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Exercise 13: Burgers equation (named after Johannes Martinus Burgers, 1895-1981):
Oy + ud,u = 0.
We consider the piecewise constant functions

we forz > ct uy for x < ¢4t
u(t,z) = + ’ u(t,x) = ¢ uy for ot < x < cot,
u- forz <o, ug for x > cot
3 2

(a) Show that u is a weak solution if and only if 2¢ = uy+u_. Under what conditions
does the shock satisfy the entropy condition, i.e. the characteristics merge at the jump
in forward time?

(b) Given u; and ug (and hence @(0, z)) find all us, ¢, and ¢o such that ¢; < ¢ and that
u is a weak solution for ¢ > 0. When do the jumps satisfy the entropy condition?

(c) Construct a piecewise constant solution u(!) satisfying uV (0, ) = f,(z) with fi(x) = 6
for < —1, fi(z) =4 for |z| < 1, and fi(z) =2 for z > 1.

(d) Give a second initial condition f, such that the solution u® satisfies u'®(t,z) =
uV(t,z) for t > 4 and = € R (i.e. entropy solutions are non-unique for negative time).

Exercise 14. Divergence form versus quasilinear form.

Quasilinear form: (QF)  A(x,u, Du) : D*u = b(z, u, Du)

Divergence from: (DF)  diva(z,u, Du) = b(x, u, Du)

(a) Assume that A does not depend on Du. Show that (QF) can be rewritten as (DF).
[Hint: Search for a(z,u, &) which is linear in &.]

(b) For d = 2 and a(x,u, &) = (a;(&1,&2), a2(€1, &))" derive the associated A in (QF).
(¢) Provide an elliptic example of (QF) that cannot be written as (DF). [Hint: It suffices
to consider A(&) in diagonal form.]

(d) For f € C2(R4,R) let a(¢) = Df(£) € R? in (DF) and calculate the associated A for
(QF). Show that (QF) is elliptic if f is uniformly convex, i.e. D?f(£) > ¢l with ¢ > 0 in
the sense of positive definite matrices.

(please turn over)



Exercise 15. General jump conditions: Let a : QxR — R? and b : QxR — R define
the quasilinear PDE in conservation form, also known as divergence form:

(diva(-,u(+)))(z) = b(z, u(z)) for z € Q C RY,
with (diva(-, u(")))(z) := ijl Oy, aj(w) where a;(r) = a;(z, u(r))

(a) Write the equation in the quasilinear form @(z,u) - Vu = b(z,u) by assuming that
everything is sufficiently smooth.

(b) A function u € L>(2) is called weak solution, if

/Q (ale.u(@) - V() + b, u(@))o(x) ) dr =0 for all 6 € CX(Q).

Show that classical solutions are weak solutions.

(c) Let C be a smooth hypersurface separating ) into the two pieces Q, and Q_. Let
u : © — R be such that the restrictions us = u|g, have extensions lying in C*(Q).
Derive the jump relations

(a(y, us(9)) = aly,u-(v))) -v(y) = 0 forallyec,

where v is the normal vector to C. (Hint: First show that in 2, and _ we have
classical solutions. Then do integration by parts in €2, and 2_ separately and compare
the boundary terms.)

(c) Discuss the jump relations in the special two-dimensional case

8t(a(x,u)) + 8x(/8(x,u)) =b(t,x,u),

if C is given in the form x = s(t).

Exercise 16. Wave equation: We consider the Cauchy problem
Uy = Uge + bu for (t,7) € R?, u(0,2) = up(z), u(0,7) = ui(x),

where b is a real parameter.

(a) Use a power-series expansion to find the solution of the CAUCHY problem for ug(z) =
e* and u; = 0, where o € C.

(b) Use the linearity to find the solution for ug(z) =  (e!®™*—e**) and u; = 0. Consider
and justify the limit A — 0 to find the solution v for the CAUCHY data vy(z) = x sin(kx)

and v; = 0 mit k € R.

(c) Return to the solution u from Part (a). Show that w = u; is again a solution. What
are the CAUCHY data for w at ¢ = 0?7 Give the solution for the CAUCHY data uy = 0
and uy (z) = e*”.



