Exercise Sheet 7

Definition: The epigraph of a function \(I : X \to \mathbb{R}_\infty \) is defined as

\[
\text{epi}(I) := \{ (u, \alpha) \in X \times \mathbb{R} \mid I(u) \leq \alpha \} \subset X \times \mathbb{R}.
\]

Exercise 21. Estimates via affine functions for convex functions. Consider a proper, convex, and lower semicontinuous functional \(I : X \to \mathbb{R}_\infty \).

(a) Show that for all \(u \) with \(I(u) < \infty \) and all \(\varepsilon > 0 \) there exists \(\xi \in X^* \) such that \(I(u+v) \geq I(u) - \varepsilon + \langle \xi, v \rangle \) for all \(v \in X \). (*Hint: Use epi(I) and separate it in \(X \times \mathbb{R} \) from a suitable set.*)

(b) Show that for all \(u \) with \(I(u) = \infty \) and all \(M \in \mathbb{R} \) there exists \(\xi_M \in X^* \) such that \(I(u+v) \geq M + \langle \xi_M, v \rangle \) for all \(v \in X \). (*Hint: Work in \(X \times \mathbb{R} \) and construct a line segment connecting \((u, M) \) and \((u_1, I(u_1) - 1) \) that does not intersect epi(I).)

(c) Conclude from (a) and (b) (without using sublevels) that \(I \) is weakly lower semicontinuous.

Exercise 22. Bounded convex functions are Lipschitz continuous. Let \(I : X \to \mathbb{R}_\infty \) be proper, convex, and lsc. Assume further that

\[
\exists M, K \in \mathbb{R} \forall u \in B_R(u_*) : \quad K \leq I(u) \leq M.
\]

Show that \(I \) restricted to \(B_r(u_*) \) with \(r \in]0, R[\) is Lipschitz continuous with a Lipschitz constant that only depends on \(M-K \) and \(r/R \).

Exercise 23. Continuity points of convex functionals. For a proper, lower semicontinuous convex functional \(I : X \to \mathbb{R}_\infty \) on a Banach space \(X \) the domain is defined via

\[
\text{dom}(I) := \{ u \in X \mid I(u) < \infty \} \neq \emptyset.
\]

(a) Show that for \(u_1 \in \text{dom}(I) \) the following conditions are equivalent:

(i) \(\exists \delta > 0 : \sup \{ I(u) \mid u \in B_\delta(u_1) \} < \infty \);

(ii) \(I \) is continuous in \(u_1 \).

(b) Show that \(I \) is continuous on \(A := \text{int}(\text{dom}(I)) \), if \(I \) is continuous at one \(u_1 \in A \).

(c) Assume that \(I \) is continuous at one \(u_1 \in A \). Find a supporting hyperplane for all \(u \in A \), i.e. there exists \(\beta \in X^* \) such that \(I(u+v) \geq I(u) + \langle \beta, v \rangle \) for all \(v \in X \).

(*Hint: Use the “open epigraph” \(\{ (u, \alpha) \in X \times \mathbb{R} \mid u \in A, I(u) < \alpha \} \).)

Exercise 24. Sobolev embeddings. Let \(\Omega = B_1(0) \subset \mathbb{R}^d \).

(a) Consider the function \(u : \Omega \to \mathbb{R} \) with \(u(x) = |x|^\alpha \) for \(x \neq 0 \) and \(u(0) = 0 \). For which \(p \) do we have \(u \in L^p(\Omega) \) and for which \(u \in W^{1,p}(\Omega) \)?

(b) Consider the function \(u(x) = (1 - \log |x|)^\beta \) with \(\beta \in \mathbb{R} \). For which \(\beta \) and \(p \in [1, \infty] \) do we have \(u \in L^p(\Omega) \) and for which \(u \in W^{1,p}(\Omega) \)?

(c) For the case \(d \geq 2 \) give a function \(u \in W^{1,d}(\Omega) \setminus L^\infty(\Omega) \).