

Partial Differential Equations Summer Term 2019 Alexander Mielke Philipp Bringmann 13. Mai 2019

Partial Differential Equations Exercise Sheet 5

Exercise 17. Analytic solutions for the heat equation. We consider several Cauchy problems for the equation $u_t = u_{xx}$ for $(t, x) \in \mathbb{R} \times \mathbb{R}$.

(a) Transform the equation onto a system of first order equations $A_1\partial_t w + A_2\partial_x w = Bw$ with constant matrices $A_1, A_2, B \in \mathbb{R}^{2\times 2}$ and discuss which straight lines $t\nu_1 + x\nu_2 = \text{const}$ are non-characteristic.

(b) Construct by power series expansion the unique solution of the (characteristic(!)) Cauchy problem with $u(0, x) = \sin(kx)$. (Hint: Work directly on $u_t = u_{xx}$ not using (a).) [Remark: There is no abstract theorem guaranteeing existence, so we have check by hand that there is a solution.]

(c) Show that the non-characteristic Cauchy problem with $u(0, x) = \frac{1}{1+x^2} = \operatorname{Re}\left(\frac{i}{x+i}\right)$ cannot have an analytic solutions near any point $(0, x_*)$.

(Hint: Calculate all derivatives $\partial_t^m u(0, x_*)$ and calculate the radius of convergence.)

(d) Find the unique analytic solution for the (non-characteristic) Cauchy problem with $u(t,0) = \text{Re}(e^{i\omega t})$ and $u_x(t,0) = 0$.

Exercise 18. One-dimensional Dirichlet problem. On $\Omega =]0, \ell[\subset \mathbb{R}^1$ we consider the Dirichlet problem

$$-u''(x) = f(x)$$
 in Ω , $u(0) = g_0$, $u(\ell) = g_\ell$,

where $f \in C^0([0, \ell])$ and $g_0, g_\ell \in \mathbb{R}$.

(a) Show that $w(x) = -\frac{1}{2} \int_0^{\ell} |x-y| f(y) dy$ solves the ODE -w'' = f. (Hint: Decompose $[0, \ell] = [0, x[\cup \{x\} \cup]x, \ell]$.)

(b) Give the unique solution for the Dirichlet problem for $f \equiv 0$.

(c) Now take the boundary conditions into account as well and show that there exist functions $G : [0, \ell]^2 \to \mathbb{R}$ and $\gamma_0, \gamma_\ell : [0, \ell] \to \mathbb{R}$ such that the unique solutions has the form $u(x) = \int_0^\ell G(x, y) f(y) \, dy + \gamma_0(x) g_0 + \gamma_\ell(y) g_\ell$. Show that G(x, y) = G(y, x), $G(0, y) = 0 = G(\ell, y)$, and $G(x, y) \ge 0$.

(please turn over)

Exercise 19. Harmonic functions. A function $u : \Omega \to \mathbb{R}$ is called *harmonic* on the open domain Ω , if it satisfies the following *mean-value property*:

$$\forall x \in \Omega \ \forall r > 0 \text{ with } B_r(x) \Subset \Omega : \quad u(x) = \frac{1}{\omega_d r^{d-1}} \int_{y \in \partial B_r(x)} u(y) \, \mathrm{d}a(y) \, \mathrm{d}a$$

Note that the right-hand side is an average over the sphere $\partial B_r(x)$ as ω_d denotes the (d-1)-dimensional surface measure of the sphere $\mathbb{S}^{d-1} \subset \mathbb{R}^d$. We want to show that a function $u \in C^2(\Omega)$ is harmonic if and only if $\Delta u(x) = 0$ for all $x \in \Omega$.

(a) For fixed $x \in \Omega$ let $R(x) = \text{dist}(x, \mathbb{R}^d \setminus \Omega)$ and define

$$\Phi(r) = \frac{1}{\omega_d r^{d-1}} \int_{y \in \partial B_r(x)} u(y) \, \mathrm{d}a(y)$$

Transform the integral via y = x + rz with $z \in \mathbb{S}^{d-1}$, and show that $u \in C(\Omega)$ implies that $\Phi : [0, R(x)] \to \mathbb{R}$ is continuous with $\Phi(0) = u(x)$.

(b) Show that a harmonic function $u \in C^2(\Omega)$ satisfies $\Delta u(x) = 0$ for all $x \in \Omega$. (Hint: Expand u in a Taylor series at x via $u(x+rz) = u(x) + r\nabla u(x) \cdot z + \frac{1}{2}r^2z \cdot \nabla^2 u(x)z + o(r^2)$ for $r \to 0$.)

(c) For $u \in C^2(\Omega)$ satisfying $\Delta u(x) = 0$ for all $x \in \Omega$ show that u is harmonic. (Hint: Show that $\Phi'(r) = 0$ by differentiating the integral over \mathbb{S}^{d-1} obtained in (a) and show $\omega_d r^{d-1} \Phi'(r) = \int_{\partial B_r(x)} \nabla u(y) \cdot \nu(y) \, da(y)$.)

Exercise 20. Theorem of Cauchy (1789-1857) & Kovalevskaya (1850-1891)

Construct the solution of the following Cauchy problems via power-series expansion.

$$u_{xx} + \sigma u_{yy} = 0$$
, $u(x,0) = u_0(x) = \frac{x^2 - 1}{(x^2 + 1)^2}$, $u_y(x,0) = u_1(x) = \frac{2 - 6x^2}{(x^2 + 1)^3}$,

where $\sigma \in \{-1, 1\}$.

(a) Check that the Theorem of CAUCHY-KOVALEVSKAYA is applicable in both cases.

(b) Find the power-series expansion explicitly. (Hint: Write u_0 as real part and u_1 as imaginary part of simple complex-valued functions.) Discuss the radius of convergence and the singularities of the explicit solutions.