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Abstract. We discuss rate-independent engineering models for multi-dimensional behavior of
ferroelectric materials. These models capture the non-linear and hysteretic behavior of such
materials. We show that these models can be formulated in an energetic framework which is
based on the elastic and the electric displacements as reversible variables and interior, irre-
versible variables like the remanent polarization. We provide quite general conditions on the
constitutive laws which guarantee the existence of a solution. Under more restrictive assump-
tions we are also able to establish uniqueness results.

1 INTRODUCTION

Ceramic materials and single crystals showing ferroelectric behavior are being used in many
applications in electronics and optics. A crystal is ferroelectric if it has a spontaneous polariza-
tion which can be reversed in sense or reoriented by the application of an electric field, larger
than the coercive field. Reversal is also known as switching. A large number of applications of
ferroelectric ceramics also exploit properties that are an indirect consequence of ferroelectric-
ity, such as dielectric, piezoelectric, pyroelectric, and electro-optic properties. Piezoelectricity
is the ability of certain crystalline materials to develop an electrical charge proportional to a
mechanical stress. It was discovered by the Curie brothers in 1880 (see Wikipedia). Piezoelec-
tric materials also show a converse effect, where a geometric strain (deformation) is produced
on the application of a voltage. Converse piezoelectricity was mathematically deduced from
fundamental thermodynamic principles by Lippmann in 1881 ( see Wikipedia). The permanent
electric dipole moment possessed by all pyroelectric (polar) materials may, in certain cases, be
reoriented by the application of an electric field. The above comments are meant to point out
that ferroelectric crystals are necessarily both pyroelectric and piezoelectric.
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Ferroelectricity is a phenomenon which was discovered in 1921 (see [16]). The name refers
to certain magnetic analogies, though it is somewhat misleading, as it has no connection with
iron (ferrum) at all. Ferroelectricity has also been called Seignette electricity, as Seignette or
Rochelle Salt (RS) was the first material found to show ferroelectric properties, such as a spon-
taneous polarization on cooling below the Curie point, ferroelectric domains, and a ferroelectric
hysteresis loop. A huge leap in the research on ferroelectric materials came in the 1950’s, lead-
ing to the widespread use of barium titanate (BaTiO3) based ceramics in capacitor applications
and piezoelectric transducer devices. Since then, many other ferroelectric ceramics including
lead titanate (PbTiO3), lead zirconate titanate (PZT), lead lanthanum zirconate titanate (PLZT),
and relaxor ferroelectrics like lead magnesium niobate (PMN), have been developed and uti-
lized for a variety of applications. With the development of ceramic processing and thin film
technology, many new applications have emerged. The biggest uses of ferroelectric ceramics
have been in areas such as dielectric ceramics for capacitor applications, ferroelectric thin films
for non volatile memories, piezoelectric materials for medical ultrasound imaging and actuators,
and electro-optic materials for data storage and displays.

The model proposed in Section 2 captures the hysteretic behavior of ferroelectrics, by keep-
ing in the mean time the general perspective for treating multi-axial behavior and complex
geometries. It is based on the rate-independent, three-dimensional models used in the engi-
neering literature, see [1, 2, 3, 4, 5, 6, 7, 8, 9]. These models work in the framework of small
deformations and the quasistatic approximation for the elastic and electrostatic equilibria. How-
ever, certain internal variables Q, like the remanent polarization, are history dependent by an
activation threshold and, thus, lead to a rate-independent evolution process.

We show that, using as primary reversible variables the elastic displacement u : Ω → Rd and
the electric displacement D : Rd → Rd, the process can be written in an energetic formulation
which is based on the stored-energy functional

E(t, u,D,Q) =

∫
Ω

W (x, ε(u), D,Q) + α(x,∇Q)dx+

∫
Rd\Ω

1

2ε0
|D|2 dx− 〈`(t), (u,D)〉

and a dissipation potential of the form

R(Q̇(t)) =

∫
Ω

R(x, Q̇(t, x))dx.

Thus, we will be able to take advantage of the recently developed energetic approach to rate-
independent models, see [10, 11, 12] and the survey [13]. This energetic formulation was
originally developed for shape-memory alloys in [14, 15], but is now shown to apply for many
different rate-independent material models such as finite-strain elastoplasticity, damage, brittle
fracture, delamination and vortex pinning in superconductors.

The theory is based on a purely static stability condition (S) and the energy balance (E) which
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have to hold for all t ∈ [0, T ]:

(S) E(t, u(t), D(t), Q(t)) ≤ E(t, û, D̂, Q̂) +R(Q̂−Q(t)) for all û, D̂, Q̂;

(E) E(t, u(t), D(t), Q(t)) +
∫ t

0
R(Q̇(s)))ds

= E(0, u(0), D(0), Q(0))−
∫ t

0
〈 ˙̀(s), (u(s), D(s))〉ds.

The major advantage of the formulation is that it does involve neither derivatives of the con-
stitutive functions W,α and R nor derivatives of the solution (u,D,Q), since the dissipation
integral

∫ t

0
R(Q̇(s)))ds can be reformulated as a total variation.

We employ the abstract existence result for (S) & (E) from [10, 12, 13], which is reported in
Section 3, and apply it to our ferroelectric model at hand in Section 4. We provide conditions
on the constitutive functions W,α and R which allow us to prove existence of solutions for
(S) & (E) in suitable function spaces. In the last Section 5 we discuss the question of uniqueness,
which leads to severe restrictions on the constitutive functions W and α.

2 MODELING FOR FERROELECTRIC MATERIALS

Here we give a general description of a class of time-dependent models for ferroelectric materi-
als. Our class of models is stimulated by the engineering models from [3, 4, 5, 7, 8]. However,
we will rephrase the theory there in such a way that it can be formulated in terms of two en-
ergetic functionals, namely the stored energy E and the pseudo-potential R for the dissipation.
Thus, we will be able to take advantage of the recently developed energetic approach to rate-
independent models, see [10, 11, 12] and the survey [13].
The basic quantities in the theory are the elastic displacement field u : Ω → Rd and the electric
displacement field D : Rd → Rd. Here, the electric displacement is also defined outside the
body, as interior polarization of a ferroelectric material generates an electric field E and dis-
placement D in all of Rd via the static Maxwell equation in Rd. Commonly, the polarization P
is used for modeling, it is defined via

D = ε0E + P, (1)

where ε0 is the dielectric constant (or permetivity) in the medium surrounding the body Ω. Our
formulation stays with D, since it leads to a simple and consistent thermomechanical model.

In addition we use internal variables Q : Ω → RdQ which, for instance, may be taken as a
remanent strain εrem or a remanent polarization Prem.

The stored-energy functional has the following form:

E(t, u,D,Q) =

∫
Ω

(
W (x, ε(u), D,Q)+α(∇Q)

)
dx+

∫
Rd\Ω

1

2ε0
|D|2 dx−〈`(t), (u,D)〉, (2)

where W is the Helmholtz free energy and ε(u) is the infinitesimal strain tensor given by

ε(u) =
1

2
(∇u+∇uT) ∈ Rd×d

sym := { ε ∈ Rd×d : ε = εT }. (3)

The nonlocal term α(x,∇Q) in E usually takes the form k
2
|∇Q|2 with k > 0. This term
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penalizes rapid changes of the internal variable by introducing a length scale which determines
the minimal width of the interfaces between domains of different polarization.
The external loading `(t) depends on the process time t and is usually given by

〈`(t), (u,D)〉 =

∫
Rd

Eext(t, x)·D(x)dx+

∫
Ω

fvol(t, x)·u(x)dx+

∫
ΓNeu

fsurf(t, x)·u(x)da(x),

(4)
where Eext, fvol and fsurf are applied, external fields.

For the dissipation potential R we take the very simple form

R(Q̇) =

∫
Ω

R(x, Q̇(x))dx, (5)

where R(x, ·) : RdQ → [0,∞) is a convex function which is positively homogeneous of degree
1. Note that the dissipation potential acts on the rate Q̇ = ∂

∂t
Q of the internal variable only. The

classical way to describe dissipation in ferroelectrics is a switching function in the from

Φ(x,XQ) ≤ 0 with XQ =
∂

∂Q
W − div(Dα(∇Q)). (6)

This is equivalent to our dissipation potential R by the relation

R(x, Q̇) = max{ Q̇·XQ : Φ(x,XQ) ≤ 0 }. (7)

To formulate the rate-independent evolution law we use the thermomechanically conjugated
forces

σ =
∂

∂ε
W ∈ Rd×d, E =

{
∂

∂D
W on Ω,

1
ε0
D on Rd \ Ω

, XQ ∈ RdQ , (8)

where σ is the stress tensor and E the electric field. The elastic equilibrium equation and the
Maxwell equations read

− div σ + fvol(t, ·) = 0 in Ω,
divD = 0 and curl(E − Eext(t, ·)) = 0 in Rd,

(9)

where curlE is defined as ∇E−(∇E)T for general dimensions.
The evolution of Q follows the following force balance law:

0 ∈ ∂R(x, Q̇) +XQ. (10)

where ∂R(x, ·) is the subdifferential of the convex function R(x, ·).
We now want to rewrite these equations, at least formally, as equations in function spaces.

For this purpose we introduce a suitable state space Y = F × Q as follows. The space F
contains the functions u and D and takes the form

F = H× L2
div(Rd), where L2

div(Rd) := {ψ ∈ L2(Rd; Rd) : divψ = 0 }

and H is a closed affine subspace of H1(Ω; Rd). The space Q contains the internal state func-
tions Q and is taken to be W1,qQ(Ω; RdQ) for a suitable qQ > 1.
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Using the well-known fact (cf. [17], Thm.1.4) that the total space L2(Rd; Rd) decomposes in
an orthogonal way into the two closed subspaces L2

div(Rd) and

L2
curl(Rd) = {ψ ∈ L2(Rd; Rd) : curlψ = 0 }

we obtain the following result.

Proposition 2.1 Denote by DDE(t, u,D,Q)[D̂] the Gâteaux derivative of E in the direction D̂.
Then, we have(

∀ D̂ ∈ L2
div(Rd) : DDE(t, u,D,Q)[D̂] = 0

)
⇐⇒ curl(E − Eext(t, ·)) = 0 in Rd

Thus, we implement the Maxwell equations simply by choosing a suitable function space
and the condition DDE(t, u,D,Q) = 0.

Similarly, the elastic equilibrium is obtained by DuE(t, u,D,Q) = 0. The dissipative force
balance can also be rewritten in functional and thus the full problem may be written as

DuE(t, u(t), D(t), Q(t)) = 0, DDE(t, u(t), D(t), Q(t)) = 0,

0 ∈ ∂R(Q̇(t)) + DQE(t, u(t), D(t), Q(t)).
(11)

In fact, our theory is not based on the force balance (11). Instead, following [13, 14, 15], we
use a weaker formulation which is based on energies only. This energetic formulation avoids
derivatives of E and of the solution (u,D,Q). Under suitable smoothness and convexity as-
sumptions (see Section 5) the energetic formulation is equivalent to (11). We call (u,D,Q) an
energetic solution of the problem associated with E and R, if for all t ∈ [0, T ] the stability
condition (S) and the energy balance (E) hold:

(S) E(t, u(t), D(t), Q(t)) ≤ E(t, û, D̂, Q̂) +R(Q̂−Q(t)) for all û, D̂, Q̂;

(E) E(t, u(t), D(t), Q(t)) +
∫ t

0
R(Q̇(s)))ds

= E(0, u(0), D(0), Q(0))−
∫ t

0
〈 ˙̀(s), (u(s), D(s))〉ds.

(12)

Using the following abstract result, we will show that the energetic formulation (S) & (E) has
solutions for suitable initial data, if the constitutive functions W , α and R satisfy reasonable
continuity and convexity assumptions. Then, we will discuss stronger conditions which imply
uniqueness.

3 EXISTENCE OF SOLUTIONS IN THE GENERAL CASE

We next recall the concept of energetic solution. Consider the set Y = F ×Z as the basic state
space. Whenever possible, we will write y instead of (ϕ, z) to shorten notation. Note that the
splitting is done such that changes in z involve dissipation, whereas those of ϕ do not. In the
section above (u,D) takes the rôle of ϕ and Q is the internal variable z.

The state space Y is equipped with a Hausdorff topology T = TF × TZ and we denote by
yk

Y→ y, ϕk
F→ ϕ and zk

Z→ z the corresponding convergence of sequences.
The first ingredient of the energetic formulation is the dissipation distance D : Z × Z →

[0,∞], which is a semi-distance (see (A1) below). For a given curve z : [0, T ] → Z we define
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the total dissipation on [s, t] via

DissD(z; [s, t]) = sup{
∑N

1 D(z(τj−1), z(τj)) : N∈N, s=τ0<τ1< · · ·<τN=t }. (13)

The second ingredient is the energy-storage functional E : [0, T ] × Y → R∞ := R ∪ {∞}.
Here, t ∈ [0, T ] plays the rôle of a (very slow) process time which changes the underlying
system via changing loading conditions. We assume that for all y with E(t, y∗) < ∞, the
function R 3 t 7→ E(t, y∗) ∈ R is differentiable.

Definition 3.1 A curve y = (ϕ, z) : [0, T ] → Y = F × Z is called an energetic solution of
the rate-independent system associated with (D, E), if t 7→ ∂tE(t, y(t)) is integrable and if the
global stability (S) and the energy balance (E) hold for all t ∈ [0, T ]:

(S) For all ŷ = (ϕ̂, ẑ) ∈ Y we have E(t, y(t)) ≤ E(t, ŷ) +D(z(t), ẑ).

(E) E(t, y(t)) + DissD(z; [0, t]) = E(0, y(0)) +
∫ t

0
∂tE(τ, y(τ))dτ .

To prove our existence result we impose the conditions (A1), (A2) and (A3) on the dissipa-
tion distance D:

(i) ∀ z1, z2 ∈ Z : D(z1, z2) = 0 ⇐⇒ z1 = z2,
(ii) ∀ z1, z2, z3 ∈ Z : D(z1, z3) ≤ D(z1, z2) +D(z2, z3).

(A1)

Here, (i) is the classical positivity of a distance and (ii) the triangle inequality. Note that we
allow the value ∞, and that we do not enforce symmetry, i.e., D(z1, z2) 6= D(z2, z1) is allowed,
as this is needed in many applications.

For any sequence (zk)k and any z in Z we have:
min{D(zk, z),D(z, zk)} → 0 for k →∞ =⇒ zk

Z→ z for k →∞.
(A2)

D : Z × Z → [0,∞] is continuous. (A3)

For the energy functional E we impose the conditions (A4), (A5) and (A6):

E(t, ·) : Y → R∞ has compact sublevels ∀t ∈ [0, T ]. (A4)

Here the sublevels Lt,e of E(t, ·) are defined as usual by Lt,e := { y ∈ Y : E(t, y) ≤ e }.

There exist c(1)E , c
(0)
E > 0 such that for all y∗ ∈ Y :

If E(t, y∗) <∞, then ∂tE(·, y∗) : [0, T ] → R is measurable
and |∂tE(t, y∗)| ≤ c

(1)
E (E(t, y∗)+c

(0)
E ).

(A5)

∀E∗ > 0 ∀ ε > 0 ∃ δ > 0 : E(t, y) ≤ E∗ and |t− s| ≤ δ
=⇒ |∂tE(t, y)−∂tE(s, y)| < ε.

(A6)

The following existence result is proved in [10, 13].

Theorem 3.2 Assume that E andD satisfy the hypotheses (A1)–(A6) and that the initial datum
y0 ∈ Y is stable (i.e., y0 satisfies (S) at t = 0), then there exists a solution y = (ϕ, z) : [0, T ] →
Y of (S) & (E) with y(0) = y0.
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Moreover, any solution of (S) & (E) with y(0) = y0 satisfies the a priori estimates

E(t, y(t)) ≤ (c
(0)
E +E(0, y0)) ec

(1)
E t − c

(0)
E

DissD(y; [0, t]) ≤ (c
(0)
E +E(0, y0)) ec

(1)
E t

}
for t ∈ [0, T ].

4 EXISTENCE THEOREM FOR FERROELECTRIC MODELS

To apply the above abstract theory, we need the following standard result in linearized elasticity.
It allows us to obtain the desired coercivity of the energy functional which is used to establish
condition (A4).

Proposition 4.1 (Korn’s inequality) Let Ω ⊂ Rd be a nonempty connected open bounded set,
with Lipschitz boundary Γ, and let ΓDir be a measurable subset of Γ, such that

∫
ΓDir

1 da > 0.
Given a function u ∈ H1(Ω,Rd), the linearized strain tensor ε is defined by (3). Then, there
exists a constant k > 0, such that

‖u‖2
H1 ≤ k

∫
Ω

|ε(u)|2 dx for all u ∈ H1
ΓDir

(Ω,Rd) := { v ∈ H1(Ω,Rd) : v|ΓDir
≡ 0 }. (14)

We now provide conditions on the constitutive functions W , α and R, such that the above
abstract theory can be applied for our ferroelectricity model defined via the energy functional E
in (2) and the dissipation potential R in (5).

The first assumption concerns the domain and the Dirichlet boundary:

Ω and ΓDir satisfy the assumptions of Proposition 4.1. (B0)

The function R : Ω× RdQ → [0,∞) satisfies

R ∈ C0(Ω× RdQ) and ∃ cR, CR > 0 ∀V ∈ RdQ : cR|V | ≤ R(x, V ) ≤ CR|V |. (B1)

∀x ∈ Ω : R(x, ·) : RdQ → [0,∞) is 1-homogeneous and convex. (B2)

The functions W and α have to fulfill the following three conditions:

W : Ω× Rd×d
sym × Rd × RdQ → [0,∞) is a Caratheodory function, (B3)

which means that for each (ε, D,Q) the function W (·, ε, D,Q) is measurable on Ω and for a.e.
x ∈ Ω the mapping W (x, ·, ·, ·) is continuous on Rd×d

sym × Rd × RdQ .

∃ cE , CE > 0, q > 1 ∀ (x, ε, D,Q, V ) ∈ Rd×d
sym × Rd × RdQ × RdQ :

W (x, ε, D,Q) + α(V ) ≥ cE(|ε|2 + |D|2 + |Q|q + |V |q)− CE .
(B4)

α : RdQ×d → R is convex and

∀ (x,Q) ∈ Ω× RdQ : W (x, ·, ·, Q) : Rd×d
sym × Rd → R is convex.

(B5)

.
For the external loading `(t) we assume

` ∈ C1([0, T ], (H1
ΓDir

(Ω; Rd))∗ × L2
div(Rd)∗). (B6)
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We now relate the concrete ferroelectric model to the abstract one by choosing the function
spaces first:

F = H1
ΓDir

(Ω,Rd)weak × L2
div(Rd)weak and Z = L1(Ω,RdQ)strong.

Here the subscripts “weak” and “strong” indicate whether we use the weak or the strong (norm)
topology in the corresponding Banach spaces. The dissipation distance D is related to R by

D(Q0, Q1) = R(Q1−Q0) =

∫
Ω

R(x,Q1(x)−Q0(x))dx. (15)

The functional E is defined on [0, T ] × F × Z via (2), where E(t, u,D,Q) takes the value
+∞, if Q 6∈ W1,q(Ω; RdQ), or if the integrand is not in L1(Ω). With these choices, the abstract
energetic problem of Definition 3.1 leads us exactly to the energetic problem (S) & (E) for the
ferroelectric model as defined in (12).

Thus, our first main result will be proved by checking the assumptions of the abstract exis-
tence theorem 3.2 from above.

Theorem 4.2 (Existence theorem)
If the assumptions (B0)–(B6) hold, then for each stable initial condition (u0, D0, Q0) ∈ F ×Z
the energetic problem (S) & (E) in (12) has a solution (u,D,Q) : [0, T ] → F × Z , with
(u(0), D(0), Q(0)) = (u0, D0, Q0), which satisfies

(u,D,Q) ∈ L∞([0, T ]; H1
ΓDir

(Ω; Rd)× L2
div(Rd)×W1,q(Ω; RdQ)).

5 UNIQUENESS OF SOLUTIONS

Uniqueness results in rate-independent hysteresis models are rather exceptional, as they need
strong assumptions on the nonlinearities. We now show that suitable restrictions on our ferro-
electric model leads to uniqueness of solutions. However, it is unclear whether these restrictions
are still compatible with models which are useful in practice.

First of all, the theory has to be restricted to a Hilbert space setting, and we let

Y2 = H1
ΓDir

(Ω; Rd)× L2
div(Rd)× H1(Ω; RdQ).

We still assume that the conditions (B0)–(B6) hold, but now with q = 2. We will add further
condition below, such that we are able to apply the following abstract result [11, Thm. 7.4].

It is formulated on a general Hilbert space YH with functionals E : [0, T ] × YH → R and
R : YH → R. The following conditions are imposed:

R : YH → [0,∞) is continuous, convex and 1-homogeneous. (C1)

E ∈ C2,Lip
loc ([0, T ]× YH ,R) and

∀ e0 ∃C > 0 ∀ yj with E(0, y) ≤ e0 : ‖DE(t, y1)‖, ‖D2E(t, y1)‖ ≤ C,
‖D2E(t, y1)−D2E(t, y2)‖ ≤ C‖y1−y2‖.

(C2)

∃α > 0 ∀ v, y ∈ YH : 〈D2E(t, y)v, v〉 ≥ α‖v‖2. (C3)
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Theorem 5.1 If the conditions (C1)–(C3) and (A5) hold, then the energetic problem (S) & (E)
has for each stable initial datum y0 ∈ YH a unique solution y : [0, T ] → YH with y(0) = y0.
This solution satisfies y ∈ CLip([0, T ];YH) and depends Lipschitz continuously on the initial
data. Moreover, these solutions satisfy the differential inclusion

0 ∈ ∂R(ẏ(t)) + DE(t, y(t)) for a.e. t ∈ [0, T ],

which is equivalent to the quasi-variational inequality(
∀ v ∈ YH : 〈DE(t, y(t)), v−ẏ(t)〉+R(ẏ(t)) ≥ 0

)
for a.e. t ∈ [0, T ].

In our ferroelectric model the new assumptions (C1)–(C3) can be satisfied only in the pre-
sence of the following additional conditions:

α(x,∇Q) =
1

2
〈AQ(x)∇Q,∇Q〉 with a01 ≤ AQ(x) ≤ a11 a.e. on Ω, (16)

where a1 ≥ a0 > 0.

W (x, ε, D,Q) =
1

2
〈A(x)

(
ε−εrem(x,Q)

D−Prem(x,Q)

)
,

(
ε−εrem(x,Q)

D−Prem(x,Q)

)
〉+Whard(x, Prem), (17)

where A(x) =
(

A(x)
−BT(x)

−B(x)
C(x)

)
is assumed to be bounded and uniformly positive definite on

Rd×d
sym × Rd.

Whard ∈ L∞(Ω; C3(RdQ) and ∃C > 0 ∀x,Q : |D3
QW (x,Q)| ≤ C(1+|Q|)dp−3. (18)

(εrem, Prem) ∈ L∞(Ω; C3(RdQ ; Rd×d
sym × Rd)), pd ≥ 6 and

∃C > 0 ∀x,Q : |D3
Qεrem(x,Q)|, |D3

QPrem(x,Q)| ≤ C(1+|Q|)(pd−6)/2.
(19)

Note that the restriction pd = 2d/(d−2) ≥ 6 leads to the restriction d ≤ 3.
The final condition to be added is a uniform convexity on the sum of W and α:

∃ c0 > 0 ∀x, ε, D,Q : D2
ε,D,QW (x, ε, D,Q) ≥ c01. (20)

Note that this condition is stronger than (B5), where convexity in Q was not needed.

Theorem 5.2 Assume d ∈ {2, 3} and ` ∈ C2([0, T ];F∗). Moreover, let the conditions
(B0)–(B4) with q = 2 and the conditions (16)–(20) be satisfied. Then, the energetic formulation
(S) & (E) has for each stable initial datum y0 = (u0, D0, Q0) a unique solution y = (u,D,Q) :
[0, T ] → Y2 = H1

ΓDir
(Ω; Rd)× L2

div(Rd)× H2(Ω; RdQ).
Moreover, other conclusions of Theorem 5.1 hold as well.

As a conclusion, we may say that it is possible to prove existence results for slight modifi-
cations of the engineering models. However, for the presently developed uniqueness theory the
conditions are very restrictive and seem to contradict most useful models.
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