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Abstract. We study delamination processes for elastic bodies glued together
by an adhesive as an activated, rate-independent process. The adhesive is
assumed to absorb a specific amount of energy during the delamination pro-
cess. A solution is defined by energetic principles of stability and balance of
stored and dissipated energies with the work of external loading, realized here
through displacement on parts of the boundary. Starting from a time dis-
cretization, we construct solutions via a rigorous limiting analysis. Moreover,
we provide computer simulations for some model problems using a further
finite-element spatial discretization.
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1. Introduction

Laminate structures are widely used in many industrial branches and the study of

their failure modes becomes more and more important, see e.g. [15]. In this paper, we

will concentrate on one such mode, namely delamination of layered laminate structures.

Delamination is a progressive separation of bonded laminate and, simultaneously, degra-

dation of the used adhesive. As such, it is a critical failure mode of layered composite

structures because it can degrade the laminate to such a degree that it becomes useless in

service. Therefore, delamination is usually considered an unwilling effect. Yet, by another
1
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viewpoint, laminated materials have been shown to have energy absorption properties su-

perior to conventional metallic structures. The energy dissipated during delamination is

a typical example. Therefore, laminated composites are more and more used when de-

signing energy absorbing elements in vehicles [7]. In this situation, proper modeling of

delamination and computing of the corresponding energies is of vital importance.

The mechanism of delamination is very complex and involves phenomena like debonding

and unilateral contact with nonmonotone friction. Delamination is also often connected

with the damage of layers. Here we consider delamination as a fracture-like process that

can run along a-priori known surfaces between homogeneous isotropic elastic bodies that

are in frictionless unilateral contact. We consider it as an activated and rate-independent

process, based on the philosophy that a specific energy is needed to cut the macromolecular

structure of the adhesive, no matter how fast or slow this process is.

Nowadays there is an extensive literature on modeling and simulating delamination

phenomenon. Vast majority of the papers deals with modeling and computational tech-

nique and the authors do not attempt at proving the existence of a solution. The problem

is generally approached either by using fracture mechanics (see, e.g., [5, 23, 28, 29]) or

by introducing special constitutive laws for the interface material in the spirit of damage

mechanics, or simply quasistatically.

The first approach is typically based on the notion of the energy-release rate and the

delamination is activated when the computed energy-release rate reaches a prescribed

threshold. This may lead to extensive numerical calculations when modeling large struc-

tures, as the energy release rate must be recomputed at each point where delamination

may occur [6]. These models are closely related to fracture models, see e.g. [18]. Other

techniques are based on special “interface” finite elements introduced at delamination

regions; see [1] for a comprehensive review. In these elements, a rate-independent plas-

ticity model with softening is used [29]. Yet another method allows for discontinuities in

displacements to be modeled independently of the finite element mesh [30]. Once again,

all these techniques are focused on numerical simulation of delamination.

In the second approach, delamination is described by a damage variable reflecting the

destruction of the bonds in the a-priori known delamination surface. Proposed by Frémond

[8, 9], this approach was developed in [13, 25, 26, 27], cf. also [10, Chap.14]. In this model, a

damage variable, taking values between 0 and 1, indicates the state of delamination on the

interface boundary and the adhesive contact is considered as a (possibly nonlinear) viscous

one. Although the quite typically occurring effects of activation (i.e., no delamination is

in progress under small loading even lasting long time) cannot be hit by this, the viscous

approach has some application, too. We also refer to [15] for mechanical models for

different failure mechanisms in delamination problems for laminated composites.

The third, static approach was proposed by Panagiotopoulos [24] who formulated the

problem of equilibrium positions via hemivariational inequalities, a generalization of vari-

ational inequalities for nonmonotone operators, cf. also [2]. Thus, this method has limited

applications only to processes with simple time–dependent loadings.
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In this paper we focus on the second, damage-variable approach. However, as already

announced, we prefer to consider the delamination as rate independent, plastic-like process

(as in the models of the first approach), which automatically involves an activation phe-

nomena. Contrary to the these models, we will support our model by a rigorous analysis

based on the apparatus developed for rate-independent process recently in [20, 21, 22, 19].

Also, contrary to [13, 25, 26, 27], we understand the energy spent in damage of the ad-

hesive not as a stored energy but as a dissipated energy, which avoids speaking about

“local subdifferential” of nonconvex functions, see [25, 27]. Having in mind applications

to impact on a rigid body, we consider loading through (unilateral) Dirichlet boundary

conditions, which brings additional difficulties in the formulation of the correct energetics

through the work of the (unknown) reaction force.

In Section 2, we formulate the model based on minimization of the stored energy com-

peting with the activation of the delamination process and introduce a suitable definition

of its solution. Then, in Section 3, we perform a rigorous analysis by semi-discretization

in time, and in Section 4 we provide a numerical approximation via space discretization

and present computer simulations of model examples together with a calculated energetic

balance.

2. The model

Let us first specify our notation as far as geometry concerns. The elastic body will

occupy a reference domain Ω ⊂ Rn, n = 2, 3, assumed to be bounded with the Lipschitz

boundary Γ = ∂Ω. The body is loaded by time-dependent (possibly unilateral) Dirichlet

boundary conditions (so called “hard device”), which is used to describe a frictionless

(possibly unilateral) contact during an impact of another, completely rigid body on a

part of the boundary Γ. The rest of the boundary is assumed to be free. The domain

Ω itself is divided into a finite number of subdomains Ωα, α = 1, ...,m. The boundary

between the subdomains Ωα and Ωβ is denoted by Γαβ := Γα ∩ Γβ with Γα := ∂Ωα and

Γβ := ∂Ωβ being the boundary of the subdomain Ωα and Ωβ, respectively; of course, the

case Γαβ = ∅ is not excluded and it indicates that the particular subdomains are not

adjacent to each other, cf. Figure 1.

For simplicity and especially for efficiency of calculations, we will confine ourselves

to small displacements and isotropic materials though the model can quite equally be

formulated in terms of large deformations. Also, we consider the delamination process

temperature-independent or so slow that the produced heat is transferred out to keep

temperature constant, which allows us to restrict the model to the isothermal situation

and speak about stored energy instead of free energy.

2.1. Stored energy. The state of the system will be considered as q =

(uα, ζαβ)α,β=1,...,m,α>β where uα : Ωα → Rn is the (small) displacement in the subdo-

main Ωα and ζαβ : Γαβ → [0, 1] a damage parameter indicating how much of the adhesive
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Figure 1. An example of a model geometry (m = 4) and an interpretation

of the model of delaminating the adhesive gluing the adjacent subdomains

(here Ω3 and Ω4).

is effective: 1 means 100% of the adhesive glues at x ∈ Γαβ, 0 means that the surface

is completely delaminated at the current point x ∈ Γαβ, and 0 < ζαβ(x) < 1 means

that some portion of macromolecules of the adhesive is already cut while the rest is still

effective. Often, we will write shortly u = (uα)α=1,...,m and ζ = (ζαβ)α,β=1,...,m,α>β.

The matrix bαβ : Γαβ → Rn×n reflects the elastic properties of the adhesive. We

adopt, in fact, a dimensional reduction of the n-dimensional adhesive layer to an (n−1)-

dimensional surface Γαβ.

Considering an isotropic linear material, the elastic energy Vα(uα) stored in the volume

Ωα is

Vα(uα) :=

∫

Ωα

µα|e(uα)|2 +
λα

2
(div uα)2dx, e(u) :=

1

2
(∇u> +∇u),(2.1)

with µα > 0 and λα ≥ 0 the Lamé constants of the isotropic material in the αth domain,

while the energy Vαβ(ζαβ, uα−uβ) stored in the adhesive on the surface Γαβ is

Vαβ(ζαβ, v) :=
1

2

∫

Γαβ

ζαβ(x)v>bαβ(x)v dS.(2.2)

We further prescribe a unilateral contact on Γαβ which allows for a general “non-

monotone” loading causing that some, already delaminated parts of the surfaces Γαβ can

be pushed together without being glued. It also excludes a penetration of the adjacent

domains Ωα and Ωβ. This leads to the complementarity conditions

(uα−uβ)|Γαβ
· ναβ ≥ 0, ν>αβ(σα−σβ)ναβ ≥ 0,

(uα−uβ)|Γαβ
ναβ ν>αβ(σα−σβ)ναβ = 0,

τ>σαναβ = τ>σβναβ = 0 for τ with τ>ναβ = 0,

(2.3)

prescribed on each Γαβ, where σα := 2µαe(uα) + λα(div uα)δ with δ = [δij] denoting the

identity matrix (hence σα is the stress corresponding to the energy (2.1)) and where ναβ

denotes the unit normal to the surface Γαβ oriented from Ωα to Ωβ.
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As for the boundary conditions on Γ, we assume a Dirichlet, time-dependent loading

on some part of Γ, while a unilateral frictionless contact is assumed on some other part

of Γ and the rest is assumed to be free. This enables us to describe possible applications

of a partly fixed, laminated elastic body Ω subjected to an impact of another, rigid body

touching Ω from outside on the part of Γ where the unilateral contact is prescribed,

cf. Figure 7 below. To describe such a general situation in a simple way, we introduce a

closed, convex cone D(x) ⊂ Rn depending on x ∈ Γ, and assume the boundary conditions

on Γ in the complementarity form as

uα|Γα ºD w(t),

σαν º∗D 0,

(σαν) · (u|Γα−w) = 0,





on Γα ∩ Γ,(2.4)

where ν = ν(x) is the unit outward normal to Γα, ºD is the ordering induced by D in

the sense w ºD 0 if and only if w(x) ∈ D(x) for a.a. x ∈ Γ, and º∗D is the dual ordering

induced by the negative polar cone to D in the sense s º∗D 0 if and only if s(x) ·w ≥ 0 for

all w ∈ D(x) for a.a. x ∈ Γ, and w = w(t, x) is the Dirichlet loading. For formal reasons,

it is advantageous to consider w prescribed also on the delamination surfaces Γαβ and to

handle both (2.3) and (2.4) in a unified manner. Then, the particular choices that can be

described by a cone D ⊂ Rn depending on x ∈ Γ are, e.g.,

• D(x) = Rν for fixing tangential displacement at x ∈ Γ (let us denote this part of

the boundary by Γt ⊂ Γ),

• D(x) = {v ∈ Rn; v · ν = 0} for fixing the normal displacement at x ∈ Γ (let us

denote this part by Γn ⊂ Γ),

• D(x) = {v ∈ Rn; v = aν; a ≥ 0} for a unilateral contact in the normal displace-

ment at x ∈ Γ, (let us denote this part by Γc ⊂ Γ).

Possibly, Γn, Γt and Γc can overlap like on Figures 1, 2, or 4. Obviously, D(x) = {0} for

x ∈ Γt ∩ Γn.

For notational simplicity, we will abbreviate

Q := U × Z, U :=
m∏

α=1

H1(Ωα), Z :=
∏

α>β

L1(Γαβ),(2.5)

H :=
m∏

α=1

H1/2(Γα;Rn).(2.6)

All spaces U , Z, and H are assumed to be equipped with their standard norms. Since all

our functions ζ ∈ Z lie in the set Z[0,1] := {ζ ∈ Z; ζαβ ∈ [0, 1] a.e. on Γαβ} and we will

simply write 0 ≤ ζ ≤ 1 if ζ ∈ Z[0,1]. Of course Z[0,1] is a bounded subset of
∏

L∞(Γαβ);

however, it is important to work with the L1 norm which is not equivalent to that of L∞.

Let us further denote by

LΓ : U → H : u 7→ (uα|Γα)m
α=1(2.7)
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the operator producing the collection of traces. To treat the variety of (possibly unilateral)

boundary conditions, let us consider the (convex, closed) cone D ⊂ H given by

D :=
{
v = (vα)m

α=1 ∈ H; ∀(a.a.) x∈Γ ∩ Γα : vα(x) ∈ D(x),(2.8)

∀(a.a.) x∈Γαβ : ναβ · (vα−vβ) ≥ 0
}
.

Now, º denotes the ordering of H by the cone D.

The overall (Gibbs-type) stored energy is then

G(t, q) :=





m∑
α=1

(
Vα(uα) +

α−1∑

β=1

Vαβ(ζαβ, uα−uβ)

)
if LΓu º w(t, ·)

and ζ ∈ Z[0,1],

+∞ otherwise.

(2.9)

Note that the time-dependence occurs only through the contraint via the Dirichlet loading

w(t, ·). Also, we will often write

G(t, q) ≡ G(t, u, ζ) = V (u, ζ) + δL−1
Γ (w(t)+D)×Z[0,1]

(u, ζ),(2.10)

where V is the overall “elastic” stored energy

V (u, ζ) :=
m∑

α=1

(
Vα(uα) +

α−1∑

β=1

Vαβ(ζαβ, uα−uβ)

)
,(2.11)

and δC(q) = 0 denotes the indicator function of a convex set C. Of course, LΓ is not

injective so that L−1
Γ in (2.10) is a set-valued mapping. To avoid a situation when a

completely delaminated subdomain Ωα is not fixed with respect to rigid-body motions,

we will assume:

∀α = 1, ..., m : measn−1

(
Γt ∩ Γn ∩ Γα

) 6= ∅.(2.12)

By Korn’s inequality, (2.12) ensures coercivity of G(t, ·, ζ) uniformly with respect to ζ ∈
Z[0,1] and to w(t) ranging over bounded sets in H.

2.2. Dissipation. Dissipative mechanisms are routinely described by Rayleigh’s

(pseudo)potential of dissipative forces, here denoted by R, as a function of the rate of

q = q(t).

We will consider the material in the particular subdomains Ωα as purely elastic. The

only dissipation of energy we will consider can occur in the adhesive and, on the atomistic

level, it is related with cutting the macromolecular chains composing the adhesive. To

describe this process, we allow for the simplification that this process can be described

with good accuracy by a single phenomenological parameter dαβ = dαβ(x) having the

meaning of a specific energy (per area, i.e. in physical units Jm−2) needed to delaminate

the surface Γαβ at a point x ∈ Γαβ, i.e. the energy needed to switch ζαβ(x) from 1 to

0. This energy is irreversibly dissipated to the structural change of the adhesive on the

surface Γαβ. In other words, the delamination process in our model is rate independent,
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in particular it is an activated process. The specific dissipation then includes only the rate

of damage coefficients (ζαβ) but not of the displacement (uα), and has the form

[
%(q̇)

]
αβ

(x) :=

{ −dαβ(x)ζ̇αβ(x) if ζ̇αβ(x) ≤ 0,

+∞ otherwise,
(2.13)

where the variable q̇ = (u̇; ζ̇) stands for the rate of q. The mentioned irreversibility

of the delamination process is related with the phenomenon that, if once delaminated,

the surface cannot be glued back and it is reflected by the non-symmetry %(q̇) 6= %(−q̇),

cf. (2.13). The consequence of the assumed rate-independency is that % is homogeneous of

degree 1. In particular, % is nonsmooth at 0, which is related to the activation phenomena.

The overall (non-symmetric) dissipation potential is then defined as

R(q̇) :=
m∑

α=1

α−1∑

β=1

∫

Γαβ

[
%(q̇)

]
αβ

(x)dS.(2.14)

The above formula is to be understood in the sense that R(q̇) = +∞ if %(q̇) is not finite

a.e. on
⋃

α>β Γαβ. The important property of R is that it satisfies the triangle inequality,

i.e.

∀q1, q2, q3 ∈ Q : R(q1 − q3) ≤ R(q1 − q2) + R(q2 − q3),(2.15)

which follows immediately from convexity and the homogeneity of degree 1.

2.3. Solution processes and their energetics. When the boundary data w varies in

time, i.e. w = w(t), the state response will expectedly vary as well. We will write q = q(t)

for t ∈ [0, T ] with T > 0 as a fixed time horizon.

Following [20] (see also [21, 22]), we say that the process q = q(t) is stable if

∀q̃ ∈ Q : G
(
t, q(t)

) ≤ G(t, q̃) + R
(
q̃ − q(t)

)
(2.16)

for all t ∈ [0, T ]. The philosophy of (2.16) is that the gain of Gibbs’ energy G(t, q(t)) −
G(t, q̃) at any other state q̃ is not larger than the dissipation R(q̃ − q(t)); cf. [22] for

discussion.

To proceed further, we must define the reaction force F = F (t) on the “hard-device”

loading w(t) ∈ H. As R involves only ζ but not u, the stability (2.16) of q(t) = (u(t), ζ(t))

implies that u(t) is the global minimizer of G(t, ·, ζ(t)). By the definition (2.9) of G, it

implies that the displacement u = (uα) solves, for ζ = (ζαβ) ≥ 0 and w fixed, the following

minimization problem




Minimize V (u, ζ)

subject to LΓu º w ≡ w(t) ,

u ∈ U ,

(2.17)

where the inequality in (2.17) refers to the ordering of H by the cone D, cf. (2.8). Then we

define the reaction force as the quantity that balances the equation created by “forgetting”
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the (possibly unilateral) conditions on
⋃m

α=1 Γα, i.e. for any u solving (2.17) we define

F ∈ H∗ by the formula

〈F, vΓ〉 :=
∑m

α=1

( ∫

Ωα

2µαe(uα):e(vα) + λα(div uα)(div vα) dx(2.18)

+
α−1∑

β=1

∫

Γαβ

ζαβ(x)(uα−uβ)>bαβ(x)(vα−vβ) dS

)
,

for all v ∈ U with LΓv = vΓ,

where e(u):e(v) :=
∑n

i,j=1 eij(u)eij(v). As the minimization problem (2.17) depends on

(w, ζ), so does F . The important points are that the minimizer u of the uniformly convex

functional V (·, ζ) on the convex set of admissible u’s in (2.17) is defined uniquely, and

that u in (2.18) is just this minimizer so that the right-hand side of (2.18) depends only

on the trace LΓv:

Lemma 2.1. The formula (2.18) determines F ∈ H∗ uniquely, and the mapping (w, ζ) 7→
(u, F ) : H×Z → U ×H∗ is (norm×weak,norm×weak)-continuous.

Proof. Let us abbreviate the trilinear form on the right-hand side of (2.18) by

a(ζ, u, v) := 〈V ′
u(u, ζ), v〉,(2.19)

cf. (2.9). As u = (uα) ∈ L−1
Γ (D+w) in (2.18) is the (unique) solution to (2.17), it satisfies

the variational inequality (in variable u)

∀v ∈ L−1
Γ (D + w) : a(ζ, u, v − u) ≥ 0.(2.20)

Take v1, v2 ∈ U such that LΓv1 = LΓv2. Then v := v1− v2 + u ∈ L−1
Γ (D+ w) and putting

it into (2.20), we get a(ζ, u, v1 − v2) ≥ 0. Doing the same for v := v2 − v1 + u, we can see

that altogether a(ζ, u, v1 − v2) = 0. By the definition (2.18) of L∗ΓF = a(ζ, u, ·), we have

proved that a(ζ, u, ·) indeed depends only on the collection of traces LΓv of v ∈ U . Hence

it defines a functional F : H → R. Obviously, a(ζ, u, ·) is linear and hence this functional

is linear, too. Moreover, the functional F is continuous, as can be seen from the estimate

||F ||H∗ := sup
||vΓ||H≤1

vΓ∈H

〈F, vΓ〉 = sup
||vΓ||H≤1

vΓ∈H

inf
v∈U

LΓv=vΓ

a(ζ, u, v)(2.21)

≤ sup
||v||U≤N

a(ζ, u, v) < +∞.

Here we used definition (2.18) and N denotes the bound from the a-priori estimate ||v||U
of the solution v to the boundary-value problem Aζv = 0, LΓv = vΓ, with vΓ ∈ H,

||LΓv||H ≤ 1. Moreover, Aζ : U → U∗ is defined by 〈Aζu, v〉 = a(ζ, u, v); in other words,

Aζu = V ′
u(u, ζ).

Now, take a sequence {(wk, ζk)}k∈N ⊂ H × Z converging to (w, ζ) in (norm×weak)-

topology. Let uk be the minimizer of (2.17) corresponding to (wk, ζk), i.e.

∀v ∈ L−1
Γ (D + wk) : a(ζk, uk, v − uk) ≥ 0.(2.22)
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By a-priori estimates, we can select a subsequence weakly converging in U , and show

that its limit solves (2.20). Having the limit u identified uniquely, we can see that

even the whole sequence {uk}k∈N converges to it weakly. This is, in fact, a standard

procedure, the only peculiarity here is the limit passage
∫
Γαβ

[ζk]αβu>k bαβ(v−uk) dS →∫
Γαβ

ζαβu>bαβ(v−u) dS which uses simply the compactness of the trace operator u 7→
u|Γαβ

: U → L2(Γαβ).

Now we want to prove uk → u in the norm of U . Let us take ū ∈ L−1
Γ (w) and

ūk ∈ L−1
Γ (wk). As wk → w in H, we can also assume that ūk → ū in U by considering a

continuous selection from a continuous set-valued mapping L−1
Γ . Then v := u + ūk − ū ∈

L−1
Γ (D + wk) and we can put this v into (2.22). Likewise, v := uk + ū− ūk is a legal test

function for (2.20). Adding the created inequalities, we obtain, after some algebra,

a(ζ, uk − u, uk − u) ≤ a(ζk, uk − u, ūk − ū)(2.23)

+ a(ζk − ζ, u, ūk − ū)− a(ζk − ζ, uk, uk − u).

All the terms on the right-hand side in (2.23) can easily be shown to converge to 0. Hence

we get uk → u from the coercivity a(ζ, v, v) ≥ ε||v||2U for some ε > 0.

Let us denote by Fk the reaction force that corresponds to (wk, ζk). Fixing v in (2.18),

we can easily see that 〈Fk, vΓ〉 = a(ζk, uk, v) → a(ζ, u, v) = 〈F, vΓ〉. Hence Fk → F

weakly. 2

As the unilateral Dirichlet loading w evolves in time (in a prescribed manner), so will

do the (unknown) damage parameter ζ and therefore also the reaction force F = F (w, ζ).

Hence, we can now agree that the process q = q(t) = (u(t), ζ(t)) is called to satisfy the

energy inequality if, for all t, s ∈ [0, T ], s < t,

V
(
q(t)

)
+ VarR(q; s, t) ≤ V

(
q(s)

)
+

∫ t

s

〈
F,

dw

dθ

〉
dθ, F = F

(
ζ(θ), w(θ)

)
,(2.24)

where the R-variation of the function q(·) over the time interval [s, t] is defined standardly,

without using explicitly any time derivative, as

VarR(q; s, t) := sup

j∑
i=1

R
(
q(ti)− q(ti−1)

)
(2.25)

with the supremum taken over all j ∈ N and over all partitions of [s, t] in the form

s = t0 < t1 < ... < tj−1 < tj = t. Of course, in our special situation with R defined via

(2.13) and (2.14) the R-variation takes the form

VarR(q; s, t) =
∑

α<β

∫

Γαβ

dαβ(ζαβ(s, ·)−ζαβ(t, ·)) dS,

whenever for a.e. x ∈ Γαβ the function ζαβ(·, x) are nonincreasing on [s, t]. In all other

cases the R-variation will be +∞.

The particular terms in (2.24) thus represent

• stored energy at time t,

• the energy dissipated by delamination during the time interval [s, t],
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• stored energy at the initial time s, and

• work done by external “hard-device” loading during the time interval [s, t].

Furthermore, for Z a Banach space, let us agree to understand the space BV([0, T ]; Z) of

functions with bounded variations as containing measurable Z-valued functions defined

everywhere on [0, T ], and normed by ||z||BV([0,T ];Z) := ||z||L1(0,T ;Z) + Var‖·‖Z
(u; 0, T ). Also

the space L∞(0, T ; Z) will be understand as containing measurable Z-valued functions

defined everywhere.

Having in mind an initial-value problem with an initial configuration q0 ∈ Q, our

problem is thus determined by the stored energy V , dissipation potential R, the loading

w, and the initial condition q0.

Definition 2.2. A process q = q(t), t ∈ [0, T ], is called the solution process to the problem

given by the quadruple (V, R,w, q0) if, q = (u, ζ) ∈ L∞(0, T ;U)×BV([0, T ];Z), it is stable

in the sense (2.16) for all t ∈ [0, T ], and if it satisfies (2.24) for all t, s ∈ [0, T ], t > s,

and if q(0) = q0.

For further analysis, we will need the following stability and sensitivity results about

the value function of the linear/quadratic problem (2.17):

Lemma 2.3. Denote by v = v(w, ζ) = min V
(
L−1

Γ (D + w), ζ
)

the minimum in problem

(2.17). The mapping v :
∏

α>β L1(Γαβ)×H×Z[0,1] → R is (norm×weak)-continuous and

v(·, ζ) is Gâteaux differentiable, the directional derivatives are (norm×weak)-continuous,

and we have the formula

∀ w̃∈H :

[
∂v

∂w
(w, ζ)

]
(w̃) =

〈
F (w, ζ), w̃

〉
.(2.26)

Remark 2.4. The formula (2.26) expresses d’Alembert’s virtual-work principle: varying

the obstacle w by w̃ against the reaction force F performs a work equal to the variation

of the stored energy v. This also justifies the formula (2.18) for the reaction force.

Proof. Since (w, ζ) 7→ u has been proved to be (norm×weak,norm)-continuous

in Lemma 2.1 and since the trilinear form (ζ, u, v) 7→ a(ζ, u, v) is certainly

(weak×norm×norm)-continuous, the mapping v : (w, ζ) 7→ 1
2
a(ζ, u, u) is (norm×weak)-

continuous, as claimed.

For ζ ∈ Z[0,1] fixed, we have to investigate sensitivity of the value of (2.17) with respect

to the unilateral boundary data w. To use standard results, we first transform this problem

to another one with homogeneous boundary data. This is again a standard procedure:

considering ū ∈ U such that LΓū = w, we can see that u solves (2.17) if and only if

u = u0 + ū with u0 ∈ L−1
Γ (D) solving the variational inequality

∀v ∈ L−1
Γ (D) : a(ζ, u0, v − u0) ≥ 〈f, v − u0〉,(2.27)

where the trilinear form a means, as before, the right-hand-side of (2.18), and where

f ∈ U∗ is defined by 〈f, v〉 := a(ζ,−ū, v). The important fact is that, now, the convex

set L−1
Γ (D) is fixed. We can also write f = −Aζ ū; for Aζ see the the proof of Lemma 2.1.
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This transforms the problem to a standard variational inequality on a Hilbert space, here

on U .

Sensitivity of the energy related to (2.27) with respect to perturbations of the right-

hand side f can be found, e.g., in [14, Appendix V]. It is shown that the directional

derivative DJ(f, f̃) of the energy

J(f) := min
v∈L−1

Γ (D)

1

2
a(ζ, v, v)− 〈f, v〉,(2.28)

at the point f in the direction f̃ is given by the expression

DJ(f, f̃) = −〈f̃ , v〉(2.29)

where v is the minimizer of (2.28), i.e. in our case v = u0 = u − ū. Taking into account

〈f, v〉 = a(ζ,−ū, v), we can express this functional in terms of w̄, i.e. J(ū) := J(−Aζ ū) =

minv∈L−1
Γ (D) a(ζ, 1

2
v + ū, v) and, using (2.29) we get its directional derivative in the form

DJ(ū, ŵ) = a(ζ, ŵ, u0) = a(ζ, ŵ, u− ū).(2.30)

However, we are interested in the derivative of the functional j(w̄) := 1
2
a(ζ, u, u)

where u solves (2.17) with w = LΓw̄; then obviously v(w, ζ) = j(ū). Obviously,

j(ū) = 1
2
a(ζ, u, u) = 1

2
a(ζ, u0 + ū, u0 + ū) = 1

2
a(ζ, u0, u0) + a(ζ, ū, u0) + 1

2
a(ζ, ū, ū) =

J(ū) + 1
2
a(ζ, ū, ū). As a(ζ, ·, ·) is symmetric, the directional derivative of ū 7→ a(ζ, ū, ū),

denoted by Dū

[
a(ζ, ū, ū)

]
(ŵ), equals to 2a(ζ, ŵ, ū). Then, using (2.30) and (2.18), we get

Dj(ū, ŵ) = a(ζ, ŵ, u0) + Dū

[1

2
a(ζ, ū, ū)

]
(ŵ)(2.31)

= a(ζ, ŵ, u− ū) + a(ζ, ū, ŵ)

= a(ζ, ŵ, u) = 〈F (ζ, w), ŵ〉.
In particular, the directional derivative in (2.31) depends only on traces of ū and of ŵ on

Γ, as in agreement also with v(w, ζ) = j(ū). Hence, (2.31) proves the formula (2.26) for

the directional derivative of v. Obviously, the right-hand side of (2.26) depends linearly

and, thanks to (2.21), also continuously on the variation w̃, hence F (w, ζ) represents the

Gâteaux differential of v(·, ζ). For any w̃ fixed, the claimed continuity of the directional

derivative, i.e. the left-hand side of (2.26), follows from the (norm×weak,weak)-continuity

of F claimed in Lemma 2.1. 2

3. Analysis by a semi-discretization in time

We will prove the existence of a solution process quite constructively by a semi-

discretization in time, using the implicit Euler scheme. To construct approximate so-

lutions, we consider a time step τ > 0, assuming T/τ integer and also that τ → 0 in such

a way that the equidistant partitions will be nested; for example, the reader can think

about a sequence of time steps τ = 2−kT for k ∈ N. For τ > 0 fixed, this equi-distant

partition of the interval [0, T ] leads to the following recursive increment formula: we put
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q0
τ = q0 a given initial condition, and, for k = 1, ..., T/τ we define qk

τ to be any solution of

the minimization problem




Minimize V (q) + R(q − qk−1
τ )

subject to LΓu º wk
τ , ζ ∈ Z[0,1]

q ≡ (u, ζ)∈Q := U × Z,

(3.1)

where wk
τ = w(kτ). In view of (2.24), it is natural to assume

w ∈ W 1,1
(
0, T ;H)

.(3.2)

In particular, this ensures the continuity of t 7→ w(t) ∈ H, so that the values w(kτ) are

well-defined. As we want to address the initial-value problem, we have to prescribe an

initial state q0 ∈ Q and, having the loading regime w specified, it is natural to assume q0

stable, i.e.

∀q̃ ∈ Q : G(0, q0) ≤ G(0, q̃) + R(q̃ − q0).(3.3)

The solution to (3.1) will be denoted by qk
τ , and then we assemble the piecewise constant

interpolation qτ ∈ L∞(0, T ;Q) so that qτ |((k−1)τ,kτ ] = qk
τ for k = 1, ..., T/τ . Likewise, wτ

denotes the piecewise constant interpolation of w. For the left-hand side of (3.6) below,

we assume the prolongation [(wτ , ζτ )](t) = (w0
τ , ζ

0
τ ) for t < 0.

Lemma 3.1. Let µα > 0, να ≥ 0, bαβ ≥ 0, dαβ ≥ 0 for α, β = 1, ..., m, and the

assumptions (2.12), (3.2), and (3.3) be valid. Then the approximate solution qτ does

exist and satisfies stability, i.e.,

∀q̃ ∈ Q : Gτ

(
t, qτ (t)

) ≤ Gτ (t, q̃) + R
(
qτ (t)− q̃

)
(3.4)

for all t ∈ (0, T ], where Gτ is piecewise constant approximation of G defined by

Gτ (t, q) = V (q) + δL−1
Γ (wτ (t)+D)×Z[0,1]

(q).(3.5)

Also, it satisfies the two-sided discrete energy estimate
∫ t

0

〈
F (w(θ), ζτ (θ)),

dw

dθ
(θ)

〉
dθ ≤ V

(
qτ (t)

)
+ VarR(qτ ; 0, t)− V (q0)(3.6)

≤
∫ t

0

〈
F (w(θ), ζτ (θ−τ)),

dw

dθ
(θ)

〉
dθ,

with F (·, ·) from Lemma 2.1 and with t = kτ for any k = 1, ..., T/τ .

Further, there exist constants C1, C2 and C3 which are independent of the time step τ

such the following a-priori estimates hold:

‖uτ‖L∞(0,T ;U) ≤ C1, and(3.7)

‖ζτ‖BV([0,T ];Z) ≤ C2,(3.8)

||Gτ ||BV([0,T ]) ≤ C3 with Gτ (t) := Gτ

(
t, qτ (t)

)
.(3.9)
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Proof. Existence of a solution qk
τ ∈ Q to (3.1) follows recursively for k = 1, ..., T/τ by

coercivity and weak compactness arguments, realizing also that wk
τ ∈ H due to (3.2) so

that the set of pairs (u, ζ) admissible for (3.1) is always nonempty. Hence, qτ does exist.

Since the elasticity problem is convex we know that qk
τ = (U(w(kτ), ζk

τ ), ζk
τ ), where

U : (w, ζ) 7→ u is defined in Lemma 2.1. Moreover, with the definition in Lemma 2.3 we

have V (qk
τ ) = v(w(kτ), ζk

τ ), and by (2.26) we have that (3.6) is equivalent to
∫ t

0

∂E
∂θ

(
θ, ζτ (θ)

)
dθ ≤ E(

t, ζτ (t)
)
+VarR

(
qτ ; 0, t

)−E(0, ζ0) ≤
∫ t

0

∂E
∂θ

(
θ, ζτ (θ−τ)

)
dθ,(3.10)

where E(t, ζ) := v(w(t), ζ).

As to the discrete stability condition, as in [22, Thm.3.4], by using successively that qk
τ

is a minimizer (cf. (3.1)) and the triangle inequality (2.15) for R, we obtain

Gτ (kτ, qk
τ ) ≤ Gτ (kτ, q̃) + R(q̃ − qk−1

τ )−R(qk
τ − qk−1

τ )(3.11)

≤ Gτ (kτ, q̃) + R(q̃ − qk
τ )

for any k = 1, ..., K = T/τ . In view of the definition of qτ and Gτ , it just means (3.4).

The proof of the energy inequality (3.10) follows as in [22, eqn. (2.12)]. Since ζk
τ

minimizes the “condensed” energy

ζ 7→ v(w(kτ), ζ) + Ξ(ζ − ζk−1
τ ), where Ξ(ζ) := R(u, ζ),(3.12)

over Z[0,1], we deduce, by inserting ζ = ζk−1
τ , the estimate

v(w(kτ), ζk
τ )− v

(
w((k−1)τ), ζk−1

τ

)
+ Ξ

(
ζk
τ−ζk−1

τ

)
(3.13)

≤ v
(
w(kτ), ζk−1

τ

)− v
(
w((k−1)τ), ζk−1

τ

)

= E(
kτ, ζk−1

τ

)− E(
(k−1)τ, ζk−1

τ

)
=

∫ kτ

(k−1)τ

∂E
∂θ

(
θ, ζk−1

τ

)
dθ.

As to the left-hand part of (3.10), like in [21, Theorem 4.1] by the stability (3.11) written

for ζk−1
τ , we can see that ζk−1

τ minimizes the functional ζ 7→ v((k − 1)τ, ζ) + Ξ(ζ−ζk−1
τ ),

and therefore by inserting ζ = ζk
τ , we find

v
(
w(kτ), ζk

τ

)− v
(
w((k−1)τ), ζk−1

τ

)
+ Ξ

(
ζk
τ−ζk−1

τ

)
(3.14)

≥ v
(
w(kτ), ζk

τ

)− v
(
w((k−1)τ), ζk

τ

)

= E(
kτ, ζk

τ

)− E(
(k−1)τ, ζk

τ

)
=

∫ kτ

(k−1)τ

∂E
∂θ

(
θ, ζk

τ

)
dθ.

By summing (3.13) and (3.14) for k = 1, ..., t/τ , we obtain (3.10). Hence, (3.6) is estab-

lished because, by the chain rule and by (2.26), we find

∂E
∂θ

(θ, ζ) =
〈 ∂v

∂w
(w(θ), ζ),

dw

∂θ
(θ)

〉
=

〈
F (w(θ), ζ),

dw

∂θ
(θ)

〉
.(3.15)

Estimate (3.7) follows from boundedness of w(t) uniformly in time, and from the uni-

form coercivity of V (·, ζ) for all ζ ∈ Z[0,1].
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Estimate (3.8) with C2 = T +1 follows simply from that fact that ζτ (·, x) : [0, T ] → [0, 1]

is ultimately nondecreasing for a.a. x ∈ ⋃
α>β Γαβ.

Finally, using (3.13) and (3.14) together with (3.15), we get
∣∣v(w(kτ), ζk

τ )− v
(
w((k−1)τ), ζk−1

τ

)∣∣ ≤ Ξ
(
ζk
τ−ζk−1

τ

)
(3.16)

+ max
t,θ∈[0,T ]

∥∥F (w(t), ζ(θ))
∥∥
H∗

∫ kτ

(k−1)τ

∥∥∥dw

dt

∥∥∥
H
dt

for k = 1, ..., T/τ . As Gτ (t) = V (qτ (t)) = v
(
w(kτ, ζk

τ

)
, (3.16) yields

||Gτ ||BV([0,T ]) ≤
∥∥V (qτ (·))

∥∥
L1(0,T )

(3.17)

+ VarR(qτ ; 0, T ) + max
t,θ∈[0,T ]

∥∥F (w(t), ζ(θ))
∥∥
H∗

∥∥∥∂w

∂t

∥∥∥
L1(0,T ;H)

.

The important point now is that F (w(t), ζ(θ)) is bounded in H∗ uniformly for t, θ ∈ [0, T ],

which follows, through (2.21), from the L∞-bound of ||w(·)||H∗ due to (3.2) and from the

already proved L∞-bounds of both ||uτ (·)||U and ||ζτ (·)||Z . Then the right-hand estimate

(3.6) together with the assumption (3.2) yield a bound C3 of the right-hand side of (3.17),

as claimed in (3.9). 2

Moreover, let us define the stable set at time t via

S(t) :=
{
q∈Q; ∀q̃∈Q : G(t, q) ≤ G(t, q̃) + R(q̃ − q)

}
.(3.18)

The following property of R and the closed-graph property of the set-valued mapping

t 7→ S(t) has been proved in [17]:

Lemma 3.2. (See [17, Lemma 4.2 and Theorem 3.4].) The dissipation potential R has

the property

∀q̃ ∈ Q ∀{qk}k∈N ⊂ Q, q = w-lim
k→∞

qk ∃{q̃k}k∈N ⊂ Q :(3.19)

q̃ = w*-lim
k→∞

q̃k & lim
k→∞

R(qk − q̃k) = R(q − q̃).

Moreover, if qk ∈ S(tk), tk → t and qk → q weakly, then q ∈ S(t).

Sketch of the proof. As to (3.19), we refer to [17, Lemma 4.2] for an explicit construction

of ζ̃k.

Due to (3.2), w(tk) → w(t) in H and, by qk → q weakly, in particular ζk → ζ weakly

in Z. Then, by Lemma 2.3, we have

G(tk, qk) = v
(
w(tk), ζk

) → v
(
w(t), ζ

)
= G(t, q).(3.20)

Analogously, we also have G(tk, q̃k) → G(t, q̃) for q̃k from (3.19). Then, starting from

qk ∈ S(tk) and using the mentioned q̃k from (3.19), we have

G(t, q) = lim
k→∞

G(tk, qk) ≤ lim inf
k→∞

G(tk, q̃k) + R(qk − q̃k)(3.21)

= lim
k→∞

G(tk, q̃k) + lim
k→∞

R(qk − q̃k) = G(t, q̃) + R(q − q̃).

2
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Using the above results we can prove the convergence:

Proposition 3.3. Let the assumptions of Lemma 3.1 be valid. Then there is a subsequence

{qτ}τ>0, denoted for simplicity by the same index τ , and a limit process q : [0, T ] → Q
such that:

(i) limτ→0 uτ (t) = u(t), i.e. norm convergence in U for all t ∈ [0, T ], and u ∈
L∞(0, T ;U),

(ii) w-limτ→0 ζτ (t) = ζ(t), i.e. weak convergence in Z for all t ∈ [0, T ], and ζ ∈
BV([0, T ];Z),

(iii) limτ→0 Gτ (t, qτ (t)) = G(t, q(t)) for all t ∈ [0, T ].

Moreover, every such limit process q is a solution process according to Definition 2.2; in

particular, q(t) is stable in the sense of (2.16) and the energy inequality (2.24) holds even

as an equality for every s and t with 0 ≤ s < t ≤ T .

Proof. For clarity, let us divide it into four steps.

Step 1: The points (i)–(iii). By the a-priori estimate (3.9) and Helly’s selection princi-

ple, we can still select a further subsequence and a function G ∈ BV([0, T ]) such that

limτ→0 Gτ (t, qτ (t)) = G(t) for all t ∈ [0, T ]. Furthermore, taking into account the a-priori

estimate (3.8) and using a generalized Helly’s selection principle for Banach-space valued

functions (see [21, Theorem 6.1] or [17]), we can make the selection in such a way that,

for some ζ ∈ BV(0, T ;Z), ζτ (t) → ζ(t) weakly in Z for all t ∈ [0, T ].

Fixing t ∈ [0, T ], we have also wτ (t) → w(t) in H. As uτ (t) is the unique minimizer

of problem (2.17) with (ζ, w) = (ζτ (t), wτ (t)), we can use Lemma 2.1 to see that uτ (t) →
u(t) in U . This u(t) is determined uniquely and continuously by (w(t), ζ(t)), and, as

t 7→ (w(t), ζ(t)) is measurable, so is t 7→ u(t). By the a-priori estimates (3.7), u belongs

to L∞(0, T ;U).

By (2.16) and in view of the definition of Gτ , we can write Gτ (t, qτ (t)) = G(ϑ(t, τ), qτ (t))

for some ϑ(t, τ) ∈ [t, T ] such that limτ→0 ϑ(t, τ) = t; in fact, ϑ(t, τ) is mink∈N∪{0}{kτ ≥ t}.
Like in (3.20), we now have Gτ (t, qτ (t)) = v(w(ϑ(t, τ)), ζτ (t)) → v(w(t), ζ(t)) = G(t, q(t)).

Comparing it what we got by Helly’s selection principle, we can see that G(t) = G(t, q(t))

for all t ∈ [0, T ], which proves (iii).

Step 2: q(t) ∈ S(t) for all t. Let us fix t. As qτ (t) ∈ S(ϑ(t, τ)) with ϑ(·, ·) from Step 1,

by using Lemma 3.2, we can see that q(t) ∈ S(t).

Step 3: The energy (in)equality (2.24) for s = 0 and a.a. t ∈ [0, T ]. One can pass to the

limit in (3.6) considered with t as some grid-point belonging to some partition of [0, T ] so

that (3.6) is at our disposal for each finer partition (for the limit passage, we will therefore

consider only those partitions, i.e. with τ small enough with respect to this t). Note that

the set of such t’s is dense in [0, T ]. Again, we use limτ→0 Gτ (t, qτ (t)) = G(t, q(t)).

From the pointwise converge of ζτ (·) and from the definition (2.25) of Var[0,t]R(·), we

get lim infτ→0Var[0,t]R(qτ ) ≥Var[0,t]R(q). We already showed in Step 1 that ζτ (θ) →
ζ(θ) in Z for any θ ∈ [0, t]. Then, using the notation F := F (w, ζ) in accord with

Lemma 2.1, this lemma says, in particular, that F (w(θ), ζτ (θ)) → F (w(θ), ζ(θ)) weakly
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in Z∗, and hence also 〈F (w(θ), ζτ (θ)),
d
dθ

w(θ)〉 → 〈F (w(θ), ζτ (θ)),
d
dθ

w(θ)〉 for any θ ∈
[0, t]. Moreover, we have a common integrable majorant (even an L∞-bound) for {θ 7→
〈F (w(θ), ζτ (θ)),

d
dθ

w(θ)〉}τ>0, cf. the arguments at the end of the proof of Lemma 3.1.

Therefore, by Lebesgue’s dominated-convergence theorem,

lim
τ→0

∫ t

0

〈
F

(
w(θ), ζτ (θ)

)
,
dw

dθ

〉
dθ =

∫ t

0

〈
F

(
w(θ), ζ(θ)

)
,
dw

dθ

〉
dθ.(3.22)

Likewise, the reduced work of external loading
∫ t

0

〈
F (w(θ), ζτ (θ − τ)), d

dθ
w(θ)

〉
dθ

occurring on the right-hand side of (3.6) converges to the same limit as∫ t

0

〈
F (w(θ), ζτ (θ)),

d
dθ

w(θ)
〉
dθ, i.e. to

∫ t

0

〈
F (w(θ), ζ(θ)), d

dθ
w(θ)

〉
dθ; here we need that the

shifted ζτ (t − τ) has the same weak limit as ζτ (t) for a.a. t ∈ [0, T ]. This is indeed true

because ζτ (t − τ) → ζ(t) weakly in Z provided t is a point of continuity of ζ(·), i.e. for

a.a. t ∈ [0, T ] because BV-functions are a.e. continuous. Then, we can pass to the limit

in both inequalities in (3.6), proving thus

m(t) := G
(
t, q(t)

)−G
(
0, q0

)
+ VarR(q; 0, t) +

∫ t

0

〈
F

(
w(θ), ζ(θ)

)
,
dw

dθ

〉
dθ = 0(3.23)

at each t of the form kτ ∈ [0, T ], k = 1, ..., T/τ , τ from the considered sequence of time

steps. The (only countable) set of such t’s is dense in [0, T ] and thus (3.23) must hold also

at each t ∈ [0, T ] at which all functions involved in (3.23) are continuous. Those functions

have, however, a bounded variations and are thus continuous with the exception of at

most countable number of points. Hence (3.23) holds everywhere on [0, T ] with the only

exception of at most countable number of points.

Step 4: The energy (in)equality (2.24) everywhere. As ζ is a BV-mapping, it possesses

limits from the left and from the limits at each t ∈ [0, T ], in particular at a point ϑ

where some function involved in (3.23) is not continuous. Denote ζ−(ϑ) :=w*-limt↗ϑ ζ(t)

and ζ+(ϑ) :=w*-limt↘ϑ ζ(t). By (3.2), w(·) is (even absolutely) continuous everywhere,

and as u(t) depends (norm×weak,norm)-continuously on (w(t), ζ(t)), there are also limits

u−(ϑ) := limt↗ϑ u(t) and u+(ϑ) := limt↘ϑ u(t). So that altogether we have q+(ϑ) =w*-

limt↘ϑ q(t) and q−(ϑ) =w*-limt↗ϑ q(t). Furthermore, put G−(ϑ) := limt↗ϑ G(t, q(t)) and

G+(ϑ) := limt↘ϑ G(t, q(t)); these limits exists as the Gibbs energy has a bounded varia-

tion. From Lemma 3.2, we know

G+(ϑ) = G
(
ϑ, q+(ϑ)

)
and G−(ϑ) = G

(
ϑ, q−(ϑ)

)
.(3.24)

As we have proved q(ϑ) ∈ S(ϑ) in Step 2, putting q̃ := q+(ϑ) into (2.16) written, of

course, for t = ϑ, we obtain

G
(
ϑ, q(ϑ)

) ≤ G
(
ϑ, q+(ϑ)

)
+ R

(
q+(ϑ)− q(ϑ)

)
.(3.25)

Likewise, by Proposition 3.2 also q−(ϑ) ∈ S(ϑ) and thus, together with (3.25),

G−(ϑ) = G
(
ϑ, q−(ϑ)

) ≤ G
(
ϑ, q(ϑ)

)
+ R

(
q(ϑ)− q−(ϑ)

)
(3.26)

≤ G+(ϑ) + R
(
q(ϑ)− q−(ϑ)

)
+ R

(
q+(ϑ)− q(ϑ)

)
.
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Figure 2. Detail of the finite element mesh on the interface boundary.

By definition (2.25), we have VarR(q; s, t) = VarR(q; s, ϑ) + VarR(q; ϑ, t) for s < ϑ < t.

Moreover, lims↗ϑ VarR(q; s, ϑ) = R(q(ϑ) − q−(ϑ)) and limt↘ϑ VarR(q; ϑ, t) = R(q+(ϑ) −
q(ϑ)). Passing to the limit in (3.23) and using (3.24) we obtain

G+(ϑ)−G−(ϑ) + R
(
q(ϑ)− q−(ϑ)

)
+ R

(
q+(ϑ)− q(ϑ)

)
= 0,(3.27)

which shows that (3.26) and hence (3.25) are in fact equalities. For ϑ > 0 we find

m(ϑ)− lim
s↗ϑ

m(t) = G
(
ϑ, q(ϑ)

)−G−(ϑ) + R
(
q(ϑ− q−(ϑ)

)
= 0.

Hence m is proved to be continuous from the left. Similarly, we find

lim
t↘ϑ

m(t)−m(ϑ) = G+(ϑ)−G(ϑ, q(ϑ)) + R(q+(ϑ)− q(ϑ)) = 0,

which proves the continuity from the right. Together with (3.23) we conclude m(t) = 0

for all t ∈ [0, T ]. This proves m(t)−m(s) = 0 which is the claimed equality in (2.24). 2

4. Numerical approximation and model examples

The minimization problem (3.1), obtained by semi-discretization in the time variable,

is further discretized in the space variable by the standard finite element method. In

particular, we use linear triangular elements. Vectors associated with the discretized

variables will be denoted by boldface letters. We use the same mesh for both variables, u

and ζ. In order to allow for the separation (delamination) of the elastic bodies, each joint

boundary Γαβ is discretized by pairs of nodes, say (nα,i, nβ,j), with the same position.

The notation nα,i means the i-th node from the set of nodes discretizing Ωα. Denote by

Iαβ the set of triple indices (i, j, k). The first two indices refer to the above nodes; the

third index k relates to the component of the vector ζ corresponding to node (nα,i, nβ,j);

see Figure 2.
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Let Aα be the stiffness matrices of the elastic bodies Ωα, α = 1, . . . ,m. The discretized

elastic stored energy becomes

V(u, ζ) =
m∑

α=1

(
uT

αAαuα +
α−1∑

β=1

∑

(i,j,k)∈Iαβ

ωkζk (uα,i−uβ,j)
>bαβ(nα,i)(uα,i−uβ,j)

)

where ωi are integration weights and νij is the outer normal to Γαβ at the i-th node from

Ωα. Similarly, the discretized dissipation potential is

R(ζ) =
m∑

α=1

α−1∑

β=1

∑

(i,j,k)∈Iαβ

−ωkdαβ(nα,i)ζk.

The case R(ζ) = +∞ will be implemented through a corresponding linear constraint.

Finally, let L be a rectangular matrix selecting the boundary components from the whole

vector u.

The discrete version of the optimization problem (3.1) is then




Minimize V(u, ζ) + R(ζ−ζκ−1)

subject to Lu ≥ wκ,

(uα,i − uβ,j) · νij ≥ 0, (i, j) ∈ Iαβ, α, β = 1, . . . , m,

ζκ−1 ≥ ζ ≥ 0 componentwise.

(4.1)

Here the index κ−1 refers to the previous time step. The irreversibility of the dissipation

process is guaranteed by the left-hand side of the box constraint.

As we are only interested in the components of the displacement vector lying on the

boundary Γ, we can eliminate all components corresponding to the interior nodes. This

reduces the number of variables in (4.1) to the number of interface boundary nodes times

five (two times two components of the displacement vector plus the components of ζ)

plus the number of boundary nodes with prescribed non-zero Dirichlet condition (loaded

nodes) times two.

Problem (4.1) is a medium-size nonconvex optimization problem that has to be solved

repeatedly. Being nonconvex, the problem has several local minima from which only

one is “physical”. The “non-physical” minima refer to situations when the delamination

parameter ζ is smaller than it really should be, i.e. the delamination occurs sooner than

in reality. The only tool by which we can (try to) control the minima is the choice of

the initial point. At the beginning of the time iteration process, when no load is applied,

we initiate ζ ≡ 1, meaning non-delaminated state. Then, in each time step, we initiate

ζ by its upper bound, i.e., ζκ−1. Note that the mathematical model is quite different,

since it supposes a global stability condition, where the system is able to find any global

minimizer, see the discussion below.

Obviously, the selection of the optimization code was a critical issue for getting realistic

solutions efficiently. The code of our choice was snopt [12] that proved to be a robust

and reliable solver for medium and large-scale problems. We implemented problem (4.1)
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in matlab and used snopt version available in the toolbox tomlab1 and callable from

matlab.

Example 4.1. Figure 3 shows the geometry and the boundary conditions. By the Dirich-

let condition applied at the right-hand end we try to split apart the two elastic bodies.

The prescribed displacement is a linear function of time.
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Figure 3. Geometry and boundary conditions for Example 4.1.

Figure 4 presents the deformed body after 150 and 600 time units, along with the

energy balance as a function of time. From top to bottom, Line 1 shows the right-hand

and the left-hand sides of (3.6) which are almost identical in the figure, Line 2 denotes the

computed stored energy V (qτ (T )) + VarR(qτ ; 0, T ) (see again (3.6)), Line 3 is the energy

stored in the elastic bodies, Line 4 is the dissipated energy VarR(qτ ; 0, T ), and Line 5 the

energy stored in the adhesive on the interface boundary. We can nicely see the jumps in

the energies whenever a new node is delaminated. After some steps, the computed energy

tends outside the bounds, i.e. Lines 1 and 2 are distinct, contrary to what one expects in

view of the two-sided energy estimate (3.6), which is valid even for discrete times. This

is most likely due to two reasons. First, we had to approximate the integrals in (3.6)

by keeping the reaction forces F constant over the time intervals ((k−1)τ, kτ), i.e., we

used F (wτ (θ), ζτ (θ)) instead of F (w(θ), ζτ (θ)). This problem could only be avoided by

“sub-discretization” of each interval and calculating the reaction forces in each substep,

which is a very time-consuming task. Second, our numerical code may not always find

the global minimum in the noncovex problem (4.1). Getting stuck in local minima will

easily violate (3.6), as we show in the trivial finite-dimensional Example 4.3.

To have a better impression of the delamination process, we plot in Figure 5 the (level

lines of the) local energy density of the adhesive bαβζ(t, x)(uα(t, x)−uβ(t, x))2 as a function

of time and the “horizontal” space variable x. Also in Figure 5 we present a 3D view on

the function −ζ(t, x). We notice a remarkable fact that ζ(t, x) only attains the values 0

or 1 and never any intermediate value. This fact is also seen in the following Example

4.3.

Remark 4.2. (Clapeyron’s principle [3].) Figure 4 (left/down) shows a remarkable fact:

at the beginning of the loading process, the work of external loading is equally distributed

1http://www.tomlab.biz/
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Figure 4. Example 4.1: delamination after 150 (left) and 600 time steps

(right) and evolution of energetic in time:

1: work of external loading calculated as
∫ t

0
〈F, dw/dt〉,

2: this work but calculated as V (q(t)) + VarR(q; 0, t)− V (q0),

3: stored elastic energy in all domains Ωα,

4: energy VarR(qτ ; 0, t) dissipated in the adhesive,

5: stored elastic energy in the adhesive.

Hence, curve 2 is the sum of 3, 4 and 5.

to the stored energy and to the dissipated energy. This corresponds to Clapeyron’s princi-

ple of linear elasticity for slowly loaded bodies with viscous damping, see [11] for a modern

treatment. For further loading, the delamination process is close to be finished and the

external work turns rather to the stored energy, and this is why the curves 3 and 4 start

to diverge from each other on Figure 4 (right/down).

Example 4.3. We consider a very simplistic finite-dimensional model for delamination

which displays the difference between using a local versus a global stability condition.

We consider the system of three elastic strings as displayed in Figure 6. All strings

are assumed to be linearly elastic with identical constants e > 0. The right upper string
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Figure 5. Example 4.1: evolution of local energy density of the adhesive

and values of ζ(t, x).
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Figure 6. Three elastic strings.

(number 3) may break partially break with a percentage ζ ∈ [0, 1] of intact material.

The energy dissipated in breaking will be d(ζold−ζnew) with a positive material constant

d. The system is driven by the Dirichlet condition x(t) = w(t) and the only remaining

elastic freedom is the position y(t) which will depend on ζ.

The stored energy is given by V (t, y, ζ) = e
2
((w(t)−y)2 + y2 + ζy2) and the dissipation

is

R(ζ−ζ̃) = d(ζ̃−ζ) for ζ̃ ≥ ζ and +∞ else.

The unique elastic equilibrium is given by y = Y (w, ζ) = w/(2+ζ) and the minimal

energy (cf. Lemma 2.3) reads

v(w, ζ) =
e w2

2

1 + ζ

2 + ζ
.
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A particular feature of this model is that v(w, ·) is strictly concave on [0, 1]. Hence, the

initial state ζ = 1 is global stable in the sense of (2.16) if and only if

v(w, 1) ≤ v(w, 0) + d,

which is equivalent to w ≤ wglob
crit =

√
12d/e. Hence, if w increases through this value,

then ζ jumps from 1 down to 0 and the energy balance is kept.

However, if we only ask for local stability of ζ = 1 (as is done in numerics and probably

in nature) the criterion is

0 ≥ ∂

∂ζ
v(w, 1)− d

which gives the condition w ≤ wloc
crit =

√
18d/e. Hence, local stability holds longer than

the global one. If w increases through this value we again find a jump from 1 down to 0,

however, now the dissipation is just d whereas the energy release in the springs is larger:

v(wloc
crit, 1)− v(wloc

crit, 0) =
e (wloc

crit)
2

12
=

3

2
d > d.

Example 4.4. In this example we try to model a real-world problem of crash of a vehicle.

The model is sketched in Figure 7. The crash element, drafted in grey, is a laminated

elastic body. By delamination, the element absorbs part of the crash energy, thus pre-

venting the passengers’ injuries. Again, the crash element is modeled by two elastic and

one adhesive layer. Figure 7 also shows the geometry and the boundary conditions.
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Figure 7. Motivation, geometry and boundary conditions for Example 4.4.

The deformation of the body after 100 time steps with τ = 0.0625 (starting from

t0 = 10) is shown in Figure 8. In this case, the inner segment was delaminated (almost)

at once.
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Figure 8. Delamination after 100 time steps in Example 4.4.
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