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Abstracts

Deriving modulation equations via Lagrangian and Hamiltonian

reduction

Alexander Mielke

Modulation equations can be seen as effective macroscopic equations describing the
evolution of a microscopically period pattern. We discuss general strategies how to
pass from the microscopic systems to a macroscopic one by using the Hamiltonian
or the Lagrangian structure.

The derivation of macroscopic equations for discrete models (or continuous
models with microstructure) can be seen as a kind of reduction of the infinite
dimensional system to a simpler subclass. If we choose well-prepared initial con-
ditions, we hope that the solution will stay in this form and evolve according to
a slow evolution with macroscopic effects only. We may interpret this as a kind
of (approximate) invariant manifold, and the macroscopic equation describes the
evolution on this manifold. We refer to [Mie91] for exact reductions of Hamiltonian
systems and to [DHM06, GHM06, Mie06, GHM07] for the full details concerning
this note.

As the easiest example we consider the one-dimensional Klein-Gordon equation

utt = uxx − au − bu3, (t, x) ∈ [0,∞) × R.

The sum of the kinetic and potential energy gives the Hamiltonian

H(u, ut) =

∫
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As we are interested in modulated waves we embed this system R into the cylinder
Ξ = R×S

1, where S
1 contains the additional microscopic phase variable. The

continuous Hamiltonian system is

(1)
∂2

t u = ∆(1,0)u − au + bu3 with a > 0, u ∈ L2(Ξ),

and ∆(1,0)u(x, φ) := uxx(x, φ).

Introducing p = ∂τu, this is a canonical Hamiltonian system with

Hcont(u, p) =
∫
Ξ

1
2p2 + 1

2

(
∇(1,0)u

)2
+ a

2u2 + b
4u4 dxdφ.

Like the original KG equation the enlarged problem (1) is translationally invari-
ant in the x direction. Moreover, it is invariant under translations in the phase
direction φ. This leads to the two first integrals Isp(u, p) =

∫
Ξ

p ∂xu dx dφ and

Iph(u, p) =
∫
Ξ

p ∂φudxdφ. Using the symmetry transformation

(ũ, p̃) = T
sp
ct T

ph
(ω−cθ)t(u, p), H̃ = H− cIsp − (ω−cθ)Iph

the associated canonical Hamiltonian system Ωcan(ũt, p̃t) = DH̃(ũ, p̃) on L(Ξ)2 is
still fully equivalent to a family of uncoupled KG chains.
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Introducing a suitable scaling, which anticipates the desired microscopic and
macroscopic behavior, will expose the desired limit. For this we let

(ũ(x, φ), p̃(x, φ)) = (εU(εx, φ−θx), εP (εx, φ−θx)),

which keeps the canonical structure (after moving a factor ε arising from dy = εdx

into the time parametrization τ = ε2t). We obtain the new Hamiltonian

Hε(U, P ) =
∫
Ξ

1
2ε2

([
P−ωUφ−εcUy

]2
+

(
∇(ε,θ)U

)2

+aU2 −
[
ωPUφ+εcPUy

]2
)
+ b

4U4 dydφ,

where ∇(ε,θ) = εUy + θUφ. The modulation ansatz now reads

(U(y, φ), P (y, φ)) = Rε(A)(y, φ) = (Re A(y)eiφ, ω ReA(y)eiφ) + O(ε),

and leads to Hε(Rε(A)) = HnlS(A)+O(ε) and DRε(A)∗ΩcanDRε(A) = Ωred+O(ε)
with

HnlS(A) =
∫

R
ωω′′|Ay|

2 + 3b
8 |A|4 dy and Ωred = 2iω.

Thus, the macroscopic limit is the one-dimensional nonlinear Schrödinger equation

2iωAτ = −2ωω′′Ayy + 3
2b|A|2A.

Of course, a mathematically rigorous justification of the nonlinear Schrödinger
equation as a modulation equation was known long before (see [KSM92, Sch98,
GM04, GM06]). However, the emphasis here is to see how the Hamiltonian and
Lagrangian structures need to be transformed to converge to the desired limits.
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