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1 Introduction

This paper deals with a general approach to the modeling of rate–independent processes
which may display hysteretic behavior. Such processes play an important role in many
applications like plasticity and phase transformations in elastic solids, electromagnetism,
dry friction on surfaces, or in pinning problems in superconductivity, cf. [Vis94, BrS96].

The evolution equations which govern those processes constitute the limit problems
if the influence of inertia and relaxation times vanishes, i.e. the system rests unless the
external loading is varied. Only the stick–slip dynamics is present in the Cauchy prob-
lem, this means that the evolution equations are necessarily non–autonomous. Although
the solutions often exhibit quite singular behavior, the reduced framework offers great
advantages.

Firstly the amount of modelling can be reduced to its absolute minimum. More
importantly, our approach is only based on energy principles. This allows us to treat
the Cauchy problem by mainly using variational techniques. This robustness is necessary
in order to study problems which come from continuum mechanics like plasticity, cf.
[Mie00, CHM01, Mie01]. There the potential energy is invariant under the group of rigid
body rotations SO(d) where d ∈ {1, 2, 3} is the dimension. This invariance implies that
convexity can almost never be expected and more advanced lower semicontinuity results
(like polyconvexity) are required to assure the existence of solutions for a time discretized
version of the problem.

An example which illustrates this remark is a problem from phase transformations in
solids, see [MTL00]. Although none of the classical methods from Section 7 can be applied,
we are able to prove the existence of solutions by establishing weak lower semicontinuity
of certain critical quantities.

Here we present an abstract framework which is based on two energy functionals,
namely the potential energy I(t, z) and the dissipation ∆(ż). Here z ∈ X, X a separable,
reflexive Banach space with dual X∗, is the variable describing the process, and ż is
the time derivative. The central feature of rate–independence means that a solution
z : [0, T ] → X remains a solution if the time is rescaled. This leads to a dissipation
functional ∆ : X → [0,∞) which is homogeneous of degree 1, i.e., ∆(αv) = α∆(v) for
α ≥ 0 and v ∈ X.

Special cases of this situation are well studied in the theory of variational inequalities
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or as sweeping processes. There we have the potential energy

I(t, z) =
1

2
〈Az, z〉 − 〈g∗(t), z〉 (1.1)

with A ∈ Lin(X, X∗) symmetric and positive definite and the dissipation has the form

∆(v) = max{〈w∗, v〉 : w∗ ∈ F ∗} (1.2)

where F ∗ ⊂ X∗ is a bounded, closed, convex set containing 0 in its interior. The varia-
tional inequality problem then is to find z ∈ W 1,1([0, T ], X) such that for a.a. t ∈ [0, T ]

〈Az−g, v−ż〉 + ∆(v) − ∆(ż) ≥ 0 for all v ∈ X. (1.3)

The equivalent sweeping process formulation is

ż ∈ ∂χF ∗(g−Az) (or − ż ∈ ∂χg∗−F ∗(Az)). (1.4)

Here χF ∗ is the (convex) characteristic function of F ∗ taking the value 0 on F ∗ and ∞
else, and ∂ denotes the subdifferential. We refer to [Mor77, Mon93, KuM97, KuM98] for
more details on this matter.

We treat these problems in Section 7 under the assumption, that I satisfies certain
smoothness assumptions. The purpose of this work is to broaden the model class sig-
nificantly. On the one hand we want to be able to deal with nonconvex or not strictly
convex potentials. This leads to the possibility that the solutions are discontinuous, i.e.
jumps can occur. Such singularities indicate that our purely energetic formulation is too
simplistic to describe physical phenomena since the dynamics is not slow anymore. As it
stands, our formulation favours discontinuities, i.e. the state will jump as soon as possible,
independently of the shape of the energy landscape between the left hand and the right
hand limit. We have to pay this price to obtain energy conservation independently from
the regularity of the solutions.

On the other hand we want to allow for restrictions of the state space as well, i.e. we
want to be able to restrict z(t) to a closed convex set E ⊂ X. A large part of this work
is new even in the case of finite dimensional spaces X.

Our point of departure is the following energy formulation of the problem: Find
z : [0, T ] → E with

(S) For a.a. t ∈ [0, T ] we have

I(t, z(t)) ≤ I(t, y) + ∆(y−z(t)) for all y ∈ E,

(E) I(t, z(t)) +
∫ t

s
∆(dz) ≤ I(s, z(s)) +

∫ t

s
∂tI(τ, z(τ))dτ for all 0 ≤ s ≤ t ≤ T.

(1.5)

The first condition (S) can be interpreted as global stability of the state z(t) at time t:
by changing z(t) ∈ E into y ∈ E the release of potential energy I(t, z(t))− I(t, y) is never
larger than the associated dissipated energy. The second condition (E) is the integrated
energy balance between final, dissipated, initial energy and the “work done by external
forces” in every time interval [s, t] ⊂ [0, T ] (often ∂tI(t, z) = −〈ġ∗(t), z(t)〉).

In Section 3 we show that formulation (1.5) is more general than the local formulation
(1.3) but both formulations are equivalent if I(t, ·) : X → R is convex and satisfies
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further technical conditions. Moreover, for convex problems we establish equivalence to
the subdifferential formulation

0 ∈ ∂∆(ż) + ∂I(t, z), (1.6)

which was introduced in [CoV90, Vis01] and called “doubly nonlinear problem”.
However, these formulations have to be treated with care since in the nonconvex or

not strictly convex case we have to allow for jumps of z. Hence, the right solution space
is BV−([0, T ], X), the space of left–continuous functions having finite total variation. For
an exact formulation of (1.6) we need to replace the derivative ż by a reduced derivative
rd(z) : [0, T ] → {v ∈ X : ‖v‖ ≤ 1} and an associated Radon measure µz ∈ M([0, T ])
such that

z(t2) − z(t1) =

∫

[t1,t2)

rd(z)(r)µz(dr). (1.7)

holds which means that rd(z)(t)µz(dt) plays the role of the time–derivative which is a
vector–valued measure. The correct replacement of (1.6) is then

0 ∈ ∂∆(rd(z)(t)) + ∂I(t, z(t)) for µz–a.a. t ∈ [0, T ]. (1.8)

In Section 4 we analyse a general method for obtaining piecewise constant in time ap-
proximations which works for nonconvex problems as well. It is based on the incremental
problem for the time discretization 0 = t0 < t1 < t2 < . . . < tN−1 < tN = T

{
Let z0 = z(0). For k = 1, . . . N find zk ∈ E with

I(tk, zk) ≤ inf{I(tk, y) + ∆(y−zk−1) : y ∈ E}.
(1.9)

This approach leads in a natural way to discretized versions of energy formulation (1.5)
(see Theorem 4.1) and, in the convex case, of the variational inequality (1.3) (see (4.3)).

A central object in this study are the sets S(t) of stable states at time t, namely

S(t) = {z ∈ E : I(t, z) ≤ I(t, y) + ∆(y−z) for all y ∈ E}.

The major problem arises from S(t) not being weakly closed since even for convex I(t, ·)
the set S(t) may not be convex.

Assuming weak closedness of the set of stable states S plus some regularity conditions
on I we give an existence proof in Theorem 6.3. This proof relies on the incremental
problem and on an abstract version of Helly’s selection principle (cf. [BaP86]). Here we
do not require that I(t, ·) is smooth, especially the assumption E = X which is central
for Theorem 7.1 is not necessary.

In Section 7 for E = X and I(t, ·) uniformly convex we prove existence, uniqueness
(Theorem 7.1) and discuss the question of temporal smoothness of solutions. To this end
we show (Theorem 7.3) that the solutions of the incremental problem converge strongly,
by generalizing ideas in [HaR95]. As far as the authors know there is no uniqueness result
even for nontrivial E ⊂ X X = R2. We propose a new “structure condition” which
implies uniqueness, cf. Section 7.2 and Appendix C.

We note that in [HaR95] a convergence result of the incremental problem (for the case
(1.1) only) is given only under the assumption z ∈ W 2,1((0, T ), X), i.e. z̈ ∈ L1((0, T ), X).
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Our above–mentioned convergence result Theorem 7.3 is independent of this assumption.
From very simple examples we see that, even for the case E = X, we can only expect
ż ∈ BV((0, T ), X). Our Theorem 7.8 proves this under the additional assumption that
the boundary of F ∗ is C2.

For many applications (see e.g. [KuM00, MTL00, GoM00]) the assumption of reflex-
itivity of X is too restrictive. We note that the formulation (1.5) via energy functionals
provides us with the advantage that the time derivative ż is not required. Moreover, the
existence theorem 6.3 uses only the assumption of weak sequential compactness which is
considerably weaker, see Remark 6.4.

Throughout this work we have assumed that the underlying geometry is the linear
space X, in particular the dissipation functional ∆ does not depend on the position z ∈
E ⊂ X. A more general treatment should involve Banach manifolds and the dissipation
is then a Finsler metric. For applications in this context see [Mie00, Mie01].

2 Notations and setup of the problem

Let X be a separable, reflexive Banach space and E a closed convex subset. For each
z ∈ E the (inward) tangential cone TzE is defined via

TzE = {w ∈ X : ∃r > 0 : z + rw ∈ E}, (2.1)

where A is the closure of A in the strong topology. Later on we will also use the (outward)
normal cone N∗

zE ⊂ X∗ defined via

N∗
zE = {y∗ ∈ X∗ : 〈y∗, w〉 ≤ 0 ∀w ∈ TzE}.

The dissipation is implemented by a function ∆ : X → [0,∞) which is convex, homo-
geneous of degree 1 (i.e. ∆(αz) = α∆(z) for α ≥ 0 and z ∈ X) and satisfies, for some

C
(2)
∆ ≥ C

(1)
∆ ≥ 1,

C
(1)
∆ ‖z‖ ≤ ∆(z) ≤ C

(2)
∆ ‖z‖ for all z ∈ X. (2.2)

Convexity and homogeneity of degree 1 imply the triangle inequality

∆(z+z̃) ≤ ∆(z) + ∆(z̃) for all z, z̃ ∈ X (2.3)

which will be used often subsequently.
These assumptions are equivalent to the existence of a convex closed set F ∗ in X∗

with {z∗ ∈ X∗ : ‖z∗‖ ≤ C
(1)
∆ } ⊂ F ∗ ⊂ {z∗ ∈ X∗ : ‖z∗‖ ≤ C

(2)
∆ } such that

∆(z) = max{〈z∗, z〉 : z∗ ∈ F ∗}. (2.4)

We continue to use 〈·, ·〉 for the duality pairing on X∗ × X.

The space of functions of bounded variations is defined here to be

BV([0, T ], X) = {z : [0, T ] → X : Var(z, [0, T ]) < ∞}
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where Var(z, [0, T ]) = sup{
∑N

k=1 ‖z(tk)−z(tk−1)‖ : 0≤t0<t1< . . .<tN≤T}. Functions in
BV([0, T ], X) are continuous except for an at most countable number of jump points at
which the right and left limits z+(t) = lims↘t z(s) and z−(t) = lims↗t z(s) exist. We
define the closed subspaces

BV±([0, T ], X) = {z ∈ BV([0, T ], X) : z = z±},
which will be used subsequently. For functions z = z+ we attach artificially a limit
from the left which we denote by z(0−). This will allow us to impose an initial condition
z+(0−) = z0 at time t = 0 even when z+(0) 6= z0. For z = z− a corresponding construction
is not necessary as z0 = z(0) = z(0−) 6= z+(0) is allowed, which also corresponds to a
jump at time 0.

As explained in detail in Appendix A, to each z ∈ BV±([0, T ], E) we can associate a
derivative which is the product rd(z)µz of the reduced derivative rd(z) : [0, T ] → { v ∈
X : ‖v‖ ≤ 1 } and the differential measure µz ∈ M([0, T ]) (the set of Radon measures in
[0, T ]) . The two components are defined via

µz([s, t)) = t−s +

∫

[s,t)

‖dz‖ and z(t)−z(s) =

∫

[s,t)

rd(z)(r)µz(dr).

Here rd(z) : [0, T ] → X is defined only µz–almost everywhere (a.e.). Note that our defi-
nition of the differential measure differs from that in [Mon93, Sect.0.1] where νz([s, t)) =∫
[s,t)

‖dz‖ and ‖nd(z)(t)‖ = 1 νz–a.e. in [0, T ] such that dz = nd(z)νz = rd(z)µz. The

derivative doesn’t distinguish between right and left continuous versions, i.e., rd(z+) =
rd(z−) and µz− = µz+. For z = z+ with initial datum z(0−) = z0 6= z(0) we have
µz({0}) = ‖z(0)−z0‖ =: r > 0 and rd(z)(0) = 1

r
[z(0)−z0].

For z ∈ BV−([0, T ], X) the ∆–variation on the interval J ⊂ [0, T ] is defined by

Var∆(z, J) =

∫

J

∆(dz)
def
=

∫

J

∆(rd(z)(t))µz(dt).

This is the same as the supremum over all sums of the form
∑N

k=1 ∆(z(tk)−z(tk−1)) where
N ∈ N, t0, tN ∈ J and t0<t1< . . .<tN . Note that we have to be careful about jumps at
the boundary of J if J contains the corresponding boundary point. In particular, for
z = z+ special care has to be taken for the left limit z(0−), since our definition implies
Var∆(z, [0, T ]) = ∆(z(0)−z(0−)) + Var∆(z, (0, T ]).

On E the time–dependent energy functional I(t, z) is defined such that

I ∈ C1([0, T ] × E, [0,∞)),

where implicitly we have assumed that I is bounded from below by some constant, which
was set to 0 without loss of generality. The main assumption on I(t, ·) is weak lower
semi–continuity:

zn ⇀ z implies I(t, z) ≤ lim inf
n→∞

I(t, zn). (2.5)

With respect to the time dependence we assume that there exist constants C1, C2 > 0
such that

(a) |I(t, z)−I(t̂, z)| ≤ C1|t−t̂|,
(b) |∂tI(t, z)−∂tI(t, ẑ)| ≤ C2‖z−ẑ‖,
(c) zn ⇀ z implies ∂tI(t, zn) → ∂tI(t, z),

(2.6)
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for all t, t̂ ∈ [0, T ] and z, ẑ ∈ E.
Further structural assumptions on I are convexity assumptions on I(t, ·). We say that

I is convex, strictly convex or α–uniformly convex if for all t ∈ [0, T ] and all z0, z1 the
following conditions hold:

convex: I(t, zθ) ≤ (1−θ)I(t, z0) + θI(t, z1) for all θ ∈ [0, 1];

strictly convex: I(t, zθ) < (1−θ)I(t, z0) + θI(t, z1) for all θ ∈ (0, 1);

α–unif. convex: I(t, zθ) ≤ (1−θ)I(t, z0) + θI(t, z1) − α
2
(θ−θ2)‖z0−z1‖2 for all θ ∈ [0, 1];

where zθ = (1−θ)z0 + θz1. These convexity conditions are never assumed without stating
explicitly.

The most general formulation for our rate–independent processes is global in time.
We have a set of stable states which depends on time, in addition a solution satisfies the
energy inequality. This formulation does not rely on convexity assumptions for I and is
particularly useful for problems where only generalized convexity notions like quasicon-
vexity hold, since weak lower semi–continuity is still valid. Moreover it does not involve
derivatives of I with respect to z.

(GF) [Global Formulation] Find z ∈ BV±([0, T ], X) with z(0−) = z0 and z(t) ∈ E
such that conditions (S) and (E) hold:

(S) for λ–a.a. t ∈ [0, T ] : I(t, z(t)) ≤ I(t, y) + ∆(y−z(t)) for all y ∈ E,

(E) for all 0 ≤ t1 ≤ t2 ≤ T : I(t2, z(t2)) +
∫ t2

t1
∆(dz) ≤ I(t1, z(t1)) +

∫ t2
t1

∂tI(s, z(s))ds,

where
∫ t2

t1
∆(dz) =

∫
[t1,t2)

∆(dz) in the case z ∈ BV−([0, T ], X) and accordingly if

z ∈ BV+([0, T ], X)

Here (S) is the condition of global stability in the whole state space E, and λ denotes
the one–dimensional Lebesgue measure.

The definition of the energy inequality (E) is such that it implies the two natural
requirements for evolutionary problems, namely restrictions and concatenations of solu-
tions remain solutions. To be more precise consider a solution z : [0, T ] → E and any
subinterval [s, t] ⊂ [0, T ], then the restriction z|[s,t] solves (GF) with initial datum z(s−).
Moreover, if z1 : [0, t] → E and z2 : [t, T ] → E solve (GF) on the respective intervals and
if z1(t−) = z2(t−) then the concatenation z : [0, T ] → E solves (GF) as well.

In particular, (S) and (E) imply that if z jumps at time t from z− to z+ then

I(t, z+) + ∆(z+−z−) = I(t, z−). (2.7)

3 Three alternative formulations of the problem

There exist three different formulations which are equivalent to (GF) if the potential
energy I is convex. In the nonconvex case only certain implications are correct. The
global formulation has the big advantage that it doesn’t need the differentiability of the
potential energy I(t, ·). The other three formulations involve the derivative DI(t, z(t)).
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The first formulation (LF) localizes both, the definition of stable sets and the energy
inequality. It is somehow impractical since the structure of a constrained evolution is still
present; in particular, the tangent spaces Tz(t)E depend discontinuously on z(t).

The second formulation (VI) is a variational inequality which is a standard rewriting
of the local formulation (LF). Hence, it is always equivalent to (LF).

The third formulation (SF) is independent from these ideas. It is a single evolution
equation without constraints which has the difficulty that the time derivative appears
inside of a strong nonlinearity.

The following formulations will make essential use of knowledge on the reduce deriva-
tive which is contained in the following lemma. This result explains why certain of our
formulations are more natural for z = z− while others are more natural for z = z+. We
will always indicate this by adding a subscript − or + to the formulation. However, for
the global formulation (GF) this is not necessary, as it is easily seen that z = z− solves
(GF)− if and only if w = z+ solves (GF)+.

Lemma 3.1 For z ∈ BV±([0, T ], X) with z : [0, T ] → E there exists a set T ⊂ [0, T ] of
full µz–measure such that for all t ∈ T we have

rd(z)(t) ∈ Tz−(t)E and −rd(z)(t) ∈ Tz+(t)E.

Proof. We use the stretched function ẑ ∈ CLip([0, T̂ ], X) associated to z which is defined

in (A.1). Define the set T̃ ⊂ [0, T̂ ] to be the set of points τ where we have

ẑ′(τ) = d
dτ

ẑ(τ) = limρ↘0
1
ρ
[ẑ(τ+ρ) − ẑ(τ)] = limρ↘0

1
ρ
[ẑ(τ) − ẑ(τ−ρ)].

By Lebesgue’s lemma T̂ has full Lebesgue measure, i.e., λ(T̂ ) = λ([0, T̂ ]) = T̂ , cf. [Mon93].

Moreover, ẑ(τ) ± ρẑ ′(τ) + o(ρ) = ẑ(τ±ρ) ∈ E implies ±ẑ ′(τ) ∈ Tbz(τ)E for all τ ∈ T̂ .

The desired result is now obtained by undoing the stretching using the mapping t̂ :
τ 7→ t and the set T = t̂(T̂ ) ⊂ [0, T ]. We find µz(T ) = λ(T̂ ) = T̂ = µz([0, T ]). For
continuity points of z we have rd(z)(t) = ẑ ′(τ̂ (t)), see (A.2). At jump points the desired
result is obvious as rd(z) points in the jump direction from z(t) = z−(t) to z+(t).

The local formulation needs the assumption that I is a C1 function. The measure µz

also appears and thus jump points can be treated suitably. Recall that the set of jump
points has Lebesgue measure 0, but each jump point has a positive µz–measure.

(LF)± [Local Formulation] Find z ∈ BV±([0, T ], X) with z(0) = z0 and z(t) ∈ E
such that conditions (Sloc) and (Eloc) hold µz–a.e. in [0, T ]:

(Sloc) 〈DI(t, z(t)), v〉 + ∆(v) ≥ 0 for all v ∈ Tz(t)E,

(Eloc) 〈DI(t, z(t)), rd(z)(t)〉 + ∆(rd(z)(t)) ≤ 0.

Now restrict to the case z = z−. Using rd(z)(t) ∈ Tz(t)E (from Lemma 3.1) and
subtracting the two conditions we are lead to the single variational inequality

〈DI(t, z(t)), v−rd(z)(t)〉 + ∆(v) − ∆(rd(z)(t)) ≥ 0 for all v ∈ Tz(t)E

which is equivalent to (Sloc) & (Eloc). Introducing the characteristic function χTz(t)E we
can incorporate the side condition into the variational inequality and obtain the third
formulation.
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(VI)− [Variational Inequality] Find z ∈ BV−([0, T ], X) with z(0) = z0 and z(t) ∈
E such that

〈DI(t, z(t)), w−rd(z)(t)〉 + ∆(w) − ∆(rd(z)(t))

+χTz(t)E(w) − χTz(t)E(rd(z)(t)) ≥ 0 for all w ∈ X

holds µz–a.e. in [0, T ].

The fourth formulation uses subdifferentials denoted by ∂. For a characteristic function
χE : X → [0,∞] we find the normal cone mapping, i.e., ∂χE(z) = N∗

zE for z ∈ X. The
subdifferential of the dissipation functional ∆ is given via

∂∆(v) = argmax
z∗∈F ∗

〈z∗, v〉 =

{
F ∗ for v = 0,

{ δ∗ ∈ F ∗ : ∆(v) = 〈δ∗, v〉 } for v 6= 0.
(3.1)

(SF)± [Subdifferential Formulation] Find z ∈ BV±([0, T ], X) with z(0−) = z0

and z(t) ∈ E such that

0 ∈ ∂∆(rd(z)(t)) + DI(t, z(t)) + ∂χE(z(t)) for µz–a.a. t ∈ [0, T ].

This formulation is especially useful for general, convex I(t, ·) (not necessarily differ-

entiable, but lower semicontinuous). In writing ĨE(t, z) = I(t, z) + χE(z) we obtain the
short form

0 ∈ ∂∆(rd(z)(t)) + ∂ĨE(z(t)) for µz–a.a. t ∈ [0, T ]. (3.2)

Assuming ĨE(t, z) = J(z) − 〈g∗(t), z〉 this is exactly the doubly nonlinear formulation of
Colli & Visintin [CoV90, Vis01], namely g∗(t) ∈ ∂∆(rd(z)(t)) + ∂J(z(t)).

The first aim of this section is to show that the global formulation (GF) always implies
the local formulations (LF)− and (LF)+ but not vice versa. For the case that I(t, ·) is
convex and satisfies the above technical assumption we show that all three formulations
are equivalent. Second we compare the formulations (SF)± and (LF)± and at the end of
the section we present the associated formulation as a sweeping process.

Example 3.2 The formulation (SF)− is not very useful, as is seen by this simple example.
Take E = [0, l] ⊂ R and I(t, z) = αz2/2 − tz with α > 0. Choosing z0 = 0 the unique
solution of (GF), (LF)−, (VI)− and (SF)+ is given by zsln(t) = max{0, min{l, (t−1)/α}}
for t ≥ 0. This function is also a solution of (SF)−, however, there are many more
solutions: Choose τ ∈ (0, 1] and Z ∈ (0, max{l, (t+1)/α}). Then, the function z− with
z−(t) = 0 for t ≤ τ and z−(t) = max{Z, zsln(t)} for t > τ solves (SF)− as well.

Example 3.3 We consider E = X = R, ∆(v) = |v| and a general nonconvex, differ-
entiable potential I : [0, T ] × R → [0,∞). We discuss what conditions are imposed on
possible jumps from z0 to z1 by the different formulations (GF), (LF)− and (LF)+, re-
spectively. In all cases stability leads to the necessary condition |DI(t, zj)| ≤ 1. For
(GF) we find DI(t, z0) = DI(t, z1) = −sign(z1−z0) together with the global condi-
tion I(t, z0) = I(t, z1)+|z1−z0| ≤ I(t, y)+|y−z0| for all y ∈ R. For (LF)− we find
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DI(t, z0) = −sign(z1−z0) and |DI(t, z1)| ≤ 1 whereas (LF)+ gives |DI(t, z0)| ≤ 1 and
DI(t, z1) = −sign(z1−z0). The two local formulations (LF)± make no statement on the
jump of I, so generally (E) cannot be recovered.

Theorem 3.4 (Relation between (GF) and (LF))

(a) For general I we have (GF) ⇒ (LFaver)±, where (Eloc) is replaced by

(Eaver
loc ) 〈B∗(t), rd(z)(t)〉 + ∆(rd(z)(t)) ≤ 0 µz–a.e. on [0, T ], (3.3)

with B∗(t) =
∫ 1

0
DI(t, (1−θ)z−(t)+θz+(t))dθ.

(b) for general I we have (LF)− ⇔ (VI)−;

(c) for convex I we have (GF) ⇔ (LF)− ⇔ (LF)+.

Theorem 3.5 (Relation between (LF) and (SF))
(a) For general I we have (SF)+ ⇔ (LF)+;

(b) for general I we have (LF)− ⇒ (SF)−;

(c) for convex I we have (GF) ⇔ (LF)± ⇔ (SF)+.

The proofs of both theorems use several intermediate results which are developed now.

Lemma 3.6 (S) implies (Sloc).

Proof. For any v ∈ Tz(t)E \ {0} we find a sequence of wk ∈ X and a sequence rk > 0
such that ‖wk‖ = ‖v‖, wk → v, rk → 0 and zk = z(t)+rkwk ∈ E. From stability (S) and
differentiability we conclude

0 ≤ 1
rk

[
I(t, z(t)+rkwk) + ∆(rkwk) − I(t, z(t))

]

= 〈DI(t, z(t)), wk〉 + ∆(wk) + o(rk)k→∞.

With k → ∞ we obtain (Sloc).

The next lemma shows that the energy inequality (E) can be replaced by an en-
ergy identity under natural circumstances. In fact, considering the energy I(t, z(t)) +∫
[0,t)

∆(dz)−
∫
[0,t)

∂tI(τ, z(τ))dτ we see that (S) implies that this energy cannot decrease.

The same conclusion follows from (Sloc) at continuity points of z.

Lemma 3.7 (Energy conservation) A process z ∈ BV−([0, T ], E) satisfies for all 0 ≤
s < t ≤ T the energy identity

I(t, z(t)) +
∫
[s,t)

∆(dz) = I(s, z(s)) +
∫
[s,t)

∂tI(τ, z(τ)) dτ. (3.4)

if one of the following two conditions is satisfied:

(1) z satisfies (Sloc) and (Eloc) and z ∈ C([0, T ], E);

(2) z satisfies (S) on all of [0, T ] and (E) holds for t1 = 0 and t2 = T only.
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Proof. We define the quantity

e(s, t) = I(t, z(t)) +

∫

[s,t)

∆(dz) − I(s, z(s)) −
∫

[s,t)

∂tI(τ, z(τ)) dτ.

By definition we have e(r, t) = e(r, s) + e(s, t) for any r < s < t. We use part (c) of
Theorem A.1:

I(t, z(t))−I(s, z(s)) =

∫ t

s

∂tI(r, z(r)) dr +

∫

[s,t)

〈B∗(t), rd(z)(r)〉µz(dr) (3.5)

with B∗(t) =
∫ 1

0
DI(t, (1−θ)z(t)+θz+(t))dθ. This yields

e(s, t) =

∫

[s,t)

[
〈B∗(t), rd(z)(t)〉 + ∆(rd(z)(t))

]
µz(dt). (3.6)

If z is continuous we have B∗(t) = DI(t, z(t)), and (Sloc) & (Eloc) together with Lemma 3.1
give the first claim.

For the second claim we have that e(0, T ) ≤ 0. We use (Sloc) to show e(s, t) ≥ 0 for
all s < t which gives the desired result e(s, t) = 0. Observe that the integrand in (3.6) is
nonnegative µz–a.e. in [0, T ] by (S). Indeed, if z is continuous at t then this follows from
(Sloc), and if z has a jump from z− to z+ at time t, then

∫
{t}

[
〈B∗(t), rd(z)(t)〉 + ∆(rd(z)(t))

]
µz(dt) = 〈B∗(t), z+−z−〉 + ∆(z+−z−)

= I(t, z+)−I(t, z−) + ∆(z+−z−)

which is 0 by the global stability of z− at time t, see (2.7).

In the proof of Lemma 3.7 we saw that it might be more natural to replace in (LF) the
local energy condition (Eloc) by an averaged version (3.3). This unsymmetry disappears
in the case of convex I(t, ·), as the following result implies B∗(t) = DI(t, z(t)) µz–a.e. in
[0, T ].

Lemma 3.8 Assume z ∈ BV−([0, T ], E) solves (GF) and that I is convex. Then, the
map

(
[0, T ] → X∗; t 7→ DI(t, z(t))

)
is continuous. Moreover, if z jumps at time t from

z− to z+, then DI(t, ·) is constant along the straight jump line.

Proof. The result is trivial at points where z is continuous. Hence, we consider the case
of a jump. Let zθ = (1−θ)z− + θz+ and B∗

− = DI(t, z−). On the one hand convexity
implies I(t, zθ) ≥ I(t, z−) + θ〈B∗

−, z+−z−〉. On the other hand global stability gives
I(t, z−) ≤ I(t, zθ) + θ∆(z+−z−). Together with (2.7) we find that the function I(t, ·) is
affine on the straight line connecting z− and z+. Since I(t, ·) is convex and differentiable,
at all points of the jump line the tangent planes are the same. This proves the result.

We now relate the subdifferential formulations (SF)± to the local formulations (LF)±.
The basic result is obtained from the following lemma which uses simple arguments from
convex analysis.
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Lemma 3.9 Let C ⊂ X be a closed convex cone and C∗ ⊂ X∗ the dual cone, see Appendix
B. Moreover, assume that ∆ : X → [0,∞) is as above. Then, the following three
conditions on w ∈ X and β∗ ∈ X∗ satisfy the implications (i) ⇒ (ii) ⇒ (iii).

(i) −w ∈ C and 0 ∈ ∂∆(w) + β∗ + C∗;

(ii) 〈β∗, v〉 + ∆(v) ≥ 0 for all v ∈ C and 〈β∗, w〉 + ∆(w) ≤ 0;

(iii) 0 ∈ ∂∆(w) + β∗ + C∗.

This result has a strange unsymmetry which cannot be avoided. Already the simplest
case X = R, C = [0,∞) and ∆(v) = |v| shows this. The values β∗ = 1 and w = 1 satisfy
the condition (iii) but not (ii). Moreover, β∗ = −1 and w = 1 satisfies (ii) but not (i).
Assuming w ∈ C in addition to (iii) doesn’t help to imply (ii).

Proof. Condition (iii) is equivalent to −β∗ ∈ ∂∆(w) + C∗. From the form of the subdif-
ferential ∂∆ in (3.1) we find the equivalent formulation

(iii)’
[
∀ v ∈ C : 〈β∗, v〉+∆(v) ≥ 0

]
and

[
∃ ν∗ ∈ C∗ : 〈β∗, w〉+∆(w)+〈ν∗, w〉 = 0

]
.

Adding the condition −w ∈ C we obtain (i), and the implication (i) → (ii) follows directly
from 〈ν∗,−w〉 ≤ 0.

To prove that (ii) implies (iii) we consider two cases. If 〈β∗, w〉 + ∆(w) = 0, then we
choose ν∗ = 0 and (iii)’ holds. If 〈β∗, w〉 + ∆(w) < 0 then the first condition in (ii) tells
us that w 6∈ C. Thus there exists a γ∗ ∈ C∗ with 〈γ∗, w〉 > 0. Choosing r > 0 suitably
the vector ν∗ = rγ∗ satisfies the second condition in (iii)’.

After the preparatory work, it is easy to prove the Theorems 3.4 & 3.5.

Proof of Theorem 3.4. It is essential that for any solution z of the four formulations we
can apply Lemma 3.1 which guarantees ±rd(z)(t) ∈ Tz∓(t)E µz–a.e..

Part (a) and the direction “⇒” in parts (b) and (c) are proved above.
ad (b) “⇐”: Inserting w = 0 as a test state in (VI) we obtain (Eloc). Next insert

w = λv+rd(z)(t), divide by λ and take the limit λ → ∞. By the lower semicontinuity of
∆(·) and χTz(t)

(·) we arrive at (Sloc).
ad (c) “⇐”: In the case of convexity the global stability (S) immediately follows from

the local one (Sloc). Integrating (Eloc) and using (3.5) together with Lemma 3.8 gives the
global energy condition (E).

Proof of Theorem 3.5. We observe the correspondence between (SF)+, (LF)± and (SF)−
and the conditions (i), (ii) and (iii) in Lemma 3.9, respectively, where −rd(z)(t) ∈ Tz+(t)E
is used for (i) but rd(z)(t) ∈ Tz−(t)E is of no help in (iii).

This proves (a) and (b), where the equivalence in (a) follows as −rd(z)(t) ∈ Tz+(t)E
is known also in (LF)+. Part (c) is a consequence of (a) and Theorem 3.4(c).

Finally we connect our formulation to the so–called sweeping processes as discussed
in [KuM97, KuM98, Mon93]. Again we assume convexity of I. Our subdifferential for-
mulation (SF) is posed in the dual space X∗ and we need to employ duality arguments
(see Appendix B) involving the Legendre–Fenchel transform L to return to an equation
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in the space X. In the case E = X, our equation reads −DI(t, z(t)) ∈ ∂∆(rd(z)(t)), and
by Theorem B.1 this is equivalent to

rd(z)(t) ∈ ∂χF ∗ (−DI(t, z(t))) for µz–a.a. t ∈ [0, T ], (3.7)

since χF ∗ is the Legendre transform L∆ of ∆.
In the case of E & X the situation is a little more involved as we cannot insert

a set–valued function into a subdifferential. We start from the variational inequal-
ity (VI)− which can be rewritten as mt(w) ≥ mt(rd(z)(t)) = 0 for all w ∈ X where
mt(w) = 〈DI(t, z(t)), w〉 + ∆(w) + χTz(t)E(w). This is equivalent to 0 ∈ ∂mt(rd(z)(t)) or
−DI(t, z(t)) ∈ ∂ft(rd(z)(t)) where ft(w) = ∆(w) + χTz(t)E(w). By the duality theorem
B.1 we have rd(z)(t) ∈ ∂(Lft)(−DI(t, z(t))). Using Proposition B.3 we obtain an explicit
form for L which leads to the final result.

(SP)− [Sweeping Process Formulation] Find z ∈ BV−([0, T ], X) with z(0) = z0

and z(t) ∈ E such that

rd(z)(t) ∈ ∂χF ∗+Nz(t)E(−DI(t, z(t))) for µz–a.a. t ∈ [0, T ]. (3.8)

4 Time discretization

One of the standard methods to obtain solutions of nonlinear evolution equations is that
of approximation by time discretizations. To this end we choose discrete times 0 = t0 <
t1 < . . . < tN = T and consider the incremental problem.

(IP) For given z0 ∈ E find z1, . . . , zN ∈ E such that

zk ∈ argmin {I(tk, z) + ∆(z−zk−1) : z ∈ E} (4.1)

for k = 1, . . . , N .

By weak lower semi–continuity and boundedness from below of I(t, ·) we obtain the
following result.

Theorem 4.1 The incremental problem (4.1) always has a solution. Any solution satis-
fies for k = 1, . . . , N

(i) zk is stable for time tk
(ii)

∫
[tk−1,tk)

∂tI(s, zk) ds ≤ I(tk, zk)− I(tk−1, zk−1)+∆(zk−zk−1) ≤
∫
[tk−1,tk)

∂tI(s, zk−1) ds

(iii)
∑N

k=1 ∆(zk−zk−1) ≤ I(0, z0) + C1T

(iv) ‖zk‖ ≤ ‖z0‖ + (I(0, z0) + C1T )/C
(1)
∆ .

Remark: The assertions (i) and (ii) are the best replacements of the conditions (S) and
(E) in the time–continuous case.

Proof. From I(t, z) ≥ 0 we have

I(tk, z) + ∆(z−zk−1) ≥ C
(1)
∆ ‖z−zk−1‖.
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Hence any minimizing sequence (zj
k)j∈N is bounded and a subsequence converges weakly

to zk ∈ E ⊂ X. Convexity of ∆ and weak lower semi–continuity of I(tk, ·) gives

I(tk, zk) + ∆(zk−zk−1) ≤ lim inf
j→∞

I(tk, z
j
k) + lim inf

j→∞
∆(zj

k−zk−1)

≤ lim inf
j→∞

[
I(tk, z

j
k) + ∆(zj

k−zk−1)
]

= inf{ I(tk, y) + ∆(y−zk−1) : y ∈ E }.

This is equivalent to zk ∈ argmin I(t, ·) + ∆(· − zk−1).
The stability (i) is obtained by the minimization property and the triangle inequality

(2.3) as follows. For all w ∈ E we have

I(tk, w) + ∆(w−zk) = I(tk, w) + ∆(w−zk−1) + ∆(w−zk) − ∆(w−zk−1)

≥ I(tk, zk) + ∆(zk−zk−1) + ∆(w−zk) − ∆(w−zk−1) ≥ I(tk, zk).

The lower estimate in the energy estimate (ii) is deduced from the stability of zk−1 with
respect to zk:

I(tk, zk) + ∆(zk−zk−1) = I(tk−1, zk) + ∆(zk−zk−1) +

∫

[tk−1,tk)

∂tI(s, zk) ds

≥ I(tk−1, zk−1) +

∫

[tk−1,tk)

∂tI(s, zk) ds.

The upper estimate in (ii) follows since zk is a minimizer:

I(tk, zk) + ∆(zk−zk−1) ≤ I(tk, zk−1) = I(tk−1, zk−1) +

∫

[tk−1,tk)

∂tI(s, zk−1) ds.

Adding up (ii) for k = 1, . . . , N we find

I(T, zN ) − I(0, z0) +
N∑

k=1

∆(zk−zk−1) ≤
N∑

k=1

∫

[tk−1,tk)

∂tI(s, zk−1) ds.

Using I(t, z) ≥ 0 and |∂tI(t, z)| ≤ C1 we obtain (iii). Now (iv) follows from C
(1)
∆ ‖zk−z0‖ ≤

∆(zk−z0) ≤
∑N

j=1 ∆(zj−zj−1) and (iii).

For each discretization P = {0, t1, . . . , tN−1, T} of the interval [0, T ] and each incre-
mental solution (zk)k=1,...,N of (IP) we denote by ZP a piecewise constant function with

ZP (0) = z0 and ZP (t) = zk for t ∈ (tk−1, tk]. (4.2)

Summing (iii) in Theorem 4.1 over k = 1, . . . , N we find the following result.

Corollary 4.2 If (zk)k=1...N solves (IP), then ZP satisfies the energy inequality

I(T, ZP (T )) +

∫

[0,T ]

∆(dZP ) ≤ I(0, z0) +

∫ T

0

∂tI(s, ZP (s))ds.

The minimization property of zk leads to a necessary local condition:
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Proposition 4.3 If zk solves (4.1) then

〈DI(tk, zk), w−zk+zk−1〉 + ∆(w) − ∆(zk−zk−1) ≥ 0 for all w ∈ Tzk
E. (4.3)

If I(tk, ·) is strictly convex and E = X, then (4.3) has a unique solution. Then (4.1) and
(4.3) are equivalent.

Proof. Let zθ = (1−θ)zk + θzk−1 where θ ∈ [0, 1]. The minimization property of zk gives

I(tk, zk) + ∆(zk−zk−1) ≤ I(tk, zθ) + ∆(zθ−zk−1)

= I(tk, zk) + θ〈DI(tk, zk), zk−1−zk)〉 + o(θ) + (1−θ)∆(zk−zk−1),

for θ → 0. Subtracting the terms of order θ0, dividing by θ and taking the limit θ → 0
yields 〈DI(tk, zk), zk−zk−1)〉 + ∆(zk−zk−1) ≤ 0.

From Theorem 4.1 we know that zk is stable and comparing with z = zk + θw,
w ∈ Tzk

E, gives similarly 〈DI(tk, zk), w〉+∆(w) ≥ 0. Subtracting the previous inequality
gives (4.3).

Let E = X and let z
(j)
k , j = 1, 2 be two solutions of (4.3). Then, we can use w =

z
(3−j)
k − z

(3−j)
k−1 as test–function in (4.3) and the estimates for j = 1 and 2 to obtain

〈DI(tk, z
(1)
k )−DI(tk, z

(2)
k ), z

(2)
k −z

(2)
k−1 − (z

(1)
k −z

(1)
k−1)〉 ≥ 0. Induction over k together with

strict convexity implies that z
(1)
k = z

(2)
k .

For the uniformly convex case we obtain a Lipschitz bound for the incremental problem
(4.1).

Theorem 4.4 If I(t, ·) is α–uniformly convex then any solution of (4.1) satisfies

‖zk−zk−1‖ ≤ C2

α
|tk−tk−1| for k = 1, . . . , N.

Proof. The stability of zk−1 at tk−1 implies via (Sloc) and zk−zk−1 ∈ Tzk−1
E the estimate

〈DI(tk−1, zk−1), zk − zk−1〉 + ∆(zk−zk−1) ≥ 0. (4.4)

Adding this to (4.3) with w = 0 we have 〈DI(tk−1, zk−1)−DI(tk, zk), zk−zk−1〉 ≥ 0. With
the uniform convexity and assumption (2.6) we continue

0 ≥ 〈DI(tk, zk)−DI(tk, zk−1), zk−zk−1〉 + 〈DI(tk, zk−1)−DI(tk−1, zk−1), zk−zk−1〉
≥ α‖zk−zk−1‖2 − C2|tk−tk−1|‖zk−zk−1‖;

and the result is established.

5 Stable sets

The sets of stable points play an important role in the analysis. For t ∈ [0, T ] we let

S(t) = {z ∈ E : I(t, z) ≤ I(t, y) + ∆(y−z) for all y ∈ E},

which is the set of all stable points at time t. The condition (S) now reads “z(t) ∈ S(t)”.
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Lemma 5.1 Let I(·, z) : [0, T ] → [0,∞) be continuous and I(t, ·) : E → [0,∞) be lower
semicontinuous. Then,
(a) for each t the set S(t) is closed;
(b) if tn → t and zn ∈ S(tn) with zn → z, then z ∈ S(t).

Proof. Let H(t, z, w) = I(t, w) + ∆(w−z)− I(t, z) and H(t, z) = inf{H(t, z, w) : w ∈ E}.
Clearly, H(t, z) ≤ 0 and z ∈ S(t) ⇔ H(t, z) = 0.

Assume zn ∈ S(t) and zn → z, then H(t, zn, w) ≥ 0 for all w. By continuity of I(t, ·)
and ∆(·) we find H(t, z, w) ≥ 0 and conclude z ∈ S(t). This proves (a).

Part (b) follows from (a) and the (strong) continuity of H(·, z, w) : [0, T ] → R.

In the case E = X, I(t, ·) convex and in C1(X, R) the stable set is simply characterized
by S(t) = {z : −DI(t, z) ∈ F ∗}. In the general case we have

z ∈ S(t) ⇒ −DI(t, z) ∈ F ∗ + NzE (5.1)

with equivalence if I(t, ·) is convex.
We will see in the following that weak closedness of S(t) is a very desirable property.

A natural way to obtain weak closedness of the stable sets is to show convexity by using
that F ∗ is sufficiently round. We say F ∗ is γ–round if

∀θ ∈ [0, 1]∀z∗0 , z
∗
1 ∈ F ∗ :

{w∗ ∈ X∗ : ‖w − (θz∗1 + (1−θ)z∗0)‖ ≤ γθ(1−θ)‖z∗0−z∗1‖2} ⊂ F ∗.
(5.2)

In a Hilbert space the ball BR(z∗) is (2R)−1–round.

Theorem 5.2 Assume E = X and that F ∗ is γ–round. Moreover, assume that I(t, ·) ∈
C3(X, R) with ‖D3I(t, z)‖X×X×X→R ≤ M for all z and that I is α–uniformly convex.
Then the inequality M/(2α2) ≤ γ implies that S(t) is convex.

Proof. Take z0, z1 ∈ S(t). By (5.1) we have σ∗
j = DI(t, zj) ∈ F ∗ for j = 0 and 1. For

θ ∈ [0, 1] we let zθ = (1−θ)z0 + θz1, then it suffices to show

‖DI(t, zθ) − (1−θ)DI(t, z0) − θDI(t, z1)‖ ≤ γθ(1−θ)‖σ∗
0−σ∗

1‖2.

The left–hand side takes the form
∥∥∥∥θ(1−θ)

∫

[0,1]

[
D2I(t, z1+s(zθ−z1)) − D2I(t, z0+s(zθ−z0))

]
(z0−z1)ds

∥∥∥∥

and thus can be estimated by M
2
θ(1−θ)‖z0−z1‖2. Uniform convexity gives

‖σ∗
0−σ∗

1‖ ≥ 〈DI(t, z0)−DI(t, z1), z0−z1〉
‖z0−z1‖

≥ α‖z0−z1‖

and the result is established.

An important special case is E = X and I being a convex quadratic functional.

Corollary 5.3 Assume E = X and I(t, z) = 1
2
〈A(t)z, z〉−〈g(t), z〉 with A(t) ∈ Lin(X, X∗)

and 〈A(t)z, z〉 > 0 for all z ∈ X. Then S(t) is convex.
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For convenience, we give a direct proof. However, this result is a special case of Theo-
rem 5.2 and of Theorem 5.4.
Proof. Since I(t, ·) is convex and smooth we have z ∈ S(t) ⇔ −DI(t, z) = −A(t)z+g(t) ∈
F ∗. Since F ∗ is convex and DI is linear we conclude convexity of S(t).

Theorem 5.4 If one of the following conditions holds, then the stable sets S(t) are weakly
closed :

(1) S(t) is convex.
(2) For all w ∈ E the mapping ∆(w − ·) : E → R is weakly continuous.
(3) E = X and the mapping DI(t, ·) : E → X∗ is weakly continuous.

Proof. Part (1) is clear since closed convex sets are weakly closed.
Part (2) follows by using weak continuity of ∆(·) and weak lower semi–continuity of

I(t, ·) as follows. Assume zn ⇀ z and zn ∈ S(t). With the notation as in the proof of
Lemma 5.1 we have

0 ≤ lim sup
n→∞

H(t, w, zn) = I(t, w) + lim
n→∞

∆(w−zn) − lim inf
n→∞

I(t, zn)

≤ I(t, w) + ∆(w−z) − I(t, z) = H(t, w, z)

for all w ∈ E. Thus, z ∈ S(t).
Part (3) follows with (5.1) where NzE = {0}.
Note that the condition (2) together with 0 < C

(1)
∆ ≤ C

(2)
∆ < ∞ in (2.2) is rather

restrictive; it means that E ∩ Br(0) is compact for each r > 0.
In the following examples we give simple functionals I(t, z) and ∆(z) such that the

stable set S(t) is nonconvex and not weakly closed. See also Example C.3.

Example 5.5 Let E = X = R × H where H is a Hilbert space. Let z = (a, h) ∈ X and

I(t, z) =
1

4
(a2+‖h‖2)2 − γ(t)a, ∆(z) =

√
a2 + ‖h‖2.

Then z ∈ S(t) ⇔ ‖DI(t, z)‖ ≤ 1, where DI(t, (a, h)) = (a2+‖h‖2)
(

a
h

)
−

(
γ(t)
0

)
. Now,

assume γ(t1) = 2, then (a, 0) ∈ S(t1) if and only if a ∈ [1, 31/3]. Consider z∗ = (a∗, h∗)
with a∗ = (35/28)1/3 < 1 and ‖h∗‖ = (3 · 53/216)1/6, then a straight forward calculation
gives ‖DI(t1, z∗)‖ = 1. In fact, these z∗ are the ones having the smallest a–component.

Clearly, S(t1) cannot be convex, since (a∗, h∗) and (a∗,−h∗) are in S(t1) but (a∗, 0) /∈
S(t1), see Fig. 1 for a visualization. Moreover, if H is infinite dimensional then S(t1) is
not weakly closed. In fact, take any sequence hk with ‖hk‖ = ‖h∗‖ and hk ⇀ 0, then
(a∗, hk) ∈ S(t1) and (a∗, hk) ⇀ (a∗, 0) /∈ S(t1).

Example 5.6 In this example I is quadratic but E & X. Consider E = BR(0) ⊂ X
Hilbert space,

I(t, z) =
α

2
‖z‖2 − 〈g(t), z〉, ∆(z) = ‖z‖.

16



1

1.2

1.4

a

–0.6 –0.4 –0.2 0 0.2 0.4 0.6
h

Figure 1: The visualization of the stable set in Example 5.5 in the case H = R clearly
shows that convexity can not be expected.

Then z with ‖z‖ < R is stable if and only if ‖αz−g(t)‖ ≤ 1. For z with ‖z‖ = R
the boundary of E can stabilize; and stability holds if there exists γ ∈ [α,∞) such that
‖γz−g(t)‖ ≤ 1.

Thus, in the case ‖g(t)‖ ≤
√

1+α2R2 we have the convex stable set S(t) = {z ∈ E :
‖αz−g(t)‖ ≤ 1} ∩ BR(0), which is the intersection of two balls. In the case ‖g(t)‖ >√

1+α2R2 we have

S(t) = {z∈E : ‖αz−g(t)‖≤1} ∪ {z∈E : ‖z‖=R, ‖
(
‖g(t)‖2−1

)1/2
z−Rg(t)‖≤R}

which always contains a nonconvex part of the boundary of the sphere.

However, there are also many nontrivial examples where convexity of the stable set can
be shown directly. For instance, consider X = L1(Ω; Rn), ∆(z) = ‖z‖1 =

∫
Ω
|z(x)| dx and

E = L1(Ω; K) where K is a compact and convex subset of Rn. Let W : [0, T ]×Ω×K → R
be continuous and W (t, x, ·) : K → R be convex. For I(t, z) =

∫
Ω

W (t, x, z(x)) dx the
stability of z ∈ E can be checked pointwise: z is stable at time t if and only if for a.a.
x ∈ Ω the vector z(x) is stable for Î(t, ξ) = W (t, x, ξ) and ∆̂(ξ) = |ξ|. We refer to
[MTL00] for a nontrivial application of this idea.

6 Existence and uniqueness results for general I

The existence theory can be approached in a rather general setting even without convexity.
We use the incremental method of Section 4. For a discretization P = {0, t1, . . . , tN−1, T}
of [0, T ] the fineness is δ(P ) = max{ tk−tk−1 : k=1, . . . , N } and ZP denotes the left–
continuous, piecewise constant solution associates to a solution of (IP), see (4.2). By
our assumptions all these functions ZP are bounded in BV([0, T ], X), since ZP (0) = z0

and
∑N

k=1 ∆(zk−zk−1) ≤ I(0, z0) + C1T , see Lemma 4.1 (iii). To extract a convergent
subsequence we use the following generalization of Helly’s selection principle, see [BaP86].
We sketch the proof for the convenience of the reader.

Theorem 6.1 Let (zn)n∈N be a bounded sequence in BV([0, T ], X) with zn(t) ∈ E for
all n ∈ N and t ∈ [0, T ]. Then there exists a subsequence (nk) and functions δ∞ ∈
BV([0, T ], R) and z∞ ∈ BV([0, T ], X) such that the following holds:
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(a)
∫
[0,t)

∆(dznk
) → δ∞(t) for all t ∈ [0, T ];

(b) znk
(t) ⇀ z∞(t) ∈ E for all t ∈ [0, T ];

(c)
∫
[s,t)

∆(dz∞) ≤ δ∞(t)−δ∞(s) for all 0 ≤ s < t ≤ T .

Proof. First consider the monotone functions δn(t) =
∫

[0,t)
∆(dzn). By the real–valued

version of Helly’s principle there exists a subsequence (nl) and a monotone function δ∞ :
[0, T ] → [0,∞) such that for all t ∈ [0, T ] we have δnl

(t) → δ∞(t) for l → ∞.
Clearly, δ∞ has an at most a countable jump set J ⊂ [0, T ]. Now choose a sequence

(tj)j∈N which is dense in [0, T ] and contains J . Since there is an R > 0 with ‖zn(t)‖ ≤ R
we have weak compactness and can construct a further subsequence (nk) such that for all
j ∈ N we have znk

(tj) ⇀ z∞(tj) for k → ∞. This is the definition of z∞ at t = tj.
Using the weak lower semi–continuity of ∆ it follows that z∞ must be continuous

except at the jump points of δ∞(t). Thus, we define z∞ on all of [0, T ] by its continuous
extension in [0, T ]/J .

Moreover, by b) we have weak convergence for all t ∈ [0, T ] as follows. The case t ∈ J
is clear, hence assume t ∈ [0, T ]/J and choose y∗ ∈ X∗. Then,

|〈znk
(t)−z∞(t), y∗〉| ≤‖znk

(t)−znk
(tj)‖‖y∗‖

+ |〈znk
(tj)−z∞(tj), y

∗〉| + ‖z∞(tj)−z∞(t)‖‖y∗‖.

Now we can choose tj such that the first and third term are less that ε/3 for all k ≥ k0,
since both terms can be estimated by |δ∞(t)−δ∞(tj)|2‖y∗‖. Keeping j fixed and increasing
k0 if necessary the second term is less than ε/3 as well as for k ≥ k0.

In the above and in the following result the function z is a general BV–function where
at jump points z+(t), z(t) and z−(t) may all be different. Combining the a– priori estimates
in Section 4 and the previous theorem we arrive at the following result.

Proposition 6.2 Let P (j) = {0, t(j)1 , . . . , t
(j)
N(j)−1, T} be a sequence of discretizations whose

fineness δ(P (j)) tends to 0. Denote by z(j) = ZP (j) the associated step functions (4.2)
of the incremental problems (IP). Then there exists a subsequence (jl)l∈N and functions
δ∞, i∞ : [0, T ] → R and z∞ ∈ BV([0, T ], X) such that
(i) z(jl)(t) ⇀ z∞(t),

∫
[0,t)

∆(dz(jl)) → δ∞(t) for all t ∈ [0, T ];

(ii)
∫
[s,t)

∆(dz∞) ≤ δ∞(t)−δ∞(s) for all s < t,

(iii) i∞(t) = liml→∞ I(t, z(jl)(t)) ≥ I(t, z∞(t));
(iv) i∞(t) + δ∞(t) = I(0, z0) +

∫
[0,t)

∂tI(s, z∞(s)) ds.

Proof. Applying Theorem 6.1 to the sequence z(j) we immediately obtain (i) and (ii). The
weak continuity of ∂tI(s, ·) (see assumption (2.6)) implies

∫

[0,t)

∂tI(s, z(jl)(s)) ds →
∫

[0,t)

∂tI(s, z∞(s)) ds

for all t ∈ [0, T ]. Adding the two–sided energy estimate (ii) in Lemma 4.1 we have

∫
[0,t

(j)
n )

∂tI(s, z(j)(s)) ds ≤ I(t
(j)
n , z(j)(t

(j)
n )) − I(0, z0) +

∫
[0,t

(j)
n )

∆(dz(j))

≤
∫
[0,t

(j)
n )

∂tI(s, ẑ(j)(s)) ds,
(6.1)
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where ẑ(j)(t) =
∑N(j)−1

k=0 i[kk,tk+1)(t)z
(j)
k is the right–continuous step function. At all conti-

nuity points t of z∞ we have ẑ(jl)(t) ⇀ z∞(t) and hence the upper and lower estimates in

(6.1) both converge, for jl → ∞ and t
(jl)
nl → t, to

∫
[0,t)

∂tI(s, z∞(s)) ds.

With (i) and (6.1) we conclude that the limit i∞(t) exists for all t ∈ [0, T ] and (iv)
holds. Lower semi–continuity of I(t, ·) implies (iii).

The remaining task is to show that the limit function gives rise to a solution of our
problem. The functions z = (z∞)± always satisfy the global energy inequality (E), which
follows from

I(t, z(t)) +

∫

[0,t)

∆(dz) ≤ i∞(t) + δ∞(t) = I(0, z0) +

∫

[0,t)

∂tI(s, z(s)) ds.

The major problem is to obtain stability of z(t) for all t ∈ [0, T ]. To derive this from the
stability of z(j) = ZP (j) at the times t ∈ P (j) we have two choices. Either we improve
the weak convergence in Proposition 6.2(i) to strong convergence and use the closedness
of the stable sets, see Lemma 5.1. Or we stay with the weak convergence and show that
S(t) is weakly closed.

Theorem 6.3 Assume that E, ∆ and I satisfy the above assumption. Take a hierarchical
sequence of discretizations P (1) ⊂ P (2) ⊂ . . . with δ(P (j)) → 0 and define ẑ(l) = ZP (jl) and
z∞ as in Proposition 6.2. Then z = (z∞)± is a solution of (GF) if there exists a dense
subset T of [0, T ] with T ⊂ ⋃∞

j=1 P (j) such that one of the following two conditions holds

(1) ẑ(l)(t) → z∞(t) for all t ∈ T ;
(2) S(t) is weakly closed for all t ∈ T .

Proof. The two conditions are such that we can conclude z(t) ∈ S(t) for all t ∈ T by
using the stability of z(jl)(t) at time t for all sufficiently large l and the closedness of S(t)
in the suitable topology.

Lemma 5.1(b) and the density of T then imply that z is stable for all t ∈ [0, T ] and
the theorem is established.

Remark 6.4 The above theorem was derived under the assumption of reflexivity of X.
However, we only used that closed, bounded subsets of E are sequentially weakly compact.
Interesting applications involve the choice X = L1(Ω) and E = { z : ‖z‖∞ ≤ 1 }, cf.
[MTL00].

Actually in case (1) the assumption of the weak continuity of ∂tI(t, ·) is unnecessary,
strong continuity would suffice. A simple example to which the second part of our theorem
applies is the following. Let E = X where X is an infinite dimensional Hilbert space. Let
∆(z) = ‖z‖ and

I(t, z) =
α

2
‖z‖2 + ‖z‖4 − 〈g(t), z〉

for a small α > 0 and a suitable smooth function g : [0, T ] → X. By Example 5.5 we
know that the stable sets S(t) are not weakly closed for an open set of funtions g.

Following the spirit of the existence theorem we can also deduce a uniqueness result
which requires that the stable sets are convex.
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Theorem 6.5 If in addition to the above assumptions the function I has the form I(t, z) =
J(z) − 〈g∗(t), z〉 where J is strictly convex and the stable sets S(t) are convex for all
t ∈ [0, T ], then there is a unique solution for each initial condition z0 ∈ E.

Proof. The existence of a solution is a consequence of Theorem 6.3, since convexity of
S(t) implies weak closedness via the strong closedness, cf. Lemma 5.1.

For any two solutions zj : [0, T ] → E with zj(0) = z0 ∈ S(0) define z̃(t) = 1
2
(z0(t)+z1(t)).

By convexity of the stable sets we know that z̃(t) is stable for all t. Now assume
z0(t) 6= z1(t) for some t > 0. Using strict convexity of J , the energy identity (3.4)
and the linearity of ∂tI we obtain

I(t, z̃(t)) +
∫
[0,t]

∆(dz̃) < 1
2
[I(t, z0(t)) + I(t, z1(t))] +

∫
[0,t]

1
2
[∆(dz0)+∆(dz2)]

= 1
2
[I(t, z0(0)) + I(0, z1(0))] −

∫ t

0
1
2
[〈ġ∗, z0〉 + 〈ġ∗, z1〉]ds

= I(0, z0) +
∫ t

0
∂tI(s, z̃(s))ds.

Thus, z̃ also satisfies the global energy condition (E) and is a solution as well. However,
by Lemma 3.7 every solution satisfies the energy equality (3.4) which is not the case here
due to the strict convexity. Hence, we conclude z0 = z1 on [0, T ].

In [CoV90] uniqueness for our situation is obtained only if E = X and I is a quadratic
functional, i.e., I(t, z) = 〈Az−g∗(t), z〉 where A : X → X∗ is symmetric and positive
definite. Clearly, this is a special case of the above result.

7 The good case: I uniformly convex and X = E

In this section we establish the well posedness of the time–continuous evolution problem
in the convex case. By Theorem 3.4.c and Theorem 3.5.c we see that all our formulations
are equivalent. It is obvious that one can only expect that the solutions are unique if
the I is strictly convex. In the degenerate cases it is easy to construct examples for
nonuniqueness. If we additionally assume that I satisfies a smoothness condition we get
a pretty complete picture. For every initial value z(0) = z0 ∈ X there exists a unique
continuous process z and z(t) depends continuously on z0. Furthermore the solutions to
the incremental problem converge to z as the fineness of the discretization tends to 0.

This improves the result in [HaR95] where the existence of a solution z ∈ W 2,1([0, T ], X)
(resp. with ż ∈ BV([0, T ], X), cf. Section 7.2) has to be assumed before showing conver-
gence of the incremental method. At the end of the section we state the optimal regularity
in time of the solutions. This requires that the boundary of F ∗ is smooth.

Unfortunately our smoothness assumption on I(t, ·) rules out the case E 6= X and we
are unable to generalize the methods of this chapter to cases where E has a boundary.

Theorem 7.1 (Well posedness in the convex, smooth case) Assume E = X and
I(t, ·) ∈ C3(X) α–uniformly convex in z. Then for every z0 in X there exists a unique
solution z ∈ W 1,∞([0, T ], X) of (GF) (or alternatively of (LF), (VI) or (SF)). For each
t ∈ [0, T ] the state z(t) depends Lipschitz continuously on the initial value z0. Furthermore
there exists a constant C > 0 so that

‖z − ZP‖L∞([0,T ],X) ≤ C
√

δ
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with ZP from (4.2) and δ = min{ ti−ti−1 : i=1, . . . , N } is the fineness of the time
discretization.

Proof. The equivalence of (GF), (LF), (VI) and (SF) is established in the Theorems 3.4
and 3.5. The proof of existence of the solutions to the Cauchy problem is given in Theo-
rem 7.3. There also the convergence of the solutions of the incremental problems to the
time continuous solution is established. The uniqueness and the continuous dependence
on the initial value is established in Theorem 7.4

7.1 Strong convergence

We first prove a stability result for the incremental problem when I is perturbed. This
will then be used to compare the incremental solutions for two different discretizations.

Proposition 7.2 Let E = X, j ∈ {1, 2}, I j ∈ C3(X, R), Ij α–uniformly convex. Then,
there exists a constant C > 0 such that for all discretizations P = {0, t1, . . . , tN−1, T} the
solutions (zj

k)k=0,...N , j = 1, 2, of the incremental problem satisfy

‖z1
k − z2

k‖ ≤ Cρ1/2

where ρ = supz∈X ‖DI1(·, z) − DI2(·, z)‖L∞([0,T ],X∗).

Proof. We generalize the idea of the proof of Theorem 2.3 in [HaR95]. We introduce the
notation σj(t, z) = DIj(t, z), ek = z1

k−z2
k and the difference operator τkζ = ζk−ζk−1 where

ζ stands for t, zj, σj(t, zl
k) or e.

Convexity, E = X and (4.3) give 〈σj(tk, z
j
k), w−τkz

j〉 + ∆(w) − ∆(τkz
j) ≥ 0 for all

w ∈ X. Inserting w = τkz
3−j and adding the equations for j = 1 and 2 gives

〈σ1(tk, z
1
k) − σ2(tk, z

2
k), τke〉 ≤ 0. (7.1)

The final estimate is derived using the quantity

γk
def
= 〈σ1(tk, z

1
k) − σ1(tk, z

2
k), ek〉 = 〈DI1(tk, z

1
k)−DI1(tk, z

2
k), z

1
k−z2

k〉

which by uniform convexity controls the error ek via α‖ek‖2 ≤ γk. The increment τkγ =
γk − γk−1 can be estimated via (7.1) as follows

τkγ = 〈σ1(tk, z
1
k) − σ1(tk, z

2
k), τke〉 + 〈τk(σ

1(tk, z
1
k) − σ1(tk, z

2
k)), ek−1〉

= 2〈σ1(tk, z
1
k) − σ2(tk, z

2
k), τke〉 + βk

where βk = 〈τk(σ
1(tk, z

1
k)− σ1(tk, z

2
k)), ek−1〉 − 〈σ1(tk, z

1
k)− σ1(tk, z

2
k), τke〉+ 2〈σ1(tk, z

2
k)−

σ2(tk, z
2
k), τke〉 takes the form

βk = 〈Akek−Ak−1ek−1, ek−1〉 − 〈Akek, τke〉 + 2〈σ1(tk, z
2
k) − σ2(tk, z

2
k), τke〉

= −〈Akτke, τke〉 + 〈(Ak−Ak−1)ek−1, ek−1〉 + 2〈σ1(tk, z
2
k) − σ2(tk, z

2
k), τke〉.

The symmetric operators Ak ∈ Lin(X, X∗) are defined via Ak =
∫
[0,1]

D2I1(tk, z
2
k + θek) dθ

and satisfy Akek = σ1(tk, z
1
k) − σ1(tk, z

2
k). By convexity and three–times differentiability

we obtain
〈Aky, y〉 ≥ 0 and ‖Ak−Ak−1‖ ≤ C3

(
‖τkz

1‖ + ‖τkz
2‖
)
.
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Together with ‖τke‖ ≤ ‖τkz
1‖ + ‖τkz

2‖ we find

τkγ ≤
[
2Gk +

C3

α
γk−1

] (
‖τkz

1‖ + ‖τkz
2‖
)
,

where Gk = supz∈X ‖σ1(tk, z) − σ2(tk, z)‖X∗. The Lipschitz continuity of zj (see Theo-
rem 4.4) gives the existence of a constant C which is independent of the discretization P
such that

γk ≤ γk−1 + (tk−tk−1)Ĉ[Gk + γk−1] for k = 1, . . . , N,

where Ĉ = C supz∈X [‖∂tσ
1(·, z)‖∞+‖∂tσ

2(·, z)‖∞]. With γ0 = 0 and Gk ≤ ρ we obtain

γk ≤ Ĉρ
k∑

n=1

(tn−tn−1)
k∏

j=n+1

[1 + Ĉ(tj−tj−1)] ≤ Ĉρe
bCT T.

Together with ‖z1
k−z2

k‖2 ≤ 1
α
γk this is the desired result.

Theorem 7.3 Under the assumptions of Proposition 7.2 there is a unique solution z ∈
W 1,∞([0, T ], X) and for each discretization P the incremental solution zk = ZP (tk) satis-
fies the error estimate

‖zk−z(tk)‖ ≤ Cρ(P )1/2 for tk ∈ P

where C is independent of P .

Proof. Uniqueness and Lipschitz continuity are shown in Theorems 7.4 and 7.5 below.
The existence part is based on the global definition of solutions via stability (S) and
energy inequality (E) and strong convergence. We use the discretizations P (j) = {kT2−j :
k = 0, . . . , 2j} with the associated incremental solutions z(j) = ZP (j) .

The idea is to consider z(j−1) as an incremental solution on P (j) of a slightly modified
problem. Then z(j−1) and z(j) can be compared using the previous proposition. We let
I(j)(kT2−j, ·) = I(kT2−j, ·) for even k and I (j)(kT2−j, ·) = I((k + 1)T2−j, ·) for odd k.
Between the points in P (j) the potential I (j) is assumed to be linear in t. Thus, we have

‖DI (j)−DI‖∞ ≤ T

2j−1
‖∂tDI‖∞ and ‖∂tDI (j)‖∞ ≤ 2‖∂tDI‖∞,

where ‖DI‖∞ = sup{‖DI(t, z)‖X∗ : t ∈ [0, T ], z ∈ X}.
Since z(j−1) is the incremental solution on P (j) with we can apply Proposition 7.2 and

obtain
‖z(j)(t) − z(j−1)(t)‖ ≤ C2−j/2 for t ∈ P (j). (7.2)

Thus, keeping t ∈ T n = {kT2−n : k ∈ N, k ≤ 2n} fixed, the sequence (z(j)(t))j∈N is a
Cauchy sequence. Its limit z∞(t) provides a Lipschitz continuous solution by Theorem 6.3
(the incremental solutions satisfy a uniform Lipschitz bound, cf. Theorem 4.4).

The estimate for general discretizations P = P (1) is obtained by successive bisection of
the previous discretization P (j) such that δ(P (j+1)) = δ(P (j))/2. Doing the same trick as
above we again obtain ‖DI (j)−DI‖∞ ≤ 2δ(P (j)) and ‖∂tDI (j)‖∞ ≤ 2‖∂tDI‖∞. Estimate
(7.2) is replaced by

‖z(j−1)(t)−z(j)(t)‖ ≤ Cδ(P (j))1/2 for t ∈ P (j).

22



Restricting to t ∈ P = P (1) and adding all these estimates we find

‖z(1)(t)−z∞(t)‖ ≤
∞∑

j=1

C
(
δ(P )2−j+1

)1/2
= C̃δ(P )1/2.

Since z(1)(tk) = zk is the original incremental solution and z∞(t) = z(t) the time–
continuous one the result is established.

7.2 Uniqueness results

It is easy to construct examples with I(t, ·) (not strictly) convex such that the solution is
not unique, see e.g. Example 7.6. A first uniqueness result was obtained in Theorem 6.5.

Theorem 7.4 Assume that E = X, that I is α–uniformly convex and that I(t, ·) ∈
C3(X, R). Then the solutions are unique and depend Lipschitz continuously on the initial
value.

Proof. Let z1 and z0 be two solutions. Define

γ(t) = 〈σ∗
1−σ∗

0 , z1(t)−z0(t)〉 with σ∗
j = DI(t, zj(t)),

then ‖z1(t)−z0(t)‖2 ≤ γ(t)/α by α–uniform convexity. Moreover, by Theorem 7.5 below
we know that żj = (1+‖żj‖)rd(zj) exists a.e. in [0, T ] and satisfies ‖żj(t)‖ ≤ C1/α. Thus,
we have

γ̇(t) = 〈∂tDI(t, z1)−∂tDI(t, z0), z1−z0〉 + 〈r∗1, ż1〉 + 〈r∗0, ż0〉
where r∗j = D2I(t, zj)[zj−z1−j ] − σ∗

1−j + σ∗
j = 2(σ∗

j−σ∗
1−j) + b∗j . Using the estimates

‖b∗j‖ = ‖DI(t, z1−j)−DI(t, zj)−D2I(t, zj)[z1−j−zj]‖ ≤ C3‖z1−z0‖2

and ‖∂tDI(t, z1)−∂tDI(t, z0)‖ ≤ C2‖z1−z0‖ we find

γ̇ ≤ C2‖z1−z0‖2 + 2C3‖z1−z0‖2C1

α
+ 2〈σ∗

0, ż0−ż1〉 + 2〈σ∗
1, ż1−ż0〉. (7.3)

To estimate the sum of the last two terms we use the variational inequality (VI) for the
solutions z = zj where, by homogeneity, we can replace rd(zj) by żj. We insert the test
functions w = ż1−j and subtraction of the two equations yields

〈σ∗
1−σ∗

0, ż1−ż0〉 ≤ 0. (7.4)

Here the characteristic functions vanish as Tzj(t)E = X (recall E = X) and the terms
involving ∆ annihilate.

Thus, (7.3) gives γ̇ ≤ C5γ with C5 = (C2 + 2C1C3/α)/α and, hence, ‖z1(t)−z0(t)‖2 ≤
eC5tγ(0)/α which implies uniqueness and Lipschitz continuity.

Theorem 7.4 can be generalized when we find a replacement for (7.4). Such a gener-
alization is given via the structure condition (C.1) in Appendix C.
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7.3 Temporal regularity

In the general case solutions z : [0, T ] → E will not be continuous but just lie in
BV([0, T ], X). This includes the case of I being convex in z, when it is not strictly
convex. We obtain continuity if I(t, ·) is strictly convex and Lipschitz continuity if I(t, ·)
is uniformly convex. Even in the simplest case ż will have jumps due to the intrinsic
nondifferentiability of ∆ : X → R. Under suitable strong assumptions we will show
ż ∈ BV([0, T ], X).

Theorem 7.5 (a) If I : [0, T ] × E → R is continuous and if I(t, ·) : E → R is strictly
convex for all t ∈ [0, T ], then any solution z : [0, T ] → E is continuous.
(b) If additionally I(t, ·) is α–uniformly convex, then z : [0, T ] → E is Lipschitz continuous
with

‖z(t)−z(s)‖ ≤ C2

α
|t−s|

where C2 is defined in assumption (2.6)(b).

Proof. (a) Take t ∈ [0, T ], then the left and right limits z− and z+ exist and satisfy energy
identity (2.7). For θ ∈ (0, 1) let zθ = θz+ + (1−θ)z− and assume z+ 6= z−, then strict
convexity gives

I(t, zθ) + ∆(zθ−z−) < θI(t, z+) + (1−θ)I(t, z−) + θ∆(z+−z−) = I(t, z−).

This contradicts the stability of z− and we conclude the desired continuity z+ = z−.
(b) Using uniform convexity, for t > s, we obtain

α‖z(t)−z(s)‖2 ≤ I(s, z(t)) − I(s, z(s)) − 〈DI(s, z(s)), z(t)−z(s)〉
≤ −

∫
[s,t)

∂tI(τ, z(t)) dτ + I(t, z(t)) − I(s, z(s)) + ∆(z(t)−z(s))

=
∫
[s,t)

[∂tI(τ, z(τ))−∂tI(τ, z(t))] dτ −
∫
[s,t)

∆(dz) + ∆(z(t)−z(s))

≤
∫
[s,t)

|∂tI(τ, z(τ))−∂tI(τ, z(t))| dτ ≤
∫
[s,t)

C2‖z(τ)−z(t)‖ ds.

Here we have used (Sloc) at s for the second estimate, the energy balance (2.6) on [s, t],∫
[s,t)

∆(ż(τ)) dτ ≥ ∆(z(t)−z(s)) for the fourth estimate and finally assumption (2.6).

Let t be fixed and define γ(s̃) = max{‖z(s)−z(t)‖ : s ∈ [s̃, t]}, then we have shown
α‖z(t)−z(s)‖2 ≤ C2|t−s|γ(s) ≤ C2|t−s̃|γ(s̃) for all s̃ ≤ s ≤ t. Thus, we conclude
αγ(s̃) ≤ C2|t−s̃| which is the desired result.

After having established the well–posedness of the evolution problem (i.e. existence
and uniqueness) in certain cases it is desirable to check whether any of the assumptions
can be dropped. Unfortunately we do not have an example for nonexistence, except in
pathological cases. We can, however, give an example which illustrates that the assump-
tion of uniform convexity in Theorem 7.4 can not be dropped.

Example 7.6 Let X = R, E = [−1, 1], ∆(v) = |v| and I(z) = α
2
z2 − g · z. The existence

of solutions is clear by trivial compactness in finite dimensions. Since E ( X we can
not apply Theorem 7.4 directly but one can easily show that for E satisfies the structure
condition (C.1). Therefore, by Proposition C.1 we have uniqueness if α > 0. For every
α ∈ R the solutions are monotone in time as long as g is monotone, see Fig. 2 on the left
side. If α ≤ 0 we lose uniqueness and Lipschitz continuity. For α < 0 every solution z
takes only values within {−1, 1}, see Fig. 2 on the right side.
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Figure 2: Solutions in Example 7.6 are unique and Lipschitz if α > 0 (to the left) and
discontinuous and nonunique if α < 0 (to the right).

In [HaR95] a convergence result for the incremental problem is given under the as-
sumption that the time continuous solution lies in z ∈ W 2,1([0, T ], X), that is z̈ = d2

dt2
z ∈

L1([0, T ], X). In fact, their error estimate is

‖zk−z(tk)‖2 ≤ C max
j=1,...,k

{tj−tj−1}
k∑

j=1

‖ż(tj) − 1
tj−tj−1

(z(tj)−z(tj−1))‖, (7.5)

where the constant C does not depend on k and the discretization 0 = t0 < t1 < . . . < tk.
The last sum can be estimated by

∫
[0,tk]

‖dż‖, thus we only need ż ∈ BV([0, T ], X)

and not ż ∈ W 1,1([0, T ], X) as stated in [HaR95]. This difference is crucial since the
latter inclusion is false for typical cases whereas the former can be shown under natural
additional assumptions.

Example 7.7 We consider a very simple example with E = X = R, ∆(v) = |v|, I(t, z) =
1
2
z2 − (4t−t2)z and the initial condition z(0) = 0. A simple calculation gives the unique

solution

z(t) =





0 for t ≤ 2 −
√

3,

4t−t2−1 for t ∈ [2−
√

3, 2],

3 for t ∈ [2, 2+
√

2],

4t−t2+1 for t ≥ 2+
√

2.

The boundary of the set F ∗ = [−1, 1] is {−1, 1}, and ż jumps upon hitting it (t = 2−
√

3
or 2+

√
2) but not upon leaving it (t = 2).

Theorem 7.8 Assume E = X = X∗∗ and that the boundary of F ∗ ⊂ X∗ is of class
C2. Let the functional I(t, z) be uniformly convex and C3. Then, the unique solution z
satisfies ż ∈ BV([0, T ], X).

Proof. According to Theorems 7.5, 7.4 and 7.3 we know that the solution z : [0, T ] → X
exists, is unique and Lipschitz continuous. Thus, we have ż ∈ L∞([0, T ], X).

Since the boundary ∂F ∗ is smooth there is for each z∗ ∈ ∂F ∗ a unique outward unit
normal N(z∗) ∈ X. The mapping N : ∂F ∗ → X; z∗ → N(z∗) is Lipschitz continuous and
∂χF ∗(z∗) = {λN(z∗) : λ ∈ [0,∞)}.
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For the given solution z let σ∗(t) = DI(t, z(t)) ∈ F ∗. Since z is Lipschitz and I is
smooth we know that σ∗ : [0, T ] → X∗ is Lipschitz continuous. Moreover (Eloc) and (Sloc)
imply

ż(t) =

{
0 if − σ∗(t) ∈ int(F ∗),

λ(t)N(−σ∗(t)) for a.a. t ∈ T
(7.6)

where T = {t ∈ [0, T ] : −σ∗(t) ∈ ∂F ∗} is closed. Now take any t ∈ T with λ(t) > 0
in (7.6). Since σ̇∗(t) = A(t)ż(t)+∂tDI(t, z(t)) is perpendicular to N(−σ∗(t)), we find

λ(t) = −〈∂tDI(t,z(t)),N(−σ∗(t))〉
〈A(t)N(−σ∗(t)),N(−σ∗(t))〉

, where A(t) = D2I(t, z(t)) ∈ Lin(X, X∗). By the implicit

function theorem and the uniqueness (forward in time) it can be shown that there exists
ε > 0 such that z : [t, t + ε] → X satisfies the differential equation

ż = F (t, z) :=
〈−∂tDI(t, z), Ñ(t, z)〉

〈D2I(t, z)Ñ(t, z), Ñ(t, z)〉
Ñ(t, z) (7.7)

where Ñ(t, z) = N(−DI(t, z)). By our smoothness assumptions F (t, z) is continuous in t
and Lipschitz in z ∈ Z(t) = { z ∈ X : DI(t, z) ∈ ∂F ∗ } which is a smooth manifold.

Define the functions

h(t) =

{
λ(t) for t ∈ T ,

0 else;
and N̂(t) =

{
N(−σ∗(t)) for t ∈ T ,

linear interpolant else.

Then N̂ : [0, T ] → X is Lipschitz. The argument with (7.7) shows that h(t) is Lip-
schitz continuous from the right with a fixed Lipschitz constant independent of t and
ε. In particular, h can only be discontinuous at points t∗ where limt↗t∗ h(t) = 0 and
limt↘t∗ h(t) > 0. Between such points h is Lipschitz with a fixed constant. Hence, h can
be written as a sum of a Lipschitz function h̃ and a piecewise constant function with at
most countably many positive jumps jl > 0 at times t∗l .

By Theorem 7.5 ‖ż(t)‖ and hence h(t) is bounded by C2/α, which gives

∞∑

l=1

jl + h(0) − TLip(h̃) ≤ C2

α
.

This implies that h is of bounded variation:

Var(h; [0, T ]) ≤ TLip(h̃) +
∞∑

l=1

jl ≤ 2TLip(h̃) − h(0) +
C2

α
.

Now the formula ż(t) = h(t)N̂(t) gives the desired result, since

Var(h(·)N̂(·); [0, T ]) ≤ Var(h; [0, T ])‖N̂(·)‖∞ + ‖h(·)‖∞Var(N̂ ; [0, T ])

≤ Var(h; [0, T ]) +
C2

α
TLip(N̂).

26



A The reduced derivative

As above we consider z ∈ BV−([0, T ], X). Our aim is to define a substitute for the
derivative which works well for rate–independent processes. It will be called reduced
derivative and its properties are (i) it is a multiple of the derivative if it exists and (ii) at
jump points it is a multiple of the jump vector.

For z ∈ BV−([0, T ], X) we define τ̂ : [0, T ] → [0,∞) via

τ̂ (t) = t +

∫

[0,t]

‖dz‖ = t + Var(z, [0, t]).

Then, τ̂ = τ̂− (left–sided limit) and τ̂+ (right–sided limit) are strictly increasing and

coincide except at the (at most countable) jump points of z. With T̂ = τ̂(T ) we define
the continuous inverse

t̂ :

{
[0, T̂ ] → [0, T ],

τ 7→ max{t ∈ [0, T ] : τ̂ (t) ≤ τ}

and the stretched function ẑ ∈ C0([0, T̂ ], X) via

ẑ(τ) = (1−θ)z−(t) + θz+(t) for τ = (1−θ)τ̂−(t) + θτ̂+(t). (A.1)

Thus, we have z(t) = ẑ(τ̂ (t)) and ẑ is linearly interpolated at jump points, i.e. at points
where τ̂+(t) > τ̂−(t).

By construction we have, for 0 ≤ τ1 < τ2 ≤ T̂ ,

‖ẑ(τ2)−ẑ(τ1)‖ ≤ τ2−τ1 − (t2−t1) ≤ τ2 − τ1,

where t1 ≤ t2 satisfies τj = (1−θj)τ̂−(tj) + θj τ̂+(tj). Thus,

ẑ ∈ W1,∞([0, T̂ ], X), ‖ d

dτ
ẑ‖L∞([0, bT ],X) ≤ 1.

The derivative v̂z(τ) = d
dτ

ẑ(τ) is defined almost everywhere in the sense of Lebesgue

measure (λ−a.e.) and the reduced derivative is the pullback of v̂z via τ̂ : [0, T ] → [0, T̂ ],
more precisely

rd(z)(t)
def
= v̂z(

1

2
[τ̂−(t)+τ̂+(t)]) for t ∈ [0, T ]. (A.2)

Associated with this pullback of the derivative is the pullback µz of the Lebesgue measure
λ on [0, T̂ ]:

µz([t1, t2))
def
= λ([τ̂(t1), τ̂(t2)) = τ̂(t2) − τ̂(t1) = t2 − t1 +

∫

[t1,t2]

‖dz‖.

By the general construction of pullbacks the reduced derivative rd(z) is defined µz−a.e. in
[0, T ]. In particular, if t is a jump point, we have µz({t}) = ‖z+(t)−z−(t)‖ and rd(z)(t) =
Sign(z+(t)−z−(t)) ∈ ∂BX

1 (0). If z has a derivative ż, then rd(z)(t) = (1+‖ż(t)‖)−1ż(t)
and µz((t1, t2)) =

∫ t2
t1

[1+‖ż(s)‖]ds.
We will need the following results.
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Theorem A.1 Let z ∈ BV−([0, T ], X) with µz ∈ M([0, T ]) and rd(z) ∈ L∞([0, T ], µz) as
above.

(a) Let f : [0, T ]× X → R be continuous and f(t, ·) : X → R homogeneous of degree 1,
then ∫ T

0

f(·, dz) =

∫ T

0

f(t, rd(z)(t))µz(dt).

(b) For any A ∈ C0([0, T ], X∗) we have
∫ T

0

〈A(·), dz〉 =

∫ T

0

〈A(t), rd(z)(t)〉µz(dt).

(c) For any 0 ≤ s < t ≤ T and any g ∈ C1([0, T ] × X, R) we have

g(t, z(t)) − g(s, z(s)) =

∫ t

s

∂tg(r, z(r))dr +

∫

[s,t)

〈G(r), rd(z)(r)〉µz(dr)

where G(r) =
∫ 1

θ=0
Dg(r, (1−θ)z−(r) + θz+(r))dθ.

Proof. ad (a): Let tj,n = jT/n, τj,n = τ̂ (tj,n) and δj,n = τj,n−τj−1,n. Then
∫ T

0

f(·, dz) = lim
n→∞

n∑

j=1

f(tj,n, z(tj,n) − z(tj−1,n))

= lim
n→∞

n∑

j=1

f(t̂(τj,n),
1

δj,n
[ẑ(τj,n) − ẑ(τj−1,n)])δj,n

=

∫ bT

0

f(t̂(τ),
d

dτ
ẑ(τ))dτ.

The latter convergence holds, since we may introduce further points on jump intervals
where τ̂+(t) > τ̂−(t) without changing the sum (use t̂ = t on this interval and homogeneity
of f(t, ·)). By pullback (transformation formula) we obtain the desired result.

ad (b). For general Â ∈ C0([0, T̂ ], X∗) we obtain via pullback
∫ bT

0

〈Â(τ),
d

dτ
ẑ(τ)〉dτ =

∫ T

0

〈B(t), rd(z)(t)〉µz(dt)

with B(f) =
∫ 1

θ=0
Â((1 − θ)τ̂−(t) + θτ̂+(t))dθ.

As in the proof of (a) we obtain Â(τ) = A(t̂(τ)) which gives B(t) = A(t) and the
assertion follows.

ad (c). We replace z ∈ BV−([0, T ], X) by the stretched function ẑ ∈ W1,∞((0, T ), X)
and let σ = τ̂(s) and τ = τ̂ (t). We find

g(t, z(t)) − g(s, z(s)) = g(t̂(τ), ẑ(τ)) − g(t̂(σ), ẑ(σ))

=

∫ τ

σ

d

dρ
[g(t̂(ρ), ẑ(ρ)]dρ

=

∫ τ

σ

∂tg(t̂(ρ), ẑ(ρ))t̂′(ρ)dρ +

∫ τ

σ

〈Dg(t̂(ρ), ẑ(ρ)), ẑ′(ρ)〉dρ

=

∫ t

s

∂tg(r, z(r))dr +

∫

[s,t)

〈G(r), rd(z)(r)〉µz(dr),
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where we have used (b) for the last step.

A simple consequence of (a) is

∫

[s,t)

rd(z)(r)µz(dr) =

∫

[s,t)

dz = z(t) − z(s). (A.3)

B Duality and Cones

For a function f : X → (−∞,∞] we define the Legendre–Fenchel transform Lf via

Lf : X∗ → (−∞,∞]; v∗ 7→ sup{〈v∗, v〉 − f(v) : v ∈ X}.

For a function f ∗ : X∗ → (−∞,∞] we define the inverse Legendre–Fenchel transform
L∗f ∗ via

L∗f ∗ : X → (−∞,∞]; v 7→ sup{〈v∗, v〉 − f ∗(v∗) : v∗ ∈ X∗}.
The functions Lf and L∗f ∗ are always lower semicontinuous and convex. If f was lower
semicontinuous and convex from the beginning then L∗Lf = f . For these results and the
proof of the following theorem we refer to [EkT76].

For convex functions f the subdifferential ∂f is defined via

∂f(z) = { v∗ ∈ X∗ : ∀w ∈ W : f(w) ≥ f(z) + 〈v∗, w−z〉 }.

Theorem B.1 Let f : X → R∪{∞} be convex and lower semicontinuous. Set f ∗ = Lf .
Then the following statements are equivalent:
1. v∗ ∈ ∂f(v)
2. f(v+w) ≥ f(v) + 〈v∗, w〉 for all w ∈ X
3. v ∈ argmax{〈v∗, w〉 − f(w) : w ∈ X}
4. 〈v∗, v〉 = f(v) + f ∗(v∗)
5. v∗ ∈ argmax{〈w∗, v〉 − f ∗(w∗) : w∗ ∈ X∗}
6. f ∗(v∗+w∗) ≥ f ∗(v∗) + 〈w∗, v〉 for all w∗ ∈ X∗

7. v ∈ ∂f ∗(v∗).

Let C be a closed convex cone in X, i.e. v ∈ C implies αv ∈ C for all α ∈ [0,∞). The
dual cone C∗ is defined as

C∗ = {v∗ ∈ X∗ : 〈v∗, v〉 ≤ 0 for all v ∈ C}.

This duality can also be expressed by the characteristic functions of the cones, namely
LχC = χC∗. The sum C1 + C2 and the intersection C1 ∩ C2 of convex cones are again
convex cones. Moreover, (C1+C2)

∗ = C∗
1 ∩ C∗

2 and (C1 ∩ C2)
∗ = C∗

1+C∗
2 .

In particular, for convex sets E ⊂ X the (inward) tangent cone TzE (see (2.1)) is
closed and convex and its dual cone is the normal cone N∗

zE = ∂χE(z). The following
lemma is used in Section 3.

Lemma B.2 Let E ⊂ X be closed and convex and take z0, z1 ∈ E. For θ ∈ (0, 1) let
zθ = (1−θ)z0 + θz1; then Tzθ

E = Tz0E + Tz1E for all θ ∈ (0, 1).
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Proof. We set Cθ = Tzθ
E and show Cj ⊂ Cθ for j = 0 and 1. By convexity of Cθ this

implies C0 + C1 ⊂ Cθ. To show C0 ⊂ Cθ we consider rn > 0 and vn ∈ X such that
wn = z0+rnvn ∈ E and vn → v ∈ C0. Then zθ + (1−θ)rnvn = (1−θ)wn + θz1 ∈ E and
v ∈ Cθ follows.

The opposite inclusion follows by duality from showing C∗
0 ∩ C∗

1 ⊂ Cθ. Choose ν∗ ∈
C∗

0 ∩C∗
1 and consider the hyperplanes Hj ⊂ X which have the same (not opposite) normal

ν∗ and contain zj. As the set E touches in Hj in zj and lies on one side of it, we conclude
that H0 = H1. In particular, zθ ∈ H0 which implies ν∗ ∈ C∗

θ .

Proposition B.3 Let F ∗ ⊂ X∗ be closed convex set, C ⊂ X a closed convex cone and
f(v) = (L∗χF ∗)(v) + χC(v). Then, Lf = χF ∗+C∗.

Proof. Each v∗ ∈ F ∗ + C∗ has the form v∗ = w∗ + y∗ with w∗ ∈ F ∗ and y∗ ∈ C∗. Then,

(Lf)(v∗) = sup{〈w∗, v〉 − (L∗χF ∗(v) + 〈y∗, v〉 − χC(v) : v ∈ X}
≤ L(L∗χF ∗)(w∗) + L(χC)(y∗) = χF ∗(w∗) + χC∗(y∗) = 0 + 0 = 0.

Now assume v∗ /∈ F ∗ + C∗. By Mazur’s Lemma there exists α ∈ R and v ∈ X such that
〈v∗, v〉 > α ≥ 〈z∗, v〉 for all z∗ ∈ F ∗ + C∗. This implies

(Lf)(v∗) ≥ 〈v∗, v〉 − (L∗χF ∗)(v) − L∗χC∗(v)

= 〈v∗, v〉 − sup
w∗∈F ∗

〈w∗, v〉 − sup
y∗∈C∗

〈y∗, v〉

= 〈v∗, v〉 − sup
w∗∈F ∗,y∗∈C∗

〈w∗ + y∗, v〉 ≥ 〈v∗, v〉 − α > 0.

Testing with γv rather than v we conclude (L∗f)(v∗) ≥ γ[〈v∗, v〉 − α] for all γ > 0 and
obtain (L∗f)(v∗) = ∞. This concludes the proof.

C Structure condition

Many of the above results need the assumption E = X. This is due to the fact that
the stability condition (Sloc) changes discontinuously near or on the boundary ∂E via the
tangent cone TzE. If we want to compare two different solutions z1 and z2, then the
local formulation (LF) involves two different tangent cones Tzj(t)E such that we cannot
guarantee ż1(t) ∈ Tz2(t)E and vice versa. However, this feature was essential in the
uniqueness and convergence result, see (7.4) and (7.1).

We propose a new structure condition. For zj ∈ E we define σ∗
j = DzI(t, zj) which lies

in the set −(F ∗+N∗
zj

E) whenever zj is stable at time t. Our structure condition involves
E, F ∗ and I(t, z) simultaneously and reads as follows.

(SC) [Structure Condition] For all R > 0 there exists a constant Cstruc > 0 such
that for all t ∈ [0, T ], all z1, z2 ∈ S(t) ∩ {‖z‖X ≤ R} and all vj ∈ Vzj

the estimate

〈σ∗
1−σ∗

2 , v1−v2〉 ≤ Cstruc‖z1−z2‖2(‖v1‖+‖v2‖) (C.1)

holds, where Vz = N(−σ∗)(F
∗+N∗

zE) is the set of possible velocities.
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Note that we always have N(−σ∗
j )(F

∗+N∗
zj

E) ⊂ Tzj
E (cf. also the sweeping process

formulation (SP) in (3.8)). The intuition behind the structure condition is that, for
uniqueness, it is sufficient that the terms which involve the differentials of I and the
velocities have a sign.

Proposition C.1 Let I ∈ C3(E× [0, T ]) and let I be α–uniformly convex. If additionally
(SC) is satisfied, then every solution of (GF) depends continuously on the initial data and,
in particular, uniqueness holds.

Proof. The claim follows by repeating the proof of Theorem 7.4 where (SC) takes the role
of the estimate (7.4) which is just (SC) with Cstruc = 0.

We illustrate now one case, where (SC) holds and one case where (SC) is violated.

Example C.2 Let X = R2, E = [0,∞) × R, I(t, z) = 1
2
‖z‖2

2 + 〈
(

t
0

)
, z〉 and ∆(v) =

|v1|+|v2| or equivalently F ∗ = [−1, 1]2. Then, the structure condition (SC) holds with
Cstruc = 0.

We show this by direct calculation. The problem is especially simply as X and X∗

can be identified by D2I(t, z) = idR2 . The stable sets are convex and given by

S(t) = [0, max{0, 1−t}] × [−1, 1] = { z ∈ E : DI(t, z) ∈ F ∗ }.

The sets Vz = N−σ∗(F ∗+NzE) of possible velocities satisfies Vz = {0} in the interior of
S(t) as well as on the (open) line {0} × (−1, 1) ⊂ ∂E. For the other boundary points of
∂S(t) we find Vz = −NzS(t). In particular,

Vz =





{
(

0
−µ

)
: µ ≥ 0 } for z =

(
α
1

)
with α ∈ [0, 1−t);

{
(
−λ
−µ

)
: λ, µ ≥ 0 } for z =

(
1−t
1

)
;

{
(
−λ
0

)
: λ ≥ 0 } for z =

(
1−t
β

)
with |β| < 1;

{
(
−λ
µ

)
: λ, µ ≥ 0 } for z1 =

(
1−t
−1

)
;

{
(

0
µ

)
: µ ≥ 0 } for z =

(
α
−1

)
with α ∈ [0, 1−t).

Using σ∗ = DI(t, z) = z +
(

t
0

)
the structure condition with constant Cstruc = 0

reduces to 〈z2−z1, v2−v1〉 ≤ 0 for all vj ∈ Vzj
. However, by convexity of S(t) we have

z3−j−zj ∈ Tzj
S(t) whereas −vj ∈ Nzj

S(t), see Fig. 3. This implies 〈zj−z3−j , vj〉 ≤ 0 and
adding these two relations gives the desired result.

Example C.3 We take the same X, I and ∆ as in the previous example, but now
E = { z ∈ R2 : 〈z,

(
1
1

)
〉 ≤ 0 }. Now, the stable sets may be nonconvex:

S(t) =
([(

t
0

)
+F ∗

]
∩ E

)
∪ { z = θ

2

(
1
−1

)
: θ ∈ [−2−t, 2−t] }.

Now choose z1 =
(
−1
1−ε

)
and z2 =

(
−1−ε
1+ε

)
with a small positive ε. Then, we find Vz1{

(
µ
0

)
:

µ ≥ 0 } and Vz2 = {0}. With v1 =
(

µ
0

)
and v2 = 0 we obtain 〈σ∗

1−σ∗
2, v1−v2〉 = εµ =

5−1/2‖z1−z2‖(‖v1‖−‖v2‖), see Fig. 3. For ε → 0 we see that (SC) cannot hold for any
finite Cstruc.

31



DI−1(F ∗)

E = {〈z, e1〉 ≥ 0}

s
z1

?
v1

sz2
¾
v2
A
A
A
A
A
A
A
AAK

z1−z2

S(t)

DI−1(F ∗)

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@@

E = {〈z, e1+e2〉 ≥ 0}

S(t)

s

z1 (v1 = 0)

s

z2

?
v2

XXX
XXXy z1−z2

@
@
@
@
@
@
@
@
@
@
@@

@
@
@
@
@
@
@
@
@
@
@@

¾
¾

Figure 3: Illustration for the structure condition in Examples C.2 (to the left) and Exam-
ple C.3 (to the right). In both cases we have vj ∈ Vzj

and the structure condition reduces
to 〈z1−z2, v1−v2〉 ≤ 0. In the situation on the left–hand side it is satisfied but for the
right–hand side the structure condition can’t be satisfied.
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