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Abstracts

Deriving modulation equations via Lagrangian and Hamiltonian
reduction

ALEXANDER MIELKE

Modulation equations can be seen as effective macroscopic equations describing the
evolution of a microscopically period pattern. We discuss general strategies how to
pass from the microscopic systems to a macroscopic one by using the Hamiltonian
or the Lagrangian structure.

The derivation of macroscopic equations for discrete models (or continuous
models with microstructure) can be seen as a kind of reduction of the infinite
dimensional system to a simpler subclass. If we choose well-prepared initial con-
ditions, we hope that the solution will stay in this form and evolve according to
a slow evolution with macroscopic effects only. We may interpret this as a kind
of (approximate) invariant manifold, and the macroscopic equation describes the
evolution on this manifold. We refer to [Mie91] for exact reductions of Hamiltonian
systems and to [DHM06, GHMO06, Mie06, GHMO07] for the full details concerning
this note.

As the easiest example we consider the one-dimensional Klein-Gordon equation

Upt = Upy — au — bu®,  (t,2) € ]0,00) x R.
The sum of the kinetic and potential energy gives the Hamiltonian
1 1 a b
H(u,u) = /R <§uf+—ui+§u2+1u4>.

As we are interested in modulated waves we embed this system R into the cylinder
= = RxS!, where S' contains the additional microscopic phase variable. The
continuous Hamiltonian system is
1) 0?u = Aou —au + bud  with a >0, u € L%(2),

and A 0)u(, ¢) 1= Ugz(, 9).

Introducing p = 0,u, this is a canonical Hamiltonian system with

H " (u,p) = [24p* + §(Vaou)” + §u? + futdedo.
Like the original KG equation the enlarged problem (1) is translationally invari-
ant in the = direction. Moreover, it is invariant under translations in the phase
direction ¢. This leads to the two first integrals I°P(u,p) = pr(?xu dx d¢ and
PP (u,p) = J=pdyudrde. Using the symmetry transformation

(@,p) = TTE)

(u.)fce)t(u?p)u H="H—cI® — (w—ch) [P

the associated canonical Hamiltonian system Q" (@i, p;) = DH(4, p) on L(E)? is
still fully equivalent to a family of uncoupled KG chains.
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Introducing a suitable scaling, which anticipates the desired microscopic and
macroscopic behavior, will expose the desired limit. For this we let

(ﬂ(.ﬁt, (b)vﬁ(xa d))) = (EU(E‘Ta QZ/)—@CC), EP(E‘Ta ¢—9$)),

which keeps the canonical structure (after moving a factor ¢ arising from dy = edx
into the time parametrization 7 = £2¢). We obtain the new Hamiltonian

2 2
H.(U,P) = |- ﬁ([P—wUd,—chy} + (VienU)
+aU? — [wPUy+ecPU,)* )+ 50 dydg,
where V. gy = €U, + 0U;s. The modulation ansatz now reads

(U(y, ¢), Py, 9)) = Re(A)(y, ) = (Re A(y)e'?, wRe A(y)e!?) + O(e),
and leads to H. (R-(A)) = Hyus(A)+0(e) and DR, (A)* Q" DR, (A) = Q"4+0(¢)
with
Hys(A) = [ww”[4y[2 + 32[A*dy  and Q™! = 2iw.
Thus, the macroscopic limit is the one-dimensional nonlinear Schrodinger equation
2wA, = —2ww” Ay, + 3b|A2A.

Of course, a mathematically rigorous justification of the nonlinear Schrédinger
equation as a modulation equation was known long before (see [KSM92, Sch98,
GMO04, GMO06]). However, the emphasis here is to see how the Hamiltonian and
Lagrangian structures need to be transformed to converge to the desired limits.
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