = (n(z;))jer and |n(z;)| < C,|z;|°
we have (50) with a = 2 and v = §—2. Moreover, the theory in [Pat06| provides
explicity values of x, which can be determined directly for the properties of the
dispersion relations w = ©,,(#) discussed in Section 2.2. For this note that e’* can
be written as a discrete convolution

eLt (Xv X) = ( Zael“ G’Y—a (t) (l’a, jja))“/er’

where the Green’s functions G, (t) € R*™**™ satisfy Go(0) = id and G, (0) = 0 for
v # 0. Each component of each G, () can be calculated via oscillatory integrals of

the type
ei(Qk(e)t+9'7)g(9) de

with given smooth functions g. Uniform decay properties in v € I" for such integrals
strongly depend on the non-degeneracy of D% (). Integrating over balls in 7Tr,

f@ETF
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where det D2, (0) is bounded away from 0, we easily obtain a decay like t~%2.

However, due to periodicity, degeneracies must occur, and the uniform decay is
always worse.

For instance, the one-dimensional FPU and the KG chains from Section 2.3 lead to
k = 1/3, because Q : S* — R has turning points and the third derivatives is nonzero
in these points. As a consequence the above method leads to the following very
preliminary dispersive decay result.

Proposition 6.3. Consider the KG chain (9) with Vi of the form V{(x) = ax +
O(|z|%) for |z| — 0 with a > 0 and 3 > 5. Then, there exists § > 0 and C > 0 such
that for each initial condition (x(0),%(0)) we have
: : C|(x(0),%(0) |l
e(0), () le, <0 = [[(x(), %(8) e < LEDZD o ati ¢ > 0.

This result is still very weak in terms of the restriction on (3, and we refer to [Pat06]
for improved results . See also [Zua05, 1Z05| for related dispersive decay results in
discrete approximations of PDEs.

7 Justification of modulation equations

In this section we provide rigorous justification results for two examples. In contrast
to Section 5 we will use the quantitative estimates provided in Section 6.1. The ideas
are based on the justification theory developed for general modulation equations,
see [KSM92, Sch94, Sch98| and the surveys [MSUO1, Mie02|. In particular, we
mention the papers |Sch95, Sch05b|, which contain examples, where the modulation
equations, derived formally as in Section 3, fail to predict the dynamics of the
microscopic system correctly. Thus, the justification results are needed to validate
the formally obtained macroscopic equations.

To explain the main ideas and still stay sufficiently simple we consider for both
subsequent examples the d-dimensional, scalar model (17). The main observation
about the multiscale ansatz :L’:;"a = c?A(e)E + c.c. is that it satisfies the estimates

(25 9)serlle, < Coe” V2| Al and [|(25)serllen, < Coe”|A]

for any s > d/2. Thus, our solutions z = (x, x) will be small only in W = £, (T")? but
may be large in Z = (5(I")?. However, for using the abstract approach provided in
Theorem 6.1 we need to make the residual of the approximate solution z,,, = R.(A)
small in Z. This means that the order of approximation of the formal ansatz R, in
(10) has to be taken sufficiently high depending on the dimension d.

Hs,

7.1 Nonlinear Schrodinger equation

We want to justify the nonlinear Schrédinger equation

i0,A = divy(%D(%Q((‘))VyA) + plA|PA (nlS)
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as a macroscopic modulation equation for the microscopic lattice system (17), for
the formal derivation see Section 3.4. We use the dispersive scaling 7 = £t and
y = e(t—cgt) for the basic periodic pattern E = e!“+%7) where w = Q(0) and ¢y, =
2 (0). To derive an evolution equation for the macroscopic modulation amplitude
A:]0,00)xR? — C we have to use the improved ansatz

2, (1) = RE(A), (1) = 3, € Yo AbalT,9)E™,

where all the coefficient functions Ay, ,, can be calculated formally if the non-resonance
condition of order K holds, namely

n*Q(0)* # Q(nh)* forn =0,2,3, ..., K. (57)

Of course, we have A = A; 1, where A satisfies (nlS). The other coefficient functions
satisfy Ay, = Ax, and are either algebraic expressions of functions 9709, A7 with
r+2|s|4+pq = k, p < k—1 or (for n = 1, where the non-resonance condition fails)

they satisfy some linear inhomogeneous Schrodinger-type equations.

Since all coefficients of the terms e*E™ with k = 1, ..., K are equated to 0, the
residual of the ansatz z,,, = (RX(A), LRE(A)) 1 [0,7./e%] — Z = ((T)? satisfies

IRes(zapp) ()llene < O Allit- and [[Res(zapp) (£)]e, < CeFF142) 4]

HS

for any suitable s > K+2+4d/2. Thus, we have all the ingredients to apply Theor em
6.1. However, we note that the dispersive time scale 7 = £t needs o = 2, while the
amplitude ||zapp(t)]|e.. ~ € with @ = 1. Now condition (53) only holds for v > 2.
Thus, the nonlinearity N needs to be cubic (cf. (48)). The following result realizes
this condition by assuming V"(0) = 0, see [GMO04] for the case d = 1.

Theorem 7.1. Let K € N with K > 24d/2 and assume that the scalar d-dimensional
lattice model (17) has potentials Vz € C***(R) with V3(0) = V3(0) = V4(0) = 0.
Choose a wave vector 0 € Tr satisfying the non-resonance conditions (57). Let
A € C([0,7.], HEF3(RY, C)) N CL([0, 7.], HETY(RY, C)) be an arbitrary solution of
(nlS). Then, for each d > 0 there exist &g € (0,1) and D > 0 such that for all
e € (0,e0] any exact solution x of (17) with

11(x(0),%(0)) — (RE-2(A)(0), RX2(A)(0))|¢, < de~1-/2
satisfies, for all t € [0,7,/€%,
[(x(t), %(t)) — (RE72(A)(t), REZ2(A)(1)) ||, < DeXT1742,

The condition V4"(0) = 0 allows us to apply the simple abstract result of Section
6.1. However, this condition is not necessary. In the case of nonlinearities that also
have a quadratic part it is still possible to derive a similar result if we impose more
restrictive non-resonance conditions. To treat that case one uses ideas from the
theory of normal forms to transform the system via a near identity transform into a
system that has the same linear part but no quadratic part in the nonlinearity. We
refer to [Sch98, GMO6| for positive results and mention also [Sch05b] for an example,
where the result fails due to fact that the more restrictive non-resonance condition
is violated.
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7.2 Interaction of several modulated pulses

We report on results in [Gia06| and consider the scalar d-dimensional model (17)
for which we want to show how the three-wave interaction equations (20) can be
justified in terms of explicit error estimates. Given are three wave vectors #,, € 7r
and associated frequencies w, with w? = Q?(6,), which are in resonance, namely

91—|—92—|—93:O in?}, W1+LU2+W3:0. (58)

Following [Gia06, GMS06] we use the following type of non-resonance condition for
other combinations of these wave vectors. We set 6_,, := —0,, and w_,, := —w,, and
say that the mode system {(0,,w,) : n = 1,2,3} is closed of order K, if for all
ke {l,..,K} and all ny,...,n; € N = {—3,—-2,—1,1,2,3} the following holds:

k 2 k 2 dn, € N: 0, = Zk 0
n ) =€ 0,) ' Lo 59
(Shon)’ = (510, = {ZE 0 2Tyl
Here we use the hyperbolic scaling 7 = ¢t and y = €7 and, as explained at the
beginning of Section 7, we need the improved multiscale ansatz

x(t) = RE(A) (1) = 36" Xy e B (T 9) By - By (60)

.....

with A = (Al, Ag, Ag), En = ei(wnt—l—ﬁn-’y), Bn = An and Enl ..... —ng- ThllS,
to leading order we have three wave packets, which we expect to travel with their
group velocities and to have interactions with the other wave packets.

.....

As explained in Section 3.1 it is possible to determine the coefficient functions

-----

and the residual Res(z,pp) satisfy
| Zapp (B)[|ens < Ce® with o =1 and ||Res(zapp) (t)[[e, < CXT 792

if the triple A = (A;, Ay, A3) : [0, 7] — L2(R% C)3 is a sufficiently smooth solution
of the three-wave interaction equation (20). Since 7 = £t with ¢ = 1, we may apply
Theorem 6.1 with v = 1, which means that nonlinearities with quadratic parts are
allowed.

The precise statement from |Gia06| reads as follows.

Theorem 7.2. Let K € N with K > 14 d/2 and assume that the d-dimensional,
scalar lattice model (17) has potentials Vz € C***(R) with V3(0) = V3(0) = 0 for
|B] < R. Assume that the mode system {(0,,w,) : n = 1,2, 3} satisfies the resonance
condition (58) and is closed of order K (cf. (59)). Let A € C([0,7.], HET2(R4; C)) N
CE+L([0, 7], HY(R?; C)) be an arbitrary solution of (20). Then, for each d > 0 there
exist g € (0,1) and D > 0 such that for all € € (0,e0] any exact solution x of (17)
with
1(x(0), %(0)) — (REH(A)(0), RET(A)(0))]le, < de™ 2

satisfies, for all t € [0,7./€],

(1), (1)) — (RE(A)(0), REH(A)(0) ey < DK
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The whole theory can be generalized in several aspects. First we may consider mode
systems with N different wave vectors, where N > 4. Then, we obtain a system of
N equations for Ay, ..., Ay, where only those quadratic terms A,, A, occur in the
equation for 0, A,, if the three modes (6,,, wy, )12, satisfy the resonance condition
(58). Other triple interactions do not matter on this time scale either because the
frequencies or the wave vectors do not resonate. Quadruple or higher interactions
are too small in amplitude to influence the macroscopic behavior (cf. [Gia06]).

Second it is possible to do the very same analysis for systems rather than for a scalar
problem. Of course, then we have to pay attention to the different frequency bands.
We also refer to [GMS06], where multipulse interactions are treated for nonlinear
Schrodinger equations with periodic potentials, see |CMS04, Spa06].

Similar phenomena arise in such different subjects as phonon collisions (cf. [Spo05])
and in surface water waves (cf. [SW03]).
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