

Partial Differential Equations Summer Term 2019 Alexander Mielke Philipp Bringmann 21. Mai 2019

Partial Differential Equations Exercise Sheet 6

Exercise 21. Representation of second derivative for the Poisson kernel. Consider a radius R > 0 and a function $f \in C_c^2(\mathbb{R}^d)$ with $\operatorname{sppt}(f) \subset B_{R/3}(0)$. For $x \in B_{R/3}(0)$ we start from the representation of the first partial derivatives:

$$\partial_j u(x) = \int_{y \in B_R(x)} \partial_j K_d(x-y) f(y) \, \mathrm{d}y.$$

(a) Show that the second derivative has the representation

$$\partial_i \partial_j u(x) = \int_{y \in B_R(x)} \partial_j K_d(x - y) \partial_i f(y) \, \mathrm{d}y.$$

(b) Show that there exists constants M_{ij} such that for all radii R > 0 we have the identity

$$\int_{|z|=R} \partial_j K(z) \frac{z \cdot e_i}{|z|} \, \mathrm{d}a(z) = M_{ij}, \quad \text{where } e_i \text{ is the } i\text{ th unit vector.}$$

(c) Establish the representation

$$\partial_i \partial_j u(x) = \int_{y \in B_R(x)} \partial_i \partial_j K_d(x-y) \big(f(y) - f(x) \big) \, \mathrm{d}y - M_{ij} f(x).$$

Hint: Subtract a ball $B_{\varepsilon}(x)$ and use $\partial_i f(y) = \partial_{y_i} (f(y) - f(x))$ in (a).

Exercise 22. Approximation of Hölder continuous functions (Otto L. Hölder, 1859 – 1<u>937, L</u>eipzig, studied in Berlin)

For R > 0 consider $\Omega_R = \overline{B_R(0)} \subset \mathbb{R}^d$ and the Hölder spaces with $\alpha \in [0, 1[:$

$$C^{\alpha}(\Omega_{R}) = \{ u \in C^{0}(\overline{\Omega}_{R}) \mid ||u||_{C^{\alpha}} := ||u||_{L^{\infty}} + ||u||_{\alpha} < \infty \} \text{ with } ||u||_{\alpha} := \sup_{x \neq y} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}}$$

It is well-known that $(C^{\alpha}(\Omega_R), \|\cdot\|_{C^{\alpha}})$ is a Banach space.

(a) Show that for $\beta \in]\alpha, 1[$ we have the inclusion $C^{\beta}(\Omega_R) \subset C^{\alpha}(\Omega_R)$ with a strict inclusion. Hint: Consider $u(x) = |x|^{\gamma}$.

(b) Consider a sequence $(u_n)_{n\in\mathbb{N}}$ with $||u_n||_{C^{\alpha}} \leq C < \infty$ and $u_n \to u$ uniformly in Ω_R . Show that $u \in C^{\alpha}(\Omega_R)$ with $||u||_{C^{\alpha}} \leq C$.

(c) Show that for any $u \in C^{\alpha}(\Omega_R)$ there is a sequence $(\phi_n) \in C^2(\Omega_R)$ with $\phi_n \to u$ uniformly in Ω_R and $\|\phi_n\|_{C^{\alpha}} \leq C < \infty$.

Hint: Consider smoothening convolutions $\phi_n = \Psi_n * u$ for suitable $\Psi_n \in \mathbb{R}^d$ with $\Psi_n \ge 0$.

(please turn over)

Exercise 23. Poisson's formula for a disc. (Siméon D. Poisson, 1781 – 1840, Paris) Let $\Omega = B_R(0) \subset \mathbb{R}^2$, $g \in C^0(\partial\Omega)$, and

$$u(x) = \int_{|y|=R} P(x,y) g(y) da \quad \text{with } P(x,y) = \frac{R^2 - |x|^2}{2\pi R |x-y|^2}.$$
 (PI)

(a) Show that (PI) defines a function $u \in C^2(\Omega)$ satisfying $\Delta u = 0$ in Ω .

(b) Establish $u \in C(\overline{\Omega})$ and u(y) = g(y) for $y \in \partial \Omega$.

(Hint: Show $P(x, y) \ge 0$, $\int_{\partial\Omega} P(x, y) da = 1$ for all $x \in \Omega$, and $P(x, y) \to 0$ for $x \to y_* \in \partial\Omega \setminus \{y\}$. Polar coordinates $x = r(\cos \phi, \sin \phi)$ and $y = R(\cos \psi, \sin \psi)$ may come in handy.)

Prize exercise (not solved in tutorial) Prize = 50 Euro book coupon. For some $d \in \mathbb{N}$ find a function $f \in C_c^0(\mathbb{R}^d)$, such that the convolution $u = K_d * f$ does not lie in $C^2(\mathbb{R}^d)$.

Deadline of submission of solutions: July 7, 2019 at 23:59 h as PDF-file per email to alexander.mielke@wias-berlin.de