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Abstract

It is well-known in surface wave theory that the secular equation for the surface-
wave speed v can be written as detM = 0 in terms of the surface impedance
matrix M . It is shown in this paper that M satisfies the simple identity (M −
iR)T−1(M + iRT ) − Q + ρv2I = 0 in the usual notation in the Stroh formalism.
This identity provides an efficient method for calculating the wave speed of surface
waves in unstressed or prestressed elastic half-spaces. The method is explained and
illustrated by examples. It is also shown that the buckling/wrinkling prestress for a
prestressed elastic half-space can be calculated using the same procedure but with
prestress playing the role of v.

Keywords: Stroh formalism; surface waves; elastic half-space; buckling; surface
impedance matrix.

1 Introduction

Free surface waves are travelling waves that can propagate along the surface of an elastic
half-space. They satisfy the traction-free boundary condition and decay to zero expo-
nentially away from the surface. Plane body waves can always propagate in any infinite,
well-behaved elastic body, as guaranteed by the satisfaction of the the strong ellipticity
condition. But given an elastic half-space, the existence of a surface wave solution is
not guaranteed since in general one needs a linear combination of three inhomogeneous
body wave solutions (that have the right decaying behaviour) to construct a surface wave
solution, and it is not always possible for such a construction to satisfy the traction-free
boundary condition.

The central question addressed in the linear theory of surface waves is the existence
and uniqueness: given a half-space, can it support a surface wave? and if it does, is the
surface wave solution unique? Over the past three decades or so, this question has been



fully resolved, with the aid of the powerful Stroh formalism (Stroh 1958, 1962), even for
a generally anisotropic elastic half-space. We refer to the review article by Chadwick and
Smith (1977) and the book by Ting (1996) for a detailed description of the theory and
for a comprehensive collection of relevant references. It is now known that whenever a
subsonic surface wave exists, it is unique. Furthermore, given an elastic half-space, there
are simple procedures to determine whether a surface wave can propagate or not.

Once the existence has been established by the general theory, there remains the ques-
tion of finding the surface-wave speed from a secular equation. A number of approaches
have been suggested under the Stroh formalism; see, for instance, Barnett and Lothe
(1985) and Chadwick and Wilson (1992). Although all these approaches are straightfor-
ward, their use requires familiarity with the Stroh formalism and a considerable amount
of numerical work. Recently, Mozhaev (1994) proposed a novel method based on first
integrals of displacement components, and obtained an explicit secular equation which,
in the most general case, involves the evaluation of the determinant of an 18 × 18 ma-
trix. More recently, motivated by Mozhaev’s (1994) approach and ideas in the Stroh
formalism, Destrade (2001) developed another efficient method based on first integrals of
traction components. Although both Mozhaev’s (1994) and Destrade’s (2001) methods
yield explicit secular equations that can be solved numerically for the wave speed, these
secular equations also admit spurious roots that have to be carefully eliminated.

It is well-known that the secular equation for the surface-wave speed v can be written
as

det M(v) = 0, (1.1)

where M(v) is the surface impedance matrix (Ingebrigtsen and Tonning 1969). This
matrix has the attractive properties that it is Hermitian so that det M(v) is real and that
det M(v) is a monotone decreasing function of v in a sufficiently large interval starting
from v = 0 so that it is very amenable to numerical calculations. To simplify notation, we
shall write M(v) simply as M hereafter. In this paper, we show that M can be determined
from the simple algebraic matrix equation

(M − iR)T−1(M + iRT )−Q + ρv2I = 0, (1.2)

where ρ is the material density, I is the identity matrix, the superscripts “T” and “−1”
denote matrix transpose and inverse, respectively, and in terms of the elastic stiffnesses
Cijks the components of the three matrices T, R, Q are defined by

Tik = Ci2k2, Rik = Ci1k2, Qik = Ci1k1. (1.3)

Throughout this work we assume that surface waves propagate along the the x1-direction
and the half space occupies the region x2 > 0 relative to a rectangular coordinate system
with coordinates (xi).

Relation (1.2) does not seem to have been noticed previously by researchers working
with the Stroh formalism. The discovery of this relation is motivated by recent results
of Mielke and Sprenger (1998) on a topic which is indirectly related to the surface wave
problem. In fact (1.2) is called an “algebraic Riccati equation” in the mathematical
literature, especially in Control Theory where an extended literature exists, cf. Lancaster
and Rodman (1995).
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Once (1.2) is known, one would naturally try to solve (1.2) for M and substitute the
solution into (1.1) to obtain an explicit secular equation. We note, however, that solutions
of (1.2) for M are not unique. For instance, if M is a solution, then so is −MT . In the
following section, we summarize some results from the general surface wave theory under
the Stroh formalism; these results show that whenever a surface wave with speed vR exists,
M must necessarily be positive definite for 0 ≤ v < vR and at v = vR it must be positive
semi-definite and must have 0 as an unrepeated eigenvalue. It is further shown in Section
3 that the solution of (1.2) that has the above properties is unique. These results suggest
the following simple method for determining the surface wave speed: If equation (1.2)
can be solved exactly, we simply find the unique solution of M that is positive definite at
v = 0 and substitute it into (1.3) to obtain an explicit secular equation for v. If it is not
possible to solve (1.2) exactly, we may numerically solve (1.1) and (1.2) simultaneously,
making use of the selection criterion that the correct M must be positive semi-definite
and must have 0 as an unrepeated eigenvalue.

In Section 3 we also derive (1.2) using two different approaches. One approach is based
on the Stroh formalism whereas the other is entirely free from the Stroh formalism. The
above method for computing the surface wave speed is then explained and illustrated by
examples in Section 4. We explain how in the numerical solution of (1.1) and (1.2) an
initial guess may be chosen that should usually converge to the correct solution. In Section
5, we extend our analysis to surface waves in prestressed elastic half-spaces. With the
prestress acting as an extra parameter, there exists the possibility that a standing surface
wave may be supported by the half-space. When this happens, the prestressed half-space
is said to be marginally stable, and the corresponding condition on the prestress is called
the buckling/wrinkling condition. The latter condition is also the condition at which
the complementing condition is marginally violated (see, e.g., Thompson 1969, Simpson
and Spector 1987 and 1989, Renardy and Rogers 1996). For variational problems this
condition is called the Agmon’s condition in the linear setting and quasiconvexity at the
boundary in the nonlinear setting (Ball and Marsden 1984, Mielke and Sprenger 1998).
Since the buckling condition can be obtained from the secular equation by setting v = 0,
it can also be derived by the present method. This is discussed in Section 6. In all these
sections, the half-space is assumed to be compressible. In the final section, we discuss how
an incompressible elastic half-space could be treated as the limit of a nearly incompressible
elastic half-space.

2 Elements of the surface wave theory under the

Stroh formalism

We first consider a homogeneous, un-stressed, generally anisotropic elastic half-space de-
fined by

0 < x2 < ∞, −∞ < x1, x3 < ∞
relative to a rectangular coordinate system with coordinates (xi). Free surface waves are
governed by the equation of motion

Cijksuk,sj = ρüi, 0 < x2 < ∞, (2.1)
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the traction-free boundary condition

Ci2ksuk,s = 0 on x2 = 0, (2.2)

and the decay condition
uk → 0 as x2 →∞, (2.3)

where (uk) is the displacement, ρ the material density, a comma denotes differentiation
with respect to spatial coordinates and a dot denotes material time derivative. The Cijks

are elastic stiffnesses and are assumed to satisfy the symmetry relations

Cijks = Cksij = Cjiks, (2.4)

and the strong convexity condition

Cijksξijξks > 0 ∀ non-zero real symmetric tensors ξ. (2.5)

The strong ellipticity condition is given by

Cijksηiηkγjγs > 0 ∀ non-zero real vectors η and γ, (2.6)

and is implied by the strong convexity condition (2.5).
Without loss of generality, we may assume that the surface wave is propagating along

the x1-direction and that
u = z(mx2)e

im(x1−vt) + C.C., (2.7)

where u = (uk), i =
√−1, m is a positive wave number, v is the propagation speed and

C.C. denotes the complex conjugate of the preceding term. The elastic half-space is said
to support a surface wave if we can find a real positive value v and a non-trivial vector
function z(y) such that (2.1)–(2.3) are satisfied.

On substituting (2.7) into (2.1) and (2.2), we obtain

Tz′′(y) + i(R + RT )z′(y)− (Q− ρv2I)z(y) = 0, 0 < y < ∞, (2.8)

Tz′ + iRTz = 0, on y = 0, (2.9)

where a prime signifies differentiation with respect to y (= mx2) and the matrices T, R, Q
are defined by (1.3). We note that satisfaction of the strong ellipticity condition (2.6)
ensures that T and Q are both positive definite and hence they are invertible.

To solve (2.8), we look for a solution of the form

z = aeipy, Im (p) > 0, (2.10)

where Im (p) denotes the imaginary part of p and the inequality is imposed to ensure
satisfaction of the decay condition (2.3). The number p and vector a are determined by
the following eigenvalue problem resulting from the substitution of (2.10) into (2.8):

(
p2T + p(R + RT ) + Q− ρv2I

)
a = 0. (2.11)

4



Thus, the eigenvalues p are determined by

det
(
p2T + p(R + RT ) + Q− ρv2I

)
= 0. (2.12)

We note that corresponding to (2.10), u given by (2.7) becomes

u = a eim(x1+px2−vt). (2.13)

If p were real, p = tan φ say, (2.13) would then represent a plane body wave with
wave number m/ cos φ and speed v cos φ, propagating in the direction n = (nk) =
(cos φ, sin φ, 0). Equation (2.11), which could be re-written as

(
sin2 φT + sin φ cos φ (R + RT ) + cos2 φQ− ρv2 cos2 φ I

)
a = 0, (2.14)

or equivalently,
(Cijksnsnj − ρv2 cos2 φ δik) ak = 0, (2.15)

would then become the propagation condition for the body wave.
Define by vb the speed of body waves and by v̂ the minimum of vb/ cos φ over all possible

values of φ and all possible plane body waves propagating in the direction (cos φ, sin φ, 0).
This means that any value v determined by the eigenvalue problem (2.14) must necessarily
be greater than or equal to v̂. The condition 0 ≤ v < v̂ then ensures that none of the roots
of (2.12) can be real, for if one such real root existed, p = tan φ say, the above argument
would imply that (2.14) has a solution for v that is smaller than v̂, which contradicts the
statement in the last sentence. Surface waves with wave speeds satisfying 0 ≤ v < v̂ are
said to be subsonic, and the number v̂ is called the limiting speed (Chadwick and Smith
1977, p. 335).

We now assume that 0 ≤ v < v̂. We denote by p1, p2, p3 the three complex roots of
(2.12) that have positive imaginary parts and by a(1), a(2), a(3) a set of associated eigen-
vectors. By considering the complex conjugate of (2.11), we deduce that p1, p2, p3, where
a bar signifies complex conjugation, are also roots of (2.12) and that a set of associated
eigenvectors is a(1), a(2), a(3). It can be shown (see, e.g., Chadwick and Smith 1977, p. 350)
that when p1, p2, p3 are all distinct, a(1), a(2), a(3) must necessarily be linearly independent.
For a simple exposition we assume that when there exist repeated roots, such a set of
linearly independent eigenvectors can still be found. We remark, however, all the main
results presented in this paper can be shown to be independent of this assumption.

A general solution that satisfies the decay condition is then given by

z =
3∑

k=1

qka
(k)eipky, (2.16)

where q1, q2, q3 are disposable constants. This solution yields a surface wave solution only
if the traction-free boundary condition (2.9) is satisfied, that is if

3∑

k=1

qkb
(k) = Bq = 0, (2.17)
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where

b(k) = pkTa(k) + RTa(k), B = (b(1),b(2),b(3)), q = (q1, q2, q3)
T . (2.18)

In the above definition, B is the 3× 3 matrix formed by putting the three column vectors
b(k) side by side. It then follows that a surface wave exists only if the secular equation

det B = 0 (2.19)

has a positive real root for v. The central question addressed in surface wave theory is
the existence and uniqueness of such a root.

There are a number of situations for which the answer to the above question is straight-
forward. For instance, for a half-space that is made of an isotropic material or an or-
thotropic material whose axes of symmetry coincide with the three coordinate axes, the
equation for u3 decouples from those for u1 and u2. We may then restrict the range of all
subscripts to 1 and 2, and as a result the three matrices T, R,Q have the simple form

T =

(
T1 0
0 T2

)
, R =

(
0 R1

R2 0

)
, Q =

(
Q1 0
0 Q2

)
. (2.20)

Equation (2.12) then reduces to a quadratic equation for p2. Since the secular equation
(2.19) can be manipulated into a form that depends on p1 and p2 through p2

1 +p2
2 and p1p2

whose expressions can be expressed explicitly in terms of the coefficients in the quadratic
equation for p2, it can be reduced to an explicit form: a form that depends only on the
elastic stiffnesses and the speed v. The existence and uniqueness question can then be
settled either by elementary analysis or by a straightforward numerical calculation.

For more general anisotropic materials, elimination of p1, p2, p3 from the secular equa-
tion (2.19) is in general not possible. As a result, the secular equation cannot be reduced
to an explicit form. This is the source of difficulty in characterizing surface waves in gen-
erally anisotropic elastic half-spaces. We note, however, that although an explicit secular
equation is not possible by the above method of elimination, it can still be obtained by a
different route, as has been demonstrated by Mozhaev (1994) and Destrade (2001).

In the surface wave theory that has been developed over the past three decades under
the framework of the Stroh formalism, the existence and uniqueness problem for surface
waves in generally anisotropic materials has been beautifully resolved. We now summarize
its main results that are relevant to the present study. For a comprehensive review of
various aspects of the Stroh formalism, we refer the reader to the reviw article by Chadwick
and Smith (1977) and the book by Ting (1996). For a concise account of the surface wave
theory based on the surface impedance matrix, we refer the reader to the paper by Barnett
and Lothe (1985).

We first consider the problem of solving (2.8) subject to the usual decay condition and,
instead of the traction-free boundary condition (2.9), the condition that z(0) is prescribed.
Since the latter condition corresponds to (cf. (2.7))

u(x1, 0, t) = z(0)eim(x1−vt) + C.C.,

the half-space under consideration is subjected to a forcing that is travelling with speed v.
The surface traction required to produce such a surface displacement is given by Ci2ksuk,s.
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The averaged work done by the surface traction over the area 0 < x1 < 2π/m, 0 < x3 < 1
and over one period of oscillation from t = 0 to t = 2π/(mv) is given by

L =
mv

2π
· m

2π

∫ 2π/(mv)

0

∫ 2π/m

0
Ci2ksuk,suidx1dt. (2.21)

Since the integrand takes the same value at x1 = 0 and x1 = 2π/m and decays to zero
exponentially as x2 →∞, the above integral can be replaced by

L =
m2v

4π2

∫ 2π/(mv)

0

∮

∂D
Cijksuk,suinjdx1dt, (2.22)

where ∂D is the boundary of the domain 0 < x1 < 2π/m, 0 < x2 < ∞, and (nj) is the
unit normal to ∂D. Applying the divergence theorem and making use of the equation of
motion (2.1), we obtain

L =
m2v

4π2

∫ ∞

0

∫ 2π/m

0

∫ 2π/(mv)

0
Ldtdx1dx2, (2.23)

where

L = Cijksui,juk,s + ρüiui,

= Qikuk,1ui,1 + Rkiuk,1ui,2 + Rikuk,2ui,1 + Tikui,2uk,2 + ρv2ui,11ui,

= 2m2
{
Qikzkzi + iRki(zkz

′
i − zkz

′
i) + Tikz

′
iz
′
k − ρv2zizi

}

+w(kx2)e
2im(x1−vt) + w(kx2)e

−2im(x1−vt), (2.24)

a bar signifies complex conjugation and the expression for w(kx2) is not required in our
analysis. In obtaining the last equation we have also made use of the representation (2.7).
It then follows that

L = 2m2
∫ ∞

0

(
Qz · z + iRTz · z′ − iRz′ · z + Tz′ · z′ − ρv2z · z

)
dy, (2.25)

where a dot denotes the usual dot product of two vectors. By evaluating the integral in
(2.25) by parts and making use of (2.8), we may reduce the above expression to

1

2m2
L = (Tz′ + iRTz) · z

∣∣∣
∞
0

= −(Tz′(0) + iRTz(0)) · z(0). (2.26)

It is seen that the right hand side of (2.26) is simply the dot product of the reduced
traction vector −(Tz′(0) + iRTz(0)) with z(0) (note that the actual traction vector and
reduced traction vector are minus the left hand sides of (2.2) and (2.9), respectively).
This reduced traction vector can be evaluated with the use of (2.16) which is a general
solution for z with the correct decay behaviour. First, we have

z(0) =
3∑

k=1

qka
(k) = Aq, (2.27)

and

Tz′(0) =
3∑

k=1

iqkpkTa(k) =
3∑

k=1

iqk(b
(k) −RTa(k)) = i(B −RT A)q, (2.28)
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where we have made use of (2.18) and the matrix A is defined by

A = (a(1), a(2), a(2)). (2.29)

It then follows that

−(Tz′(0) + iRTz(0)) = −i(B −RT A)A−1z(0)− iRTz(0) = −iBA−1z(0). (2.30)

This motivates the introduction of M , defined by

M = −iBA−1, (2.31)

as the surface impedance matrix. It can be verified by straightforward substitution that
M has the representation

M = H−1 − iST H−1, (2.32)

where the two matrices H and S, defined by

H = 2iAAT , S = i(2ABT − I), (2.33)

play an important role in the Stroh formalism (here we follow the notation of Ting 1996;
our matrices M, H, S respectively correspond to Z,−Q,S in Barnett and Lothe 1985
and to Z, S2, S1 in Chadwick and Smith 1977). It is known that when a(1), a(2), a(3) are
appropriately normalized, then for 0 ≤ v ≤ v̂ the matrix H−1 is real and symmetric,
whereas ST H−1 is real and skew-symmetric. It is also known that H−1 is positive definite
for 0 ≤ v < v̂, and at v = v̂ at least one of its eigenvalues must vanish. Thus, for
0 ≤ v ≤ v̂, M is Hermitian,

w ·Mw = w ·H−1w ≥ 0 for all real vectors w, (2.34)

and
tr M = tr H−1 ≥ 0. (2.35)

See Barnett and Lothe (1985, p. 139). These properties are crucial in establishing existence
and uniqueness of surface waves.

The above analysis is valid for any z(0). If z(0) and M are such that

Mz(0) = −(Tz′(0) + iRTz(0)) = 0,

then the traction-free boundary condition (2.9) is satisfied. Conversely, had we addition-
ally imposed the boundary condition (2.9), we would have arrived at Mz(0) = 0. Thus,
a (free) surface wave solution exists only if (1.1) is satisfied. Equation (1.1) provides a
secular equation alternative to (2.19). In view of the relation (2.31) and the fact that
det A 6= 0, these two alternative secular equations are clearly equivalent.

Return now to the forcing problem. In terms of M , equation (2.26) becomes

1

2m2
L = z(0) ·Mz(0). (2.36)
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From the fact that the right hand side of (2.36) should be real for arbitrary z(0) (since
the left hand is), we may again deduce that M must necessarily be Hermitian. When
v = 0, the forcing is static and the work done by the surface traction is converted entirely
into strain energy which, under the assumption (2.5), is positive. Equation (2.36) then
implies that the surface impedance matrix M is positive definite when v = 0 (since z(0)
can be arbitrarily chosen). Thus, all the three real eigenvalues of M are positive when
v = 0.

We observe that although the matrices A and B in the definition (2.31) are not uniquely
defined, by (2.36) the matrix M must necessarily be uniquely defined.

Following Barnett and Lothe (1985, p. 145), we equate the two expressions for dL/dv,
one from (2.25) and the other from (2.36), to obtain

z(0) · dM

dv
z(0) = −2ρv

∫ ∞

0
z · zdy, (2.37)

where in obtaining the expression on the right hand side use has been made of the fact
that the first variation of the Lagrangian L vanishes when z satisfies (2.8) and (2.9).

Equation (2.37) shows that dM/dv is negative definite, and hence that in 0 ≤ v < v̂
the eigenvalues of M are monotone decreasing functions of v. Thus, a (subsonic) surface
wave exists only if an eigenvalue of M , originally positive at v = 0, decreases to zero at
v = vR < v̂. It may further be concluded that whenever such a vR exists, it is unique,
for if it is not unique, then two of the eigenvalues of M must be negative at v = v̂ and
any real vector w lying in the eigenspace of these two negative eigenvalues will violate
(2.34) (see Barnett and Lothe 1985, p. 145). This argument also implies that 0 cannot
be a repeated eigenvalue of M at v = vR. Finally, from the facts that det M equals
the product of the three eigenvalues and that each eigenvalue is a monotone decreasing
function of v, we deduce that det M is a monotone decreasing function of v at least for
0 ≤ v ≤ vR. This last property implies that the secular equation (1.1) is very amenable
to numerical calculations.

We denote by λ1, λ2, λ3 the three eigenvalues of M at v = v̂, and assume that they
are ordered such that λ1 ≥ λ2 ≥ λ3. The above discussion shows that a necessary and
sufficient condition for the existence of a unique subsonic surface wave is that λ3 < 0. To
derive a more convenient form of this condition (in terms of M), we observe that if λ3 < 0
then the other two eigenvalues must be such that either λ1 > 0, λ2 > 0 or λ1 > 0, λ2 = 0
(we note that (2.35) precludes the possibility λ1 = λ2 = 0). Since λ3 < 0, λ1 > 0, λ2 > 0
can be characterized by det M < 0 and λ3 < 0, λ1 > 0, λ2 = 0 by 2(λ1λ2 +λ1λ3 +λ2λ3) =
(tr M)2 − tr M2 < 0, we have the following important result due to Barnett and Lothe
(1985).

Theorem 1. A necessary and sufficient condition for the existence of a unique subsonic
surface wave is that at v = v̂ either det M < 0 or (tr M)2 − tr M2 < 0.
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3 Derivation of (1.2) and uniqueness of its solution

In this section we derive (1.2) using two different approaches. First, from (2.11) we obtain

(
p2

kT + pk(R + RT ) + Q− ρv2I
)
a(k) = 0, k = 1, 2, 3, (3.1)

which can be rewritten as

pk(pkT + RT )a(k) + (pkR + Q− ρv2I)a(k) = 0, k = 1, 2, 3. (3.2)

With the use of (2.18), (3.2) becomes

pkb
(k) + pkRa(k) + (Q− ρv2I)a(k) = 0, k = 1, 2, 3. (3.3)

It then follows that
BD + RAD + (Q− ρv2I)A = 0, (3.4)

where
D = diag (p1, p2, p3). (3.5)

From (2.18) we obtain
B = TAD + RT A, (3.6)

and hence
D = A−1T−1B − A−1T−1RT A. (3.7)

On substituting (3.7) into (3.4), multiplying the resulting equation from the right by A−1

and making use of the definition (2.31), we obtain the algebraic Ricatti equation (1.2):

(M − iR)T−1(M + iRT )−Q + ρv2I = 0.

Alternatively, this equation can be derived by viewing (2.8) as an initial value problem
and looking for a solution of the form

z = e−yEz(0), (3.8)

where E is a 3× 3 matrix to be determined. This representation is justified since (2.16)
can in fact be manipulated into this form. On substituting (3.8) into (2.8) and (2.9), we
obtain

TE2 − i(R + RT )E −Q + ρv2I = 0, (−TE + iRT ) z(0) = 0. (3.9)

Equation (3.9)2 motivates the introduction of M through −TE + iRT = −M , or equiva-
lently,

E = T−1(M + iRT ). (3.10)

This definition of M is clearly consistent with (2.30) and (2.31). Substituting (3.10) into
(3.9)1, we again obtain (1.2). Mathematically, we may interpret the transformation from
E to M as being necessary in converting (3.9)1 (for E) into a Hermitian equation (for
M).

The solution (3.8) is a decaying solution only if all the eigenvalues of E have positive
real parts. We shall prove shortly that this will be the case if and only if M is as
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constructed in Section 2. This implies that when we solve (1.2) to find M and use
(1.1) to find the surface-wave speed, the solution of (1.2) that we are seeking must have
the following properties: (i) it must be Hermitian; (ii) it must be positive definite for
0 ≤ v < vR; and (iii) at v = vR it must be positive semi-definite having 0 as an unrepeated
eigenvalue. In the rest of this section, we show that (1.2) has a unique solution having
these properties. More specifically, we shall show that (i) for 0 ≤ v < vR equation (1.2)
has a unique solution that is positive definite; (ii) at v = vR if the eigenvalues of (2.11) are
all distinct, then (1.2) has a unique solution that is positive semi-definite; (iii) at v = vR

if (2.11) have repeated eigenvalues, then (1.2) may have more than one solution that is
positive semi-definite, but all the spurious solutions of (1.2) must necessarily have 0 as a
repeated eigenvalue.

We first establish the following preliminary results.

Proposition 1. Let M be an arbitrary solution of the Riccati equation (1.2) and E
be the corresponding matrix calculated from (3.10) so that E satisfies (3.9)1. If λ is an
eigenvalue of E and d an associated eigenvector, then p = iλ, a = d and p = −iλ, a = d
are both solutions of the eigenvalue problem (2.11).

Proof. We first note that in terms of M the eigenvalue problem (2.11) can be factorized
as {

(M − iR)T−1 − ipI
}

T
{
T−1(M + iRT ) + ipI

}
a = 0. (3.11)

This can be verified by simply expanding the left hand side of (3.11) and making use of
the fact that M is a solution of (1.2). In terms of E, equation (3.11) may be written as

(E
T − ipI)T (E + ipI) a = (E + ipI)

T
T (E + ipI) a = 0. (3.12)

It then follows that if Ed = λd, then p = iλ, a = d satisfy the above equation and hence
the eigenvalue problem (2.11). Since the eigenvalues and eigenvectors of (2.11) always
appear as complex conjugate pairs, p = −iλ, a = d is also a solution. QED

Proposition 2. Consider the matrix problem

TE2 − i(R + RT )E −Q + ρv2I = 0, Re spec E > 0, (3.13)

where “Re spec E” means the “real parts of the spectra of E”.
(i) The problem (3.13) has a unique solution, given by

E = −iADA−1, (3.14)

where A and D are as defined in Section 2 ;
(ii) If p is an eigenvalue of (2.11) with associated eigenvector a and Im (p) > 0, then

λ = −ip,d = a is an eigensolution of Ed = λd.

Proof. (i) If (3.13) has two different solutions, then by Proposition 1 the eigenvalue prob-
lem (2.11) must have more than three eigenvalues with positive imaginary parts (counting
multiplicity). This contradicts the fact that (2.11) can only have three eigenvalues with
positive imaginary parts.
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On substituting (2.31) and (3.6) into (3.10), we obtain (3.14). From (3.5) the eigenval-
ues of this solution of E are −ip1,−ip2,−ip3 and they all have positive real parts. Thus,
(3.14) is a solution of (3.13) and is the unique solution.
(ii) Let the E in Proposition 1 be the solution of (3.13). Since Re (−ip) < 0, we have
det (E +ipI) 6= 0. It then follows from (3.12) that (E +ipI)a = 0, i.e. Ea = −ipa. QED

Item (i) in the above Proposition and its proof imply that the eigenvalues of E in (3.8)
all have positive real parts if and only if M is as constructed in Section 2.

In the rest of this section, we use M exclusively to denote the solution given by (2.31)
and E to denote the corresponding E calculated according to (3.10) or equivalently (3.14).

Proposition 3. Let M0 be any other solution of (1.2). Then η ·M0η ≤ η ·Mη for all
complex vectors η.

Proof. This proposition is a special case of a more general result known in Control Theory,
see, e.g., Knobloch et al. (1993, Lemma A2.2). To prove this inequality, we consider the
function V (y) defined by

V (y) = (M −M0)η(y) · η(y), where η(y) = e−yEη0, η0 arbitrary.

It follows that
d

dy
V (y) = [M0E + E

T
M0 −ME − E

T
M ]η · η.

It is easy to verify with the use of (3.10) that

M0E + E
T
M0 −ME − E

T
M = −(M −M0)T

−1(M −M0),

where we have also made use of the fact that both M and M0 are solutions of (1.2). Since
the matrix on the right hand side is negative semi-definite because T−1 is positive definite,
we have

d

dy
V (y) = −(M −M0)T

−1(M −M0)η · η ≤ 0.

Since η(y) → 0 as y → ∞, we obtain (M −M0)η0 · η0 = V (0) ≥ V (∞) = 0. The result
in the Proposition then follows from the fact that η0 can be chosen arbitrarily. QED

We are now in a position to prove the following theorem.

Theorem 2. For 0 ≤ v ≤ vR if M0 is another positive semi-definite solution of (1.2) that
is not given by (2.31), then 0 must be a repeated eigenvalue of M0.

Proof. By Propositions 2(i), the matrix E0, given by E0 = T−1(M0 + iRT ), must have
at least one eigenvalue with a negative real part. We denote this eigenvalue by q and its
associated eigenvector by d. By Proposition 1, p = −iq is an eigenvalue of (2.11) with
associated eigenvector d and Re (p) > 0. It then follows from Proposition 2(ii) that −q is
an eigenvalue of E with associated eigenvector d. Thus,

T−1(M + iRT )d = −qd, T−1(M0 + iRT )d = qd. (3.15)

12



Taking the complex conjugate of the second equation and adding it to the first one, we
find (M +M0)d = 0. Since M and M0 are both positive semidefinite (then so is M0), we
conclude Md = M0d = 0. Furthermore, from Proposition 3, 0 ≤ M0d · d ≤ Md · d = 0
which implies M0d = 0. Thus, d and d are both eigenvectors of M0 corresponding to
the eigenvalue 0. The theorem is proved if it can be shown that d and d are linearly
independent. Suppose for contradition that d is a multiple of d. Then d must necessarily
be a multiple of a real vector, and so without loss of generality we may take d to be
real. Equation (3.15)2 would imply Re(q)d · Td = 0, a contradiction since Re(q) < 0 and
d · Td > 0. QED.

The following corollary follows immediately from Theorem 2:

Corollary 1. For 0 ≤ v < vR, the Riccati equation (1.2) has a unique positive definite
solution for M , given by (2.31).

We remark, however, that for any v, including v = vR, equation (1.2) may have more
than one solution that is positive semi-definite. For instance, when v = 0, T = I, and
R,Q are given by

R =




0 2 0
−1 0 0
0 0 0


 , Q =




4 0 0
0 1 0
0 0 9


 , (3.16)

equation (1.2) has two positive semi-definite solutions, given by



4
√

2/3 4i/3 0

−4i/3 2
√

2/3 0
0 0 3


 and




0 0 0
0 0 0
0 0 3


 , (3.17)

respectively. The following theorem shows that in general at v = vR equation (1.2) has a
unique positive semi-definite solution.

Theorem 3. At v = vR, if the eigenvalues of (2.11) are all distinct, then the Riccati
equation (1.2) has no other positive semi-definite solutions than (2.31).

Proof. Suppose M0 is another solution of (1.2) that is positive semi-definite. We de-
fine matrix E0 through E0 = T−1(M0 + iRT ), and denote its eigenvalues and associated
eigenvectors by

q1, q2, q3, and d1, d2, d3,

respectively. By Proposition 1, the six distinct eigenvalues of (2.11) are

iq1, iq2, iq3, −iq1, −iq2, −iq3. (3.18)

By Propositions 2(i), E0 must have at least one eigenvalue with a negative real part.
Suppose without loss of generality that this eigenvalue is q3. Following the same argument
as that used in the proof of Theorem 2, we may deduce that M0d3 = M0d3 = 0. It then
follows that

E0d3 = T−1(M0 + iRT )d3 = T−1(iRT )d3 = T−1(−M0 + iRT )d3 = −E0d3 = −q3d3,

which shows that−q3, which has a positive real part, is an eigenvalue of E0 with associated
eigenvector d3. Thus, we must have either −q3 = q1 or −q3 = q2, both implying that
two of the eigenvalues in (3.18) are equal, which contradicts our assumption that the six
eigenvalues of (2.11) are all distinct. QED.
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4 Determination of surface-wave speeds

In the most general case when u3 is coupled with u1 and u2, the surface impedance matrix
takes the form

M =




M1 M3 + iM4 M5 + iM6

M3 − iM4 M2 M7 + iM8

M5 − iM6 M7 − iM8 M9


 , Mi ∈ IR. (4.1)

On substituting (4.1) into (1.2) and equating both the real and imaginary parts of each
component on the left to zero, we obtain nine real algebraic equations. These equations
can easily be obtained with the aid of a symbolic manipulation package. For instance,
with the use of Mathematica (Wolfram 1991), the real and imaginary parts of the (1,
2)-component of the left hand side of (1.2) can be extracted using the commands

ComplexExpand[Re[W [[1, 2]]]], ComplexExpand[Im[W [[1, 2]]]],

where W denotes the left hand side of (1.2) and ComplexExpand expands a complex
expression by assuming that all the non-numerical symbols are real. For each numerical
value of v < vR, these nine equations can also be solved with the aid of Mathematica to
find M1, . . . , M9 numerically. In using the command FindRoot to find the desired M
that is positive definite, a reasonable initial guess is essential in preventing convergence
to a spurious solution (i.e. a solution that is not positive definite). The choice of initial
guess will be discussed in subsequent examples. To determine the surface-wave speed, we
may simply increase v from zero in small steps and for each v we first determine M and
then evaluate det M . The value of v at which det M = 0 yields the surface-wave speed
vR.

Alternatively, we may solve the above nine equations and (1.1) simultaneously for the
ten unknowns ρv2 and Mi (i = 1, 2, . . . , 9), bearing in mind the selection criterion that the
correction solution of M must be positive semi-definite and must have 0 as an unrepeated
eigenvalue. This alternative procedure is more efficient. Only when this fails to find a
solution, does it become necessary to use the above searching method (usually just to
verify that there is indeed no solution). We now illustrate this procedure through some
examples.

We first consider the simple case when the plane x3 = 0 is a symmetry plane of the
anisotropic half-space. In this case the variation of u3 is de-coupled from that of u1 and
u2. We may set u3 = 0 and restrict the range of all subscripts to 1 and 2. Equation (4.1)
may now be replaced by

M =

(
M1 M3 + iM4

M3 − iM4 M2

)
, Mi ∈ IR, (4.2)

and the three matrices T,R and Q can all be assumed to be 2 × 2. When these three
matrices are of the form given by (2.20), equation (1.2) can be solved analytically and we
obtain

M1 =

√√√√T1(Q1 − ρv2)− T1

T2

(
R1 + R2

1 + γ

)2

,
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M2 = γ
T2

T1

M1, M3 = 0, M4 =
γR1 −R2

1 + γ
, (4.3)

where

γ =

√√√√T1(Q2 − ρv2)

T2(Q1 − ρv2)
, (4.4)

and in obtaining (4.3) we have made use of the fact that M is positive semi-definite so
that M1 ≥ 0,M2 ≥ 0. On substituting (4.3) into det M = M1M2 − M2

3 − M2
4 = 0, we

obtain the explicit secular equation

√
T1T2(Q1 − ρv2)(Q2 − ρv2)− γR2

1 + R2
2

1 + γ
= 0. (4.5)

By the general surface wave theory summarized in Section 2, the left hand side of (4.5)
is a monotone decreasing function of v in a sufficiently large interval starting from v = 0,
and a single root vR can easily be located if it exists.

We next consider the case when the three matrices T, R and Q are not of the simple
form given by (2.20), but instead are of the general form given by

T =

(
c66 c26

c26 c22

)
, R =

(
c16 c12

c66 c26

)
, Q =

(
c11 c16

c16 c66

)
, (4.6)

where we have used the standard notation Cijkl = cs(i,j)s(k,l) with

s(m,n) =

{
m if m = n
9−m− n if m 6= n.

In this case it does not seem possible to solve (1.2) analytically. But the four algebraic
equations for ρv2,M1,M2,M3 are easily solved with the use of the command FindRoot
in Matheamtica. As an initial guess, we may use the exact solution when c26 and c16 are
set to zero. This exact solution is given by (4.3)–(4.5) with

T1 = c66, T2 = c22, R1 = c12, R2 = c66, Q1 = c11, Q2 = c66.

We have performed this calculation for all the 12 monoclinic crystals considered in De-
strade (2001) and our calculations confirm the results in his Table 1. We may also consider
the general case when the [100] crystallographic axis of each monoclinic crystal makes an
arbitrary angle θ with the x1-axis while the [001] axis remains coincident with the x3-axis
(thus the plane x3 = 0 is always a symmetry plane and Destrade’s (2001) calculations
correspond to θ = 0). We increase θ gradually from 0 and at each step we may use either
the result from the previous step or the exact solution (4.3)–(4.5) as an initial guess. We
have carried out such calculations and have been able to reproduce the curves for the
surface-wave speed in Chadwick and Wilson’s (1992) Figures 5–7.

For the more general case when x3 = 0 is not a symmetry plane, u3 becomes coupled
with u1 and u2 and we have to solve the full system of ten equations for ρv2,M1, . . . , M9.
In this case it is more important to have a good initial guess when using the command

15



FindRoot in Mathematica. A good strategy is to start the calculation from a configu-
ration of the elastic half-space in which x3 = 0 is a symmetry plane and then rotate the
crystallographic axes in small steps to obtain the target configuration. For some crystals
we may find a configuration in which all the three coordinate axes are symmetry axes. In
this case the three matrices T, R, Q take the simple form

T =




T1 0 0
0 T2 0
0 0 T3


 , R =




0 R1 0
R2 0 0
0 0 0


 , Q =




Q1 0 0
0 Q2 0
0 0 Q3


 , (4.7)

and the exact solution of (1.2) is given by (4.3) and

M5 = M6 = M7 = M8 = 0, M9 =
√

T3Q3. (4.8)

Then det M is simply M9 times the left hand side of (4.5) and so det M = 0 reduces to
(4.5). As an example, we consider surface waves propagating on the (110) plane of cubic
crystal nickel. When the x1-axis coincides with the [001] direction, the three coordinate
axes are symmetry axes and equation (1.2) has the above exact solution. The surface-wave
speed can be determined from the secular equation (4.5). Once this solution is obtained,
we may rotate the crystal, in small steps, from when the x1-axis coincides with the [001]
direction to, for instance, when the x1-axis coincides with the [110] direction. At each
step, the result from the previous step is used as an initial guess. Using this procedure
we have been able to reproduce the result in Farnell’s (1970) Figure 11.

If one chooses the initial guess according to the methods explained in this section,
it would be unlikely for the solution to converge to a solution that is not positive semi-
definite (since the initial guess is positive semi-definite and is sufficiently close to the
correct solution). One might think that convergence to a spurious positive semi-definite
solution would still be possible. However, Theorem 3 assures us that a spurious positive
semi-definite solution does not even exist in most cases. In fact, in all the calculations
which we have conducted, including all those presented in this section, our initial guesses
have always converged to the correct solutions.

5 Surface waves in prestressed elastic half-spaces

The extension of the Stroh formalism to surface waves in a prestressed elastic body has
been established by Chadwick and Jarvis (1979). In this context, the coordinates (xi) used
in the previous sections describe the position of material particles in a finitely-deformed
configuration. By a surface wave we mean a travelling wave along the x1-axis that has
the same properties as before except that the traction-free boundary condition is replaced
by the condition that the surface traction corresponding to the finite deformation is a
dead-load and hence it is the incremental surface traction that mush vanish.

Surface waves are now governed by the incremental equation of motion

Ajilkuk,lj = ρüi, 0 < x2 < ∞, (5.1)
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and the incremental boundary condition

A2ilkuk,l = 0, on x2 = 0, (5.2)

together with the usual decay condition (2.3), where (uk) is the incremental displacement
field and Ajilk are usually referred to as the instantaneous elastic moduli. The expressions
of Ajilk relative to the principal axes of stretch are well-documented and can be found in
many papers on incremental deformations (see, e.g., Fu and Ogden 2001, p. 249). We do
not require these moduli to satisfy the strong convexity condition but instead we assume
that they satisfy the strong ellipticity condition and the symmetry relations Ajilk = Alkji.
In general Ajilk 6= Aijlk, but none of the results presented in Sections 2 and 3 depend
on Cijks = Cjiks. Thus, with the identification Cijks = Ajisk almost all of the results
from Sections 2 and 3 also apply to surface waves in a prestressed elastic half-space. The
only exception is that as we do not require Ajilk to satisfy the rather restrictive strong
convexity condition, we cannot claim immediately that the surface impedance matrix M
is positive definite when v = 0.

For easy reference, we assume that the size of the finite deformation is characterized
by a controlling parameter, ω say, with ω = 0 corresponding to no deformation. The
surface impedance matrix M now depends on ω as well as v and the secular equation
takes the form

det M(v, ω) = 0. (5.3)

We assume that when ω = 0, the elastic half-space under condition satisfies the strong
convexity condition so that in that case M is positive definite at v = 0. We now assume
that ω is increased gradually from zero and we consider the corresponding variation of
the three eigenvalues of M at v = 0. M will remain positive definite until ω reaches a
critical value, ωcr say, at which one of the eigenvalues of M vanish. From our analysis
in Section 2, at this value of ω, the elastic half-space supports a standing wave solution
and the half-space is said to be marginally stable. If ω > ωcr, the prestressed half-space
is said to be unstable with respect to surface-wave type perturbations. The critical value
ωcr thus separates the region of stability from that of instability. The relation ω = ωcr is
referred to as the buckling condition which will be discussed further in the next section.
We remark that we may also hit marginal stability when ω is decreased from zero and
the region of stability may be bounded by two critical values/curves.

We now assume that the prestressed half-space is stable with respect to surface-wave
type perturbations. The above argument shows that under this condition M must nec-
essarily be positive definite at v = 0. Then all the results concerning existence and
uniqueness of surface waves presented in Sections 2 and 3 can be applied, and the identity
(1.2) can be used together with (1.1) to locate the unique surface-wave speed if it exists.

For surface waves propagating in a pre-stressed half-space in which the principal axes
of stretch are aligned with the three coordinate axes, the explicit secular equation is given
by (4.5) together with

T1 = A2121, T2 = A2222, R1 = A1122, R2 = A2112, Q1 = A1111, Q2 = A1212. (5.4)

This secular equation agrees with that derived by Dowaikh and Ogden (1991).
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6 Buckling condition

The discussion in the previous section indicates that for a prestressed elastic half-space,
the buckling condition can be obtained by setting v = 0 in the secular equation (5.3), and
so it is given by det M(0, ω) = 0. The determination of the critical value of ω follows the
same procedure as that of the surface-wave speed described in previous sections, with ω
playing the same role as v.

There are situations where an explicit expression for the buckling condition can be
obtained. For instance, when the principal axes of stretch coincide with the three coordi-
nates axes, the buckling condition can be obtained by setting v = 0 in (4.5) and making
the substitutions (5.4). The result is

A2
2112

√
A2222A1111 +A2

1122

√
A2121A1212 −A2121A1212

√
A2222A1111

−A2222A1111

√
A2121A1212 = 0, (6.1)

which is precisely the buckling condition obtained in Dowaikh and Ogden (1991) (see also
Steigmann and Ogden 1997, Mielke and Sprenger 1998, Cai and Fu 2000).

We observe that the buckling condition is also the condition at which quasiconvexity
at the boundary is marginally violated, see Mielke and Sprenger (1998). The following
theorem follows from Mielke and Sprenger’s (1998) Theorem 3.4.

Theorem 4. The buckling condition for a pre-stressed elastic half-space is independent of
the orientation of the surface as long as the surface normal remains in the (x1, x2)-plane.

Proof. Suppose that we wish to derive the buckling condition for a pre-stressed elastic
half-space Π that is defined by |x1| < ∞, |x3| < ∞, 0 < x2 < ∞ in terms of coordinates
(xi). Now consider another pre-stressed elastic half-space Π∗ whose interior is identical
with that of Π but the outward unit normal to whose surface is (− sin θ, cos θ, 0)T . We
assume that the surface traction on the surface of Π∗ must be consistent with the state
of pre-stress in its interior. The theorem says that Π and Π∗ have the same buckling
condition.

We introduce a new coordinate system with coordinates (x∗i ) such that the half-space
Π∗ is defined by |x∗1| < ∞, |x∗3| < ∞, 0 < x∗2 < ∞. It is then clear that x∗i = Ωijxj, where
Ωij are the components of

Ω =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 .

We use a superscript “*” to signify any quantity that is referred to the new coordinate
system. Thus, for instance, A∗

jilk denotes the instantaneous elastic moduli relative to the
coordinate system (x∗i ), and we have

A∗
jisk = ΩjmΩitΩspΩkqAmtpq.

We note that all the elastic moduli are functions of the prestress. It is straightforward to
show that

T ∗ = ΩT (θ)ΩT , R∗ = ΩR(θ)ΩT , Q∗ = ΩQ(θ)ΩT , Ω = (Ωij), (6.2)
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where, for instance, T ∗ is the matrix whose components are defined by T ∗
ik = A∗

2i2k, and

T (θ) = T cos2 θ − (R + RT ) sin θ cos θ + Q sin2 θ.

R(θ) = R cos2 θ + (T −Q) sin θ cos θ −RT sin2 θ, (6.3)

Q(θ) = Q cos2 θ + (R + RT ) sin θ cos θ + T sin2 θ,

For the half-space Π∗, the eigenvalue problem (2.11) with v = 0 becomes

(
p∗2T ∗ + p∗(R∗ + R∗T ) + Q∗) a∗ = 0. (6.4)

On substituting (6.2) and (6.3) into (6.4), we obtain



Q +

sin θ + p∗ cos θ

cos θ − p∗ sin θ
(R + RT ) +

(
sin θ + p∗ cos θ

cos θ − p∗ sin θ

)2

T



 ΩTa∗ = 0, (6.5)

from which we deduce that

p =
sin θ + p∗ cos θ

cos θ − p∗ sin θ
, a = ΩTa∗. (6.6)

From the formula b∗ = p∗T ∗a∗ + R∗Ta∗ (cf. (2.18)1), we obtain b∗ = Ωb. It then follows
that

A∗ = ΩA, B∗ = ΩB, M∗ = ΩMΩT . (6.7)

Thus, det M∗ = det M , and so the buckling conditions for Π and Π∗ are the same. QED.

We remark that the above method of proof is borrowed entirely from the surface
wave theory based on the Stroh formalism. The result in Theorem 4 should also have
been obvious from that theory although previously it does not seem to have been stated
explicitly.

Theorem 4 makes it possible to derive an explicit buckling condition for a pre-stressed
elastic half-space even when the principal axes of stretch do not coincide with the coor-
dinate axes relative to which the half-space is defined by 0 < x2 < ∞. According to the
above theorem, if a rotation about the x3-axis can bring the new axes to coincide with
the principal axes of stretch, then the explicit buckling equation is given by (6.1) with
Ajisk replaced by A∗

jisk.

7 Conclusion

In this paper, we have derived a new identity (namely (1.2)) for the surface impedance
matrix and proposed a method for determining the speed of surface waves in unstressed
or prestressed elastic half-spaces. Although the properties that M is Hermitian, positive
semi-definite and that det M is a monotone decreasing function of v are underpinned by
the Stroh formalism, the use of this method is entirely free from the latter. Thus, it
offers an attractive alternative to the procedures proposed in Barnet and Lothe (1985)
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and Chadwick and Wilson (1992). A simple but efficient Mathematica program is written
and is used to reproduce results reported in some previous investigations.

All the results presented so far are for compressible elastic half-spaces. Chadwick
(1997) has shown how to extend the Stroh formalism to incompressible materials by
treating an incompressible material as the limit of a nearly incompressible material. An
elastic material is said to be nearly incompressible if its strain energy function is of the
form

Ŵ (F) = W (F) +
1

2
c(J − 1)2, (7.1)

where F is the deformation gradient, J = detF, and c is a positive constant with physical
dimensions of stress. The strain-energy given by (7.1) reduces to the pseudo-strain-energy
function appropriate to a general incompressible material under the limit

J → 1, c →∞, c(J − 1) → −p, (7.2)

where p is the pressure associated with the incompressibility constraint. Oldroyd (1950)
seems to have been the first to use such a limiting process, followed by Spencer (1959,
1962, 1970), Scott (1986) and Rogerson and Scott (1992), and Chadwick (1997).

With the aid of (7.1) and the definitions

Âjilk = J̄−1F̄jpF̄lq
∂2Ŵ

∂Fip∂Fkq

(F̄), Ajilk = J̄−1F̄jpF̄lq
∂2W

∂Fip∂Fkq

(F̄), (7.3)

for the instantaneous elastic moduli for the nearly incompressible and the incompressible
materials, respectively, we obtain

Âjilk = Ajilk + c(2J̄ − 1)δijδkl − c(J̄ − 1)δilδjk, (7.4)

where F̄ is the deformation gradient associated with the finite deformation, J̄ = det F̄
and δij is the usual Kroneker delta. For an nearly incompressible elastic half-space with
elastic moduli given by (7.4), the surface-wave speed or the buckling condition can be
obtained following the procedure explained in the previous sections. By taking the limit

J̄ → 1, c →∞, c(J̄ − 1) → −p̄, (7.5)

where p̄ is the pressure associated with the finite deformation, we may obtain the corre-
sponding results for a prestressed incompressible elastic half-space.
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