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Abstract

A recent model [BMR09] allows for complete damage, such that the
deformation is not well-defined. The evolution can be described in terms
of energy densities and stresses. We introduce the notion of generalized

energetic solution and show how the existence theory can be generalized to
convex, but non-quadratic elastic energies. We also discuss Γ-convergence
from partial to complete damage.
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1 Introduction

There is a rich literature [Ort85, FrM93, DPO94, FrN96, DMT01, MaA01,
HaS03] on rate-independent mechanical models for damage in brittle mate-
rials, and recently several mathematical approaches [FrM98, FKS99, FrG06]
were developed, in particular the abstract theory of rate-independent processes
[MiT99, MiT04, Mie05] proved very helpful as it allows one to employ the ma-
chinery of incremental minimization.

Here we want to contribute to the models discussed in [MiR06, BMR09,
MRZ10]. Let u : Ω → R

d be the displacement and z : Ω → [0, 1] the damage
variable, then the rate-independent system is given by the triple (F×Z,E,D),
where u ∈ F, z ∈ Z. The energy-storage functional has the form

Eδ(t, u, z) =

∫

Ω

W (x, e(uD(t)+u)(x), z(x)) + δ|e(uD(t)+u)|p dx + G(z),

and the dissipation is D(z, ẑ) =
∫
Ω

D(x, z(x), z̃(x))dx. For δ > 0 existence of en-
ergetic solutions (uδ, zδ) is known [MiR06] for general W . The limit passage for
δ → 0 in the sense of Γ-limits works under the assumption that e 7→ W (x, e, z)
is quadratic [BMR09, MRZ10]. The difficulty is that W is not coercive, hence
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in the limit δ → 0 we are not able to control uδ, and convergence should only be
valid for zδ. The task is to define a limit equation in terms of z. In particular
one needs a replacement of the power of the external forces giving the limit of
∂tEδ(uδ(t), zδ(t)).

Here we discuss the changes needed to generalize from a quadratic W (x, ·, z)
to arbitrary strictly convex potentials with p growth from above. The main idea
is to use a reduced functional Iδ(t, z) avoiding the usage of u; however, to keep
control over stresses one introduces an auxiliary functional
Vδ : Lp(Ω; Rd×d

sym)×Z → R such that

Iδ(t, z) = min {Eδ(t, ũ, z) | u ∈ F } = Vδ(e(uD(t)), z) + G(z),

and DeVδ(e(uD(t)), z(t)) ∈ Lp/(p−1)(Ω; Rd×d
sym) gives the equilibrium stress.

In (Z, Iδ,D) it is possible to pass to the Γ-limit for δ → 0 with respect
to the weak convergence in Z ⊂ W1,r(Ω). However, the Γ-limit I(t, ·) loses
in general differentiability in t, since we are not able to show that the Γ-limit
V(e, ·) of Vδ(e, ·) remains differentiable in e. Nevertheless, the convexity of
V(·, z) allows us to characterize the Clarke differential using the left and right
partial derivative in t:

∂Cl
t I(t, z) =

[
∂−

t I(t, z), ∂+
t I(t, z)

]
,

where ∂±
t I(t, z) = ± sup

{
〈±σ, e(u̇D(t))〉 | σ ∈ ∂sub

e V(e(uD(t)), z)
}
.

We generalize the notion of energetic solutions [Mie05] to generalized ener-
getic solutions by keeping stability (S) and replacing the energy balance by

I(t, z(t)) + DissD(z, [0, t]) = I(0, z(0)) +

∫ t

0

p(τ)dτ,

where p has to satisfy p(τ) ∈ ∂Cl
τ I(τ, z(τ)) a.e. in [0, T ], see Definition 4.3. Theo-

rem 4.4 establishes existence of such generalized energetic solutions to (Z;I,D).
Moreover, assuming that a certain conjecture holds, we show that a subsequence
(zδj

)j∈N converges to weak energetic solution for (Z,I,D).

2 Setup of the model

The body Ω ⊂ R
d is described by a bounded Lipschitz domain. The state of

the system is described by the displacement ũ : Ω → R
d and the scalar damage

variable z : Ω → [0, 1], where z = 1 denotes no damage and z = 0 means that
the maximal damage has been reached (all microscopic breakable structures are
broken). The displacement ũ will satisfy time-dependent Dirichlet boundary
conditions on ΓD ⊂ ∂Ω via uD ∈ C1([0, T ],W1,p(Ω)) in the form

ũ(t) = uD(t) + u(t) with u(t) ∈ F =
{

v ∈ W1,p(Ω) | v|ΓD
≡ 0

}
.

We also use the infinitesimal strain tensor e(u) = 1
2

(
∇u + (∇u)T

)
and set

eD(t) = e(uD(t)) and ėD(t) = e(u̇D(t)) where ˙ = ∂t.
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The stored energy of the system is given via the functional

E(t, u, z) =
∫
Ω

W (x, eD(t, x)+e(u)(x), z(x))dx + G(z)
with G(z) =

∫
Ω

b(z(x)) + κ(x)|∇z(x)|r dx,

where κ ∈ L∞(Ω) and κ(x) ≥ c0 a.e. Thus, the suitable space for the deforma-
tion states is Z =

{
z ∈ W1,r(Ω) | 0 ≤ z ≤ 1

}
. The additional term b is intended

to model cohesive effects and should satisfy b′(z) ≤ 0, i.e., if the stresses in the
material are released then the damage may heal (ż > 0) by using up some
energy.

The stored energy density W : Ω × Ed × [0, 1] → R, where Ed = R
d×d
sym , is a

Carathéordory function satisfying

∀ (x, z) ∈ Ω : W (x, ·, z) ∈ C1(Ed), (1a)

∃C > 0 ∀ (x, e, z) : W (x, e, z) ≤ C|e|p + C, (1b)

∀ (x, z) : e 7→ W (x, e, z) is strictly convex, (1c)

∀ (x, e) : z 7→ W (x, e, z) is nondecreasing, (1d)

∃ c1, c2 ∀ (x, e, z) : |∂eW (x, e, z)| ≤ c1(W (x, e, z)+c2)
1−1/p. (1e)

Condition (1d) means that the material becomes weaker if damage increases,
and (1e) is called “stress control”, since it allows us to control the size of the
stresses in terms of the energy alone, uniformly in (x, z). A typical function W
has the form

W (x, e, z) = W0(x, e) + a(z)W1(x, e),

where W0 and W1 are smooth and convex, W0 may be non-coercive while W1

is coercive, a(z) ≥ czα and a′(z) ≥ 0.
Finally we describe the dissipation functional D : Z × Z → [0,∞] via

D(z0, z1) =

∫

Ω

D(x, z0(x), z1(x))dx,

where, for each x, D satisfies the triangle inequality and the coercivity
D(x, z, z̃) ≥ C|z−z̃|. The typical choice is D(x, z, z̃) = δ+(z−z̃) for z̃ ≤ z
and δ−(z̃−z) for z ≤ z̃, where δ+ ∈ (0,∞) and δ− ∈ (0,∞]. Here δ− = ∞
forbids healing, which can only take place if δ− + b′(z) < 0 for some z.

With these functionals we define notion of energetic solution [MiT99, MiT04]
(see also the surveys [Mie05, MiR09]) for the rate-independent energetic system
(Q,E,D), where Q = F × Z. A mapping q = (u, z) : [0, T ] → Q is called
energetic solution if for all t ∈ [0, T ] we have stability (S) and energy
balance (E):

(S) ∀ q̃ = (ũ, z̃) ∈ Q : E(t, q(t)) ≤ E(t, q̃) + D(z(t), z̃);

(E) E(t, q(t)) + DissD(z, [0, t]) = E(0, q(0)) +
∫ t

0
∂τE(τ, q(τ))dτ.

(2)

Here DissD(z, [r, s]) is defined to be the supremum of
∑N

1 D(z(tj−1, z(tj)) over
all finite partitions r ≤ t0 < t1 · · · tN ≤ s. Here we use that for each q the power
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of the external forces ∂tE(t, q) is well defined by using (1e), and (E) implicitly
assumes that t 7→ ∂tE(t, q(t)) is measurable.

For non-coercive problems, where u is no longer well-defined, we will see that
it is the main problem how to define this partial derivative ∂tE(t, q). Thus, it is
an open problem whether under the above assumption a general existence result
holds. However, the coercive case was solved under more general assumptions
including unilateral constraints and volume forces [MiR06]. To make this theory
applicable we strengthen the lower bound in (1b) to make it coercive in e for all
z ∈ [0, 1].

Theorem 2.1. If the above assumption hold with p > 1 and r > d and if W
additionally satisfies

∃C, c > 0 ∀ (x, e, z) : c|e|p − C ≤ W (x, e, z),

then for all stable initial states q0 ∈ Q (i.e., (S) holds at t = 0 with q(0) replaced
by q0) there exists an energetic solution q : [0, T ] → Q with q(0) = q0 and
q ∈ L∞([0, T ],W1,p(Ω)×W1,r(Ω) and z ∈ B([0, T ],W1,r(Ω)).

3 Reformulation based on stress and energy

The approach for solving non-coercive problems was indicated already in [MiR06]
and finally solved in [BMR09] under the additional assumption that W is
quadratic: W (x, e, z) = z

2e:C:e; however more general quadratic forms 1
2e:C(z):e+

g(z):e+γ(z) would work equally well. The main idea is to approximate the non-
coercive case with a coercive one by setting

Wδ(x, e, z) = W (x, e, z) + δ(1+|e|2)p/2. (3)

Then for each δ > 0 there is a solution qδ = (uδ, zδ) of the rate-independent
energetic system (Q,Eδ,D). Moreover, using the stress control (1e) it is not
difficult to show that there exists C > 0 such that for all δ ∈ (0, 1) and all
t ∈ [0, T ] we have Eδ(t, qδ(t)) + DissD(zδ, [0, t]) ≤ C.

Now, using the theory of Γ-convergence of rate-independent energetic sys-
tems [MRS08] it is then possible to pass to the limit in the reduced system,
where the displacement u is minimized out. The latter step is essential, since
it is not to be expected that uδ or e(uδ) converges in any reasonably sense. In
regions where z = 0 holds we may have W (x, e, 0) = 0 for a large and possibly
unbounded set of strains e ∈ Ed due to the missing coercivity.

To define the reduced problem we use the strict convexity (1c) to find that
Eδ(t, ·, z) has a unique minimizer u = Uδ(t, z) ∈ F. With this we have

Iδ(t, z) =

∫

Ω

Wδ(x, eD(t)+e(Uδ(t, z)), z)dx + G(z).

A classical argument [KnM08, KMZ08] shows that ∂tIδ(t, z) = ∂tEδ(t, Uδ(t, z), z).
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While the limit of the energy Iδ(t, zδ) along energetic solutions qδ can be
understood in the sense of Γ-limits, it is nontrivial to control the power

∂tIδ(t, zδ) =
∫
Ω

σδ(t):ėD(t)dx with
σδ(t, x) = ∂eW (x, eD(t, x)+e(uδ(t))(x), zδ(t, x)).

The main observation is that the stress-control assumption (1e) and the usual
energy a priori estimates provide bounds for σδ in Lp/(p−1)(Ω,Ed) that are
independent of δ > 0.

The essential idea to make the limit tractable is to introduce an auxiliary
functional in which it is possible to keep control over the Γ-limit. Denote by
E = Lp(Ω;Ed) the strain space, and for (e, z) ∈ E × Z let

Hδ(e, z) = Vδ(e, z) + G(z) with
Vδ(e, z) = min

{ ∫
Ω

Wδ(x, e+e(u), z)dx | u ∈ F
}

.
(4)

In fact, the functional Vδ should not be considered as a functional on E but
rather on B = {u|∂Ω | u ∈ F }, since all the other information is minimized out.
Moreover, for fixed z ∈ Z, the mapping e 7→ Vδ(e, z) is convex and differentiable
with

DeVδ(e, z) = ∂eW (x, e+e(V (e, z)), z) ∈ E
∗ = Lp/(p−1)(Ω;Ed),

where V (e, z) ∈ F is the unique minimizer in (4). This shows that σ =
DeVδ(e, z) is in fact an equilibrium stress, and thus satisfies div σ = 0 in Ω
and σ ν = 0 on ∂Ω\ΓD.

The importance of the functional Vδ is that on the one hand it is possible
to do the Γ-limit for δ → 0 and keep some of the main features and that on the
other hand, by construction the reduced functional Iδ and its partial derivative
with respect to t can be easily expressed:

Iδ(t, z) = Vδ(eD(t), z)+G(z) and ∂tIδ(t, z) = 〈DeVδ(eD(t), z), ėD(t)〉.

Thus, we have found a way to express the energies in terms of the damage alone
and we still have control over the equilibrium stresses DeVδ(eD(t), z) that are
needed to control the power generated by the boundary data uD(t).

4 Existence for the complete-damage problem

A functional I(t, ·) : Z → R is called the Γ-limit of (Iδ(t, ·))δ if

(Γ1) zδ ⇀ z in Z =⇒ I(t, z) ≤ lim infδ→0 Iδ(t, zδ),
(Γ2) ∀ z ∈ Z ∃ (zδ)δ : zδ ⇀ z in Z and Iδ(t, zδ) → I(t, z).

We note that Γ-convergence is quite different from pointwise convergence, see
Example 4.2. Moreover, while each Iδ was strongly continuous, this is not true
for I(t, ·); only the important weak lower semicontinuity is maintained (as for
all Γ-limits).
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The main difficulty is to control the temporal smoothness of I, or more
precisely to show that the following implication holds

zδ ⇀ z in Z

Iδ(t, zδ) → I(t, z)

}
=⇒ ∂tIδ(t, zδ) → ∂tI(t, z),

cf. condition (2.9) in [MRS08]. To provide this result we use the functional Vδ,
since its Γ-limit can be studied more easily. The following result is a direct
generalization of [BMR09, Prop. 2.10].

Proposition 4.1. Let (1) hold with p > 1 and r > d. On E × Z define

V(e, z) = lim
ε→0+

(
lim

δ→0+
Vδ

(
e,max{z−ε, 0}

))
.

Then, V satisfies

∃C > 0 ∀ (e, z) ∈ E × Z : −C ≤ V(e, t) ≤ C + C‖e‖p
E
, (5a)

∀ z ∈ Z : V(·, z) is convex on E, (5b)

if W (x, ·, z) is quadratic, then V(·, z) is quadratic. (5c)

Moreover, we have I(t, z) = V(eD(t), z) + G(z).

The proof relies on the compact embedding of W1,r(Ω) into C0(Ω) and uses
essentially the monotonicity properties of the mapping
(ε, δ) 7→ Vδ

(
e,max{z−ε, 0}

)
: it is non-increasing in ε because of (1d) and it

is nondecreasing in δ because of the definition of Wδ in (3). Thus, the limit
V(e, z) always exists as a pointwise limit in δ and then in ε. Moreover, for each
fixed z the convexity in e is preserved by pointwise convergence. The following
example, which is inspired by [BoV88, Ex. 3] and further discussed in [BMR09],
shows that in general V is strictly smaller than V0(e, z) = limδ→0+ Vδ(e, z).

Example 4.2. Consider Ω = ]−1, 1[ and the energy

Iδ(t, z) =

∫

Ω

δ + z

2
(eD(t)+u′)2 dx + G(z).

Then, Vδ(e, z) =
( ∫

Ω
e dx

)2
/
∫
Ω

2
δ+z dx. Clearly, the pointwise limit V0 is

obtained by letting δ = 0. However, the Γ-limit V(e, ·) in W1,r(Ω) satisfies

V(e, z) = V0(e, z) for min z > 0 and V(e, z) = 0 for min z = 0.

For α ∈ ](r−1)/r, 1[ we let zα(x) = |x|α, then zα ∈ Z and 0 = V(e, z) <

V0(e, z) = (1−α)
( ∫

Ω
edx

)2
/4.

The formula for I allows us to study the question whether the power exists.
For this, we use that convex functions have one-sided Gateaux derivatives in all
points:

δeV(e, z; ê) = lim
h→0+

1

h

(
V(e+hê, z) − V(e, z)

)

= sup
{
〈σ, ê〉 | σ ∈ ∂sub

e V(e, z)
}

,
(6)
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where ∂sub
e V(e, z) ⊂ E

∗ denotes the subdifferential of the convex function
V(·, z). Using eD ∈ C1([0, T ]; E) we find that the left and right partial deriva-
tives ∂±

t I(t, z) = limh→0+
±1
h

(
I(t±h, z) − I(t, z)

)
with respect to t of I exists.

We have the relations

∂−
t I(t, z) = −δeV(t, eD(t);−ėD(t)) ≤ δeV(t, eD(t); ėD(t)) = ∂+

t I(t, z).

Definition 4.3. Let z : [0, T ] → Z satisfy (S) in (2) for all t ∈ [0, T ]. Then, z is
called a generalized energetic solution of the rate-independent energetic system
(Z,I,D), if there exists p : [0, T ] → R such that p(τ) ∈ ∂Cl

τ I(τ, z(τ)) a.e. in
[0, T ] and for all t ∈ [0, T ] we have

I(t, z(t)) + DissD(z, [0, t]) = I(0, z(0)) +

∫ t

0

p(τ)dτ. (7)

Now a slight generalization of the abstract existence theory for rate-indepen-
dent systems gives the following. Note that we construct weak energetic solu-
tions for (Z,I,D) directly directly, without reference to the solutions zδ for
(Z, Iδ,D).

Theorem 4.4. For all stable z0 ∈ Z there exists a generalized energetic solution
for (Z,I,D).

Proof. The existence theory follows the usual steps in the abstract theory for
rate-independent processes [Mie05, FrM06] via incremental minimization, uni-
form a priori estimates and Helly’s selection principle. This part and the proof
of the stability of the limit process work as in [BMR09].

For the upper energy estimate we obtain, by setting A(t) = I(t, z(t)) +
DissD(z, [0, t]),

A(s) − A(r) ≤
∫ s

r

pmax(t)dt with pmax(t) = max ∂Cl
t I(t, z(t)).

With a slight generalization of [Mie05, Prop. 5.7] we see that stability of the limit
process z implies the lower bound A(s) − A(r) ≥

∫ s

r
pmin(t) dt with pmin(t) =

min ∂Cl
t I(t, z(t)).

Thus, we conclude that A is absolutely continuous and satisfies pmin(t) ≤
A′(t) ≤ pmax(t). Hence, setting p(t) = A′(t) the proof is complete. ¤

In the following example we show that the notion of generlaized energetic
solution, which involves the weakened energy balance (7) with the Clarke differ-
ential, is really necessary in cases where the one-sided partial derivatives satisfy
∂−

t I(t, z) < ∂+
t I(t, z) at some points. In particular, it is not possible to make an

a priori choice like p(t) = max{∂Cl
t I(t, z(t))}, which worked in [KZM10, MiR09],

since there ∂−
t I(t, z) ≥ ∂+

t I(t, z) holds.

Example 4.5. This example has a smooth energy Iδ such that ∂tIδ exists, while
in the limit I is only Lipschitz in t. We let Z = R and D(z, z̃) = |z̃−z|. The
energy functional reads

Iδ(t, z) = Hδ

(
z−α(t)

)
and I(t, z) = 2|z−α(t)|,
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where α ∈ C1([0, T ]) is given and Hδ(u) = 2u2/
√

δ2+u2. For the partial deriva-
tives with respect to time we have

∂tIδ(t, z) = −H ′
δ(z−α(t))α̇(t) and ∂Cl

t I(t, z) = −2 Sign(z−α(t))|α̇(t)|.

Since Iδ(t, ·) is smooth and strictly convex, the energetic solutions for
(R, Iδ,D) are exactly the solutions of the doubly nonlinear equation [MiT04]

0 ∈ Sign(ż(t)) + H ′
δ(z(t)−α(t)).

For δ > 0 the system is smooth, while for δ = 0 we have H0(u) = 2|u| and set
I(t, z) = H0(z−α(t)).

Consider the special case α(t) = t and zδ(0) = 0. If βδ is the unique solution
of H ′

δ(βδ) = 1, then the unique energetic solution is zδ(t) = max{0, t−βδ}.
Using 0 < βδ → 0 we find the limit solution z(t) = t = limδ→0 zδ(t). It is a
generalized energetic solution in the sense of Definition 4.3 by using p(t) = 1 ∈
[−2, 2] = ∂Cl

t I(t, t).

5 Γ-convergence for δ → 0

Here we discuss the Γ-limit for the solutions zδ of the rate-independent energetic
system (Z, Iδ,D). First note that the a priori estimates give the boundedness
of the family (zδ)δ in BV([0, T ],L1(Ω))∩L∞([0, T ],W1,r(Ω)), and hence Helly’s
selection principle allows us to extract a subsequence (zδk

)k∈N which converges
pointwise on [0, T ] to a limit z : [0, T ] → Z satisfying the same bound, i.e.,
zδ(t) ⇀ z(t) in Z.

To conclude that z is a generalized energetic solution for (Z,I,D) it is suf-
ficient to check two compatibility conditions, namely conditioned continuous
convergence of the power, cf. [MRS08, (2.9)], and conditioned upper semiconti-
nuity of stable sets, cf. [MRS08, (2.11)]. The latter condition is purely static
and it is not difficult to generalize it to the present case. As in [BMR09] we
obtain the energy convergence Iδ(t, zδ(t)) → I(t, z(t)), which in turn implies
strong convergence ‖zδ(t)−z(t)‖W1,r → 0.

The conditional continuous convergence of the power would be satisfied if
the following conjecture would be true.

Conjecture 5.1. Assume that zδj
is stable for (Z, Iδj

,D) at time t,
zδj

⇀ z, Iδj
(t, zδj

) → I(t, z), and σδj
= DeVδj

(eD(t), zδj
) ⇀ σ∗ in E

∗, then
σ∗ ∈ ∂sub

e V(eD(t), z).

The conjecture holds [BMR09] under the assumption that W (x, e, z) is qua-
dratic in e. The relevant consequence is obtained via (6):

∂−
t I(t, z) ≤ lim inf

δ→0
∂tIδ(t, zδ) ≤ lim sup

δ→0
∂tIδ(t, zδ) ≤ ∂+

t I(t, z). (8)

Combining this estimate with the abstract Γ-convergence for rate-indepen-
dent systems [MRS08] and the existence theory for complete damage [BMR09]
it is possible to obtain the following convergence result.



On complete damage based on energies and stresses 31

Theorem 5.2. Assume that the (yet unproved) estimate (8) holds. If (zδ)δ∈(0,1)

is a family of solutions to (Z, Iδ,D) satisfying

zδ(0) ⇀ z0 in W1,r(Ω) and Iδ(0, zδ(0)) → I(0, z0),

then there exist a subsequence (zδj
)j∈N and a generalized energetic solution

z : [0, T ] → Z for (Z,I,D) with z(0) = z0 such that for all t ∈ [0, T ]

zδj
(t) → z(t) in W1,r(Ω), Iδ(t, zδ(t)) → I(t, z(t)),

DissD(zδ, [0, t]) → DissD(z, [0, t]).
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