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Many evolutionary problems, such as partial differential equations, display several
temporal or spatial scales and it is desirable to find a suitable limit model that
describes the macroscopic dynamics correctly. We want to address some general
concepts that might be useful for deriving such effective models.
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1. Geometric evolution via functionals

Consider a manifold Q and an energy-storage functional (potential energy) E :
[0, T ]×Q → R∞ := R ∪ {+∞}. For the dynamics we distinguish the dissipative
situation and the Hamiltonian one.

In the first case we have Rayleigh’s dissipation potential R : TQ → R∞, where
R(q, ·) : TqQ → R∞ is assumed to be convex. The evolution law is then given in
terms of the balance of the dissipative forces ∂q̇R(q, q̇) and the potential restoring
forces −DE(q), namely

(1) 0 ∈ ∂q̇R(q, q̇) + DE(t, q) ⊂ T∗qQ.
(I) The viscous case corresponds to R, which is given in terms of a Riemannian

metric g, i.e., R(q, v) = 1
2 〈g(q)v, v〉, and leads to so-called gradient flows

g(q)q̇ = −DE(t, q) ⇔ q̇ = −∇gE(t, q).

(II) Another interesting dissipative situation is the case of rate-independent
systems whereR(q, ·) is homogeneous of degree 1. Then, ∂vR(q, v) ⊂ TqQ denotes
the set-valued subdifferential of the convex function R(q, ·) and (1) is a differential
inclusion, which may be reformulated as an evolutionary variational inequality,
cf. [Mie05]. In fact, for the rate-independent case there is a weaker energetic
formulation in terms of a global stability condition (S) and the energy balance
(E). This formulation uses the dissipation distance D : Q×Q → R∞, that is
associated with R via

D(q0, q1) = inf{
∫ 1

0 R(q̃(t), ˙̃q(t))dt | q̃ ∈W1,1([0, 1];Q), q̃(0) = q0, q̃(1) = q1 }.
We call a curve q : [0, T ]→ Q an energetic solution associated with the functionals
E and D, if for all t ∈ [0, T ] we have

(2)
(S) E(t, q(t)) ≤ E(t, q̃) +D(q(t), q̃) for all q̃ ∈ Q,
(E) E(t, q(t)) + DissD(q, [0, t]) = E(0, q(0)) +

∫ t
0 ∂sE(s, q(s))ds.

(III) Also classical Hamiltonian systems are driven by two functionals. In ad-
dition to the potential energy E : Q → R∞ we also have the kinetic energy
K : TQ → R∞, which is again given by a Riemannian metric g in the form
K(q, q̇) = 1

2 〈g(q)q̇, q̇〉. The evolution equations in TQ (the Lagrangian setting)
then read

(3) d
dt

(
DK(q, q̇)

)
+ DE(q) = 0 ∈ T∗qQ.
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Often the canonical Hamiltonian form is preferred. It is based on the conjugate
momentum p = g(q)q̇ and the Hamiltonian H(q, p) = 1

2 〈p,g(q)−1p〉+ E(q):

(4) q̇ = DpH(q, p) = g(q)−1p ∈ TqQ, ṗ = −DqH(q, p) = −DE(q) ∈ T∗qQ.

2. Γ-convergence and the limit passage

We now consider sequences of pairs of functionals, namely (Ek,Rk) for general
dissipative systems, (Ek,Dk) for the energetic formulation of the rate-independent
case, and (Ek,Kk) for Hamiltonian systems. Additionally we consider an associated
sequence of solutions qk : [0, T ]→ Q.

To define a convergence we equip Q with a Hausdorff topology and write “
Q→”

for the corresponding convergence. The functional E : Q → R∞ = R ∪ {+∞} is
called Γ-limit of the sequence (Ek)k∈N, if the following two conditions hold:

(i) lower estimate: qk
Q→ q =⇒ E(q) ≤ lim infk→∞ Ek(qk),

(ii) upper estimate: ∀ q ∈ Q ∃ q̂k : q̂k
Q→ q and E(q) = limk→∞ Ek(q̂k).

Now assume that both functionals Γ-converge (independently) and that we have

solutions qk with a pointwise limit q : [0, T ] → Q, i.e., qk(t)
Q→ q(t). Then , it

is a natural question whether q is a solution of the problem defined by the limit
functionals. Of course, we cannot expect that the result holds true in sufficient
generality. The real task is to identify conditions in the sense of a “joint Γ-
convergence” for the two functionals that guarantee the desired result.

(0) In fact, Γ-convergence was introduced for static problems. It was developed
over the last decade to provide very elegant and strong tools for deriving such
macroscopic models, see [Dal95, Bra02]. In particular, it satisfies the desired
convergence property in the following sense: If qk is a minimizer of Ek and if

qk
Q→ q, then q is a minimizer of the Γ-limit E .
(I) For gradient flows, abstract positive results are contained in [SS04, Ort05].

They are based on specific assumptions on the gradients ∇Ek(qk). The follow-
ing simple example in R2 shows that the desired result may even fail in finite
dimensions. We let Q = R2 and

Ek(q) = 1
2q

2
1 + kα

2 (q2−q1/k)2 and Rk(q̇) = 1
2 q̇

2
1 + kβ

2 q̇
2
2 ,

where α, β are positive constants. The Γ-limits E and R are easily obtained,
namely E(q) = q2

1/2 for q2 = 0 and ∞ otherwise and R(q̇) = q̇2
1/2 for q̇2 = 0 and

∞ otherwise. The solution with q(0) = (1, 0)> of the limit problem is obviously
q(t) = (e−t, 0)>. The solution qk : [0,∞)→ R2 for the functionals Ek and Rk with
qk(0) = (1, 0)> can be written down explicitly in terms of the eigenvalues. The
limit k →∞ shows that the correct limit solution is obtained only if min{α, β} < 2.

(II) For rate-independent systems, Γ-convergence is studied via the energetic
formulation (2) in [MO06, MRS06]. Since rate-independent systems are very close
to static problems (cf. (S), which is a purely static condition), the conditions can
be formulated totally in terms of the functionals without using differentials. Again
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a simple example in R2 can be constructed to show that the limit passage is not
true in general.

The main condition, which provides the positive result, is the existence of joint
recovery sequences :

∀ qk ∈ Sk(t) with qk
Q→ q ∀ q̂ ∃ q̂k with q̂k

Q→ Q̂:
lim sup
k→∞

(
Ek(t, q̂k)+Dk(qk, q̂k)−Ek(t, qk)

)
≤ E(t, q̂)+D(q, q̂)−E(t, q),

where Sk(t) = { q ∈ Q | Ek(t, q) < ∞, ∀ q̃ ∈ Q : Ek(t, q) ≤ Ek(t, q̃) + Dk(q, q̃) }
denotes the sets of stable states. Based on this condition several applications
are given in [MRS06]. In [MT06] an application of two-scale homogenization for
linearized elastoplasticity is derived.

(III) For Hamiltonian systems an abstract theory has not been developed.The
oscillatory behavior of the solutions leads to an ongoing exchange between kinetic
and potential energy, which is enforced by the underlying symplectic structure.
So far, it is unclear how these structures can be used along with Γ-convergence.
First preliminary results are given in [Mie06, GHM06]. There the passage from a
discrete lattice system to a macroscopic elastodynamic wave equation is shown by
different tools. As a result we obtain that the separate Γ-convergence of Kk and
Ek in the Lagrangian setting (3) gives the correct limit equation. However, doing
the corresponding Γ-limit in the canonical Hamiltonian system (4) leads to a limit
equation, which, in general, does not characterize the limits of solutions.
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