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1 Introduction

Incremental minimization techniques play a crucial role in the modeling of many
inelastic effects. In particular, for rate-independent material models they are closely
link to the solutions of the so-called energetic formulation, see [24–26]. We present
recent advances in the field of space-time discretizations of such models. Using
techniques from �-convergence of functionals, which were established in [21], we
are able to establish numerical convergence results for quite general systems, in-
cluding models with evolution of microstructure in terms of Young measures. Here
we present the results of [15, 20] in a form that shows it easy applicability in many
applications to rate-independent inelastic or hysteretic material behavior.

As an easy application of the theory we show that we obtain a simple proof
of the result in [12], which states that the space-time discretization for linearized
elastoplasticity with hardening converge to the solution of the space-time continu-
ous problem. This paper seems to be the first one addressing the subtle issue of
the proving this convergence without assuming any additional temporal or spatial
smoothness of the solutions, as is commonly done, see e.g. [1, 11] and the refer-
ences therein.

Our work is in the same spirit in using a very weak solution concept and in
obtaining under general conditions. as In fact, we are dealing with the rather general
concept of energetic solutions, which allows solutions to have jumps with respect to
time and whose spatial regularity is only determined by the fact that they have finite
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energy. As is common in the nonconvex rate-independent setting, we cannot expect
uniqueness of solutions and as a consequence we will only be able to show that
suitable subsequences of the numerical approximations converge. Moreover, we are
not able to derive convergence rates in terms of the discretization parameters.

In the last section we will address some computational results in a damage model
introduced in [9] and further developed in [3,6,16,22]. A similar numerical approach
to a model for shape-memory alloys is discussed in [2, 20].

2 Energetic Rate-Independent Systems

Fully rate independent models for processes describing material models occur as
limits when the loading rate slows down to 0. This makes the model simpler by
omitting all effects due to interior relaxation processes. However, the resulting rate-
independent mathematical models are somehow degenerate. In particular, in many
cases solutions for a given initial datum are no longer unique and may have jumps
in time. Nevertheless, as a subclass of the generalized standard materials [7, 10],
such models are widely used in engineering, in particular in the isothermal case.
Mathematical analysis of such processes, based on the notion of energetic solu-
tions introduced in [18,23], and there is now a variety of applications in finite-strain
elastoplasticity, shape-memory alloys, ferroelectric and ferromagnetic materials, in
delamination, and damage, see [14] and the references therein. In fracture and crack
propagation the same concept is used but often called irreversible quasistatic evol-
ution, see [4, 5, 8].

Here we remain mostly in the abstract setting and refer to [15] for more elabor-
ations on numerical approximations and to [13] for a numerical convergence result
involving gradient Young measures.

We consider situations where the state of the body � ⊂ R
d can be described by

the displacement u : � → R
d and an internal variable z : � → Z ⊂ R

m. Here
z may be a collection of internal variables, either scalars (like in damage), vectors
(like magnetization or polarization) or tensors (like the plastic deformation). The
pair q = (u, z) is called the state of the system and it is assumed to lie in the Banach
space Q = U×Z, where U is the set of admissible displacements which is specified
via Dirichlet boundary conditions on �Dir ⊂ ∂�.

The properties of the body are described via an energy storage functional
E(t, q) ∈ R∞ := ]−∞,∞] and a dissipation potential R(z, ż) ∈ [0,∞]. In most
cases one can assume that these functional are given via integration over the body
as



Numerical Approximation Techniques for Rate-Independent Enelasticity 3

E(t, u, z) =
∫

�

W(x, e(u)(x), z(x)) + κ |∇z(x)|r dx − 〈�(t), u〉
where 〈�(t), u〉 = ∫

� fvol(t, x)·u(x)dx + ∫
∂�\�Dir

fsurf(t, x)·u(x)da,

R(z, v) =
∫

�

R(x, z(x), v(x))dx,

where the linearized strain is e(u) = 1
2 (∇u+∇uT).

The rate-independent evolution can be written as the system given via the elastic
equilibrium and the balance of the internal forces, also called Biot’s law, flow rule,
or switching condition:

elastic equilibrium 0 = DuE(t, u(t), z(t)),

flow rule 0 ∈ ∂żR(z(t), ż(t)) + DzE(t, u(t), z(t)),
(1)

where ∂R(z, v) denotes the set-valued subdifferential of the convex and 1-
homogeneous function v 	→ R(z, v).

However, in many situations it is not possible to show that (1) has solutions.
Hence, we will use the energetic solutions introduced in [14, 18, 23]. For this we
need the dissipation distance D(z0, z1) ∈ [0,∞] which denotes minimal energy
that is dissipated along a smooth path when changing the internal state from z0 into
z1:

D(z0, z1) := inf{ DissD (̃z, [0, 1]) | z̃(0) = z0, z̃(1) = z1 }, (2)

where DissD (̃z, [t0, t1]) = ∫ t1
t0

R(̃z(s), ˙̃z(s)) ds. Note that R has the physical di-
mension of a power whereas D has the dimension of energy. We will call the triple
(Q,E ,D) an energetic system.

Definition 1. The process q : [0, T ] → Q is called an energetic solution of the
energetic systems (Q,E ,D), if for all t ∈ [0, T ], we have stability (S) and energy
balance (E):

(S) E
(
t, q(t)

) ≤ E(t, q̃) + D(q(t), q̃) for all q̃ ∈ Q.

(E) E(t, q(t)) + DissD(q, [0, t]) = E(0, q(0)) +
∫ t

0
∂sE(s, q(s))ds.

We continue to write D(q, q̃) for D(z, z̃) and DissD (q, [0, t]) for DissD(z, [0, t]),
whenever it is clear that q = (u, z) and q̃ = (̃u, z̃).

It is interesting to note that the subdifferential form (1) and the energetic form (S)
& (E) are in fact extremal principle in the sense of [25,26], particularly the definition
(2) of the dissipation distance.

It is discussed in [14, 19] under which conditions on E and D the notion of
energetic solutions is equivalent to the solutions of (1). The point is that for general,
nonconvex functionals E(t, ·) one cannot expect to find solutions of (1) while there
exist energetic solutions under quite general situations. The typical assumptions for
an existence theory are the following. Assume that Q = U×Z is a reflexive Banach
space, e.g. U is a closed subspace of W1,p(�; R

d) and Z = W1,r (�; R
m). We
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introduce the sets S(t) of stable states at time t via

S(t) = { q ∈ Q | E(t, q) < ∞ and E(t, q) ≤ E(t, q̃) + D(q, q̃) for all q̃ ∈ Q }.
If E and D satisfy the following conditions (3)–(7), then for each initial condition
q0 ∈ S(0) an energetic solution exists, see [14] for a survey.

For these conditions we introduce the sets S(t) of stable states

for all z1, z2, z3 ∈ Z we have
positivity: D(z1, z2) = 0 ⇐⇒ z1 = z2,

triangle inequality: D(z1, z3) ≤ D(z1, z2) + D(z2, z3);
(3)

D : Z × Z → [0,∞] is weakly lower semi-continuous; (4)

E : [0, T ] × Q is weakly lower semi-continuous and coercive; (5)

there exist constants cE
0 , cE

1 such that
E(0, q) < ∞ implies E(·, q) ∈ C1([0, T ]) with
|∂tE(t, q)| ≤ cE

1

(
E(t, q)+cE

0

);
(6)

for each sequence (tn, qn)n∈N with (tn, qn) ⇀ (t∗, q∗),
qn ∈ S(tn), and sup

n∈N

E(tn, qn) < ∞ we have

(a) q∗ ∈ S(t∗) and (b) ∂tE(t∗, qn) → ∂tE(t∗, q∗).
(7)

Here conditions (3) and (4) are standard assumptions on the dissipation distance; the
triangle inequality follows easily from definition (2). Conditions (5) and (6) relate
only to the energy functional. The first one is the standard condition in the calculus
of variations, while the second one is called an energetic control of the power of the
external forces. This condition is crucial to obtain uniform a priori bounds.

Condition (7) may be called a compatibility condition as it relates, via the stable
sets S(tj ), the properties of E and D in an intrinsic manner. While part (b) is often
easy to establish (time t = t∗ is fixed in the power ∂tE(t, q)), part (a) is the most
delicate point. One way to establish this condition is the joint recovery condition,
namely

for all q∗, q̃ ∈ Q, (tn, qn)n∈N with (tn, qn) ⇀ (t∗, q∗), qn ∈ S(tn),

and sup
n∈N

E(tn, qn) < ∞ there exists (̃qn)n∈N with q̃n ⇀ q̃ such that

lim sup
n→∞

E(tn, q̃n)+D(qn, q̃n)−E(tn, qn) ≤ E(t∗, q̃)+D(q∗, q̃)−E(t∗, q∗).
(8)

Proposition 1. Conditions (5) and (8) imply (7a).

Proof. By (5) we have E(t∗, q∗) ≤ lim infn→∞ E(tn, qn) ≤ supn∈N E(tn, qn) < ∞,
where the last inequality is assumed in (7). Next, for q̃ ∈ Q arbitrary, choose q̃n ∈ Q
as in (8). By definition qn ∈ S(tn) says that E(tn, q̃n) + D(qn, q̃n) − E(tn, qn) ≥ 0.
Taking the limsup and using (8) gives
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0 ≤ lim sup
n→∞

E(tn, q̃n)+D(qn, q̃n)−E(tn, qn) ≤ E(t∗, q̃)+D(q∗, q̃)−E(t∗, q∗),

which is the desired stability of q∗, since q̃ was arbitrary. �

3 Space-Time Discretization

We consider two positive parameters τ and h, were τ > 0 represents the fineness of
a time discretization by a partition (not necessarily equidistant) of the time interval
[0, T ]. We assume that partitions �τ = {0 = tτ0 < tτ1 < · < tτNτ −1 < tτNτ

= T } are
given such that

fineness(�τ ) := max{ tτj − tτj−1 | j = 1, . . . , Nτ } ≤ τ. (9)

The parameter h > 0 denotes a discretization of the state space Q by subsets Qh

again having the structure Qh := Uh × Zh. We assume that each Qh is closed and
the family (Qh)h>0 is dense, namely

for each (t, q) ∈ [0, T ] × Q there exist (qh)h>0 such that

qh ∈ Qh, qh → q, and E(t, qh) → E(t, q).
(10)

Hence each space-time discretization is denoted by a pair (τ, h) and we now
define the approximation via an incremental minimization problem for the partition
�τ in the discrete space Qh as follows. For a given initial value qh

0 ∈ Qh we define

(q
τ,h
j )j=0,1,...,Nτ via

q
τ,h
j ∈ Argmin

q̃∈Qh

E(tτj , q̃) − E(tτj−1, q
τ,h
j−1) + D(q

τ,h
j−1, q̃). (11)

Existence of these minimizers follows easily if we assume (4) and (5).
Using these time-discrete approximations in Qh we define piecewise constant

interpolants qτ,h : [0, T ] → Qh via

qτ,h(t) = q
τ,h
k for t ∈ [

tk, tk+1
[

and k = 0, . . . , Nτ −1 and qτ,h(T ) = q
τ,h
Nτ .

The first result we give may be considered as a weak analog of stability of a numer-
ical scheme. In fact, it provides uniform a priori estimates.

Theorem 1. Let (3)–(6) hold, then the approximations qτ,h : [0, T ] → Qh exist
and satisfy the following conditions:
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discrete stability

qτ,h(t) ∈ Sh(t) for all t ∈ �τ = { tτj | j = 0, 1, ..., Nτ }; (12)

upper energy estimate (for 0 ≤ j < k ≤ Nτ )

E(tτk , qτ,h(t
τ
k )) + DissD (qτ,h, [tτj , tτk ])

≤ E(tτj , qτ,h(t
τ
j )) +

∫ t τk

t τj

∂sE(s, qτ,h(s))ds; (13)

a priori estimates for all t ∈ [0, T ]
E(t, qτ,h(t)) ≤ exp(cE

1 t)
(
E(0, qh

0 )+cE
0

) − cE
0 and (14)

DissD(qτ,h, [0, t]) ≤ exp(cE
1 t)

(
E(0, qh

0 )+cE
0

)
. (15)

Here the stable sets Sh(t) are defined in the obvious way

Sh(t) := { qh ∈ Qh | E(t, qh) < ∞, E(t, qh) ≤ E(t, q̃h)+D(qhq̃h) for q̃h ∈ Qh }.
Note that these stable sets may be substantially larger than S(t) ∩ Qh.

To formulate the main convergence result, we need to adjust the compatibility
condition (7) to sequences of spatial approximations:

for each sequence (hn, tn, qn)n∈N with (hn, tn, qn) ⇀ (0, t∗, q∗),
qn ∈ Shn(tn), and sup

n∈N

E(tn, qn) < ∞ we have

(a) q∗ ∈ S(t∗) and (b) ∂tE(t∗, qn) → ∂tE(t∗, q∗).
(16)

As given in Proposition 1 the crucial part (a) can be derived via the correspondingly
adjusted joint recovery condition, namely

for all q∗, q̃ ∈ Q, (hn, tn, qn)n∈N

with (hn, tn, qn) ⇀ (0, t∗, q∗), qn ∈ Shn(tn), and sup
n∈N

E(tn, qn) < ∞,

there exists (̃qn)n∈N with Qhn � q̃n ⇀ q̃ such that

lim sup
n→∞

E(tn, q̃n)+D(qn, q̃n)−E(tn, qn) ≤ E(t∗, q̃)+D(q∗, q̃)−E(t∗, q∗).

(17)

Our main result provides the convergence of space-time discretizations. Because
of the implicit nature of the incremental minimization problem (11) there is no “sta-
bility restriction” on the size of τ in relation to h. Of course, we cannot expect
convergence of the full sequence of approximations, since in general the energetic
systems (Q,E ,D) may have several solutions for a given initial value q0 ∈ S(0),
and subsequences may converge to different solutions. Nevertheless, any accumula-
tion point of the approximations is an energetic solution for (Q,E ,D). Thus, there
are no spurious solutions and we may call this property consistency of the numerical
scheme.

Theorem 2. Assume that E and D satisfy (3)–(6). Let (�τ )τ and (Qh)h be given
such that (9), (10), and (16) hold. Let q0 ∈ S(0) be given and choose qh

0 ∈ Qh with
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qh
0 ⇀ q0 and E(0, qh

0 ) → E(0, q0), and construct approximate solutions qτ,h :
[0, T ] → Qh. Then, there exists a subsequence (τn, hn)n∈N with (τn, hn) → (0, 0)

for n → ∞ and an energetic solution q : [0, T ] → Q of (Q,E ,D) with q(0) =
q0 such that, with the shorthand qn = (un, zn) := qτn,hn

, for all t ∈ [0, T ] the
following holds:

E(t, qn(t)) → E(t, q(t)) for n → ∞; (18a)

DissD(qn; [0, t]) → DissD (q, [0, t]) for n → ∞; (18b)

zn(t) ⇀ z(t) in Z for n → ∞, (18c)

there exists a subsequence (nt
l )l∈N such that

unt
l
(t) ⇀ u(t) in U for l → ∞; (18d)

∂tE(·, qn(·)) → ∂tE(·, q(·)) in L1(0, T ) for n → ∞. (18e)

If additionally, E(t, ·, z) : U → R∞ is strictly convex, then (18d) can be
strengthened into un(t) → u(t) in U (without further subsequences).

If there is only one energetic solution q for (Q,E ,D) with q(0) = q0, then the
whole sequence converges, i.e., qτ,h(t) ⇀ q(t) in Q for (τ, h) → (0, 0).

For a proof of this and even much more general results we refer to [15, 20].
In fact, the proof is an adaptation of the proof of theorem 3.4 in [21] which is
based on general ideas of �-convergence for sequences of rate-independent systems
(Q,En,Dn)n∈N.

Since the energetic solutions are not unique in general, one may ask the opposite
question. Is it possible to obtain each energetic solution of (Q,E ,D) as limit of
a subsequence? It is shown in [17] that this cannot be expected. However, if one
uses approximate minimizers in (11), then this is true. Here approximate minimizers
means that q

τ,h
j must be such that the functional under “Argmin” is minimized up to

an error δ. In [21] it is shown that the above convergence of subsequences still holds
if δ = o(τ) for τ → 0.

4 Linearized Plasticity with Hardening

To start with, we want to demonstrate the applicability of our theory in a simple
situation, namely in rate-independent linearized elastoplasticity with hardening. In
fact, we are thus able to recover that result in [12], where convergence (without
rates) of space-time discretization was shown for the first time under conditions of
minimal regularity, viz. thus that are known from the classical existence theory.

Here Q = U × Z with Hilbert spaces U = H1
�Dir

(�; R
d) and Z = L2(�; Z),

where Z is R
d×d
0,sym = { A ∈ R

d×d | A = AT, trA = 0 } for kinematic hardening

and Z = R
d×d
0,sym ×R for isotropic hardening. The energy functional is quadratic and

takes the form
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E(t, u, z) = 1

2
〈〈A(

u
z

)
,
(
u
z

)〉〉 − 〈�(t), u〉
with a bounded, symmetric and positive definite operator A : Q → Q∗. The dis-
sipation distance reads D(q0, q1) = 
(z1−z0) with 
∗ = χK , where the closed
convex cone K ⊂ Z∗ is called the elastic domain.

It is easy to see that E and D satisfy the assumptions (3)–(6). Moreover, part (b)
in the compatibility condition (16) is also valid, as the power ∂tE(t, q) = −〈�̇(t), u〉
is linear and, hence, weakly continuous.

It remains to establish part (a) of (16) by using the joint recovery condition (17).
For this assume that there exist interpolation operators Bh : Q → Qh such that

Bhq → q strongly in Q and 
(Bhq) → 
(q). (19)

While the first case is the usual interpolation condition, the second condition states
that this has to be consistent with the dissipation potential 
 . Since in general 
 is
not strongly continuous, this is nontrivial. However, as 
(v) = ∫

�
ψ(x, v(x)) dx

and ψ(x, ·) is convex, it is sufficient to choose Bh such that zh in (uh, zh) = Bhq

is piecewise constant taking the average value over the polyhedra in the spatial dis-
cretization. We choose q̃n ∈ Qhn in (17) via

q̃n = qn + Bhn (̃q−q∗) giving

{
q̃n ⇀ q̃,

q̃n−qn → q̃−q∗.
(20)

Clearly, we have D(qn, q̃n) = 
(Bhn (̃q−q∗)) → 
(̃q−q∗) = D(q∗, q̃).
Moreover, in the energy can use the quadratic nature to profit from cancellation
effects:

E(tn, q̃n) − E(tn, qn) = 〈〈 1
2A(̃qn+qn)−

(
�(tn)

0

)
, q̃n−qn〉〉

→ 〈〈 1
2A(̃q+q∗)−

(
�(t∗)

0

)
, q̃−q∗〉〉 = E(t∗, q̃) − E(t∗, q∗).

Here (20) guarantees that the first term in 〈〈·, ·〉〉 converges weakly and the second
strongly. It follows that (17) and whence (16) hold, and Theorem 2 provides
convergence of the whole discretization sequence, since that continuous problem
(Q,E ,D) has a unique solution for each q(0) ∈ S(0).

5 A Damage Model

Finally we consider a damage model introduced in [6, 9] and analyzed in [16, 22]
using the energetic approach. While the displacement u ∈ U = H1

�Dir
(�; R

d) is as
above, the internal variable is now a scalar damage variable with z(t, x) ∈ Z :=
[0, 1], where z = 1 denotes an undamaged material whereas z = 0 means that all
breakable pieces are broken. However, depending on the model, z = 0 may still
have some remaining elasticity. As space of internal states we let

Z := { z ∈ W1,r (�) | z(x) ∈ [0, 1] } � C0(�),
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where we assume r > d to have the indicated embedding. The dissipation distance
is chosen in such a way that increase of damage (decrease of z) cost proportional to
the increase and the damaged volume. To forbid healing we set the dissipation ∞
for increasing z:

D(z0, z1) =
∫

�

ψ(x, z1(x)−z0(x))dx with ψ(x, v) =
{

δ(x)|v| for v ≤ 0,

∞ for v > 0.

For simplicity we assume that the linearized elasticity can be assumed giving a
quadratic energy functional E :

E(t, u, z) =
∫

�

1

2
(e(u)+eD(t)):C(z):(e(u)+eD(t)) + κ |∇z|r dx,

where eD(t) = e(uD(t)) and uD ∈ C1([0, T ], H1(�; R
d) is given. The elasticity

tensor is monotone in z, i.e., C′(z) ≥ 0 in the sense of symmetric operators.
Moreover, the coercivity

e:C(z):e ≥ (α0 + α1z
γ )|e|2 for all z ∈ [0, 1] and e ∈ R

d×d
sym

will be basic, where α1, γ > 0 and α0 ≥ 0. The case α0 > 0 corresponds to
incomplete damage like in [8, 16], and α0 allows for complete damage as studied
in [3, 22]. To treat the latter case it is necessary to eliminate the displacement u,
since it may not be well-defined because of missing coercivity. This is done via
introducing the quadratic functional

V(z, eD) = lim inf
zn⇀z

min
u∈U

∫
�

1

2
(e(u)+eD):C(zn):(e(u)+eD)dx,

which even allows to control the equilibrium stresses via DeD
V.

Again it is easy to check the assumption (3)–(6); as usual the main difficulty lies
in part (a) of (16). Assume again that Bh : Q → Qh is an interpolant to piecewise
affine functions on a triangulation Th of � such that Bhq = (BU

h u,BZ
h z) → q in

Q strongly. To employ the joint recovery condition (17) we choose for given q̃ ∈ Q
and qn ∈ Qhn the joint recovery sequence

q̂n = (BU
hn

ũ, max{0, BZ
hn

z̃−ρn}) ∈ Qhn with ρn = ‖ max{0, BZ
hn

z̃−zn}‖L∞(�).

Since we only need to check condition (16a) for D(z, z̃) < ∞ we may assume
z̃ ≤ z∗. Now using the embedding Z � C0(�) we find zn → z∗ in L∞ and similarly
BZ

hn
→ z̃ ≤ z∗. Thus, we have ρn → 0 and conclude q̃n → q̃ in Q strongly. This

in turn implies E(tn, qn) → E(t∗, q∗) and D(zn, z̃n) → D(z∗, z̃). Using the lower
semicontinuity of E , condition (16a) is established.
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