
Partial Differential Equations
Summer Term 2019
Alexander Mielke
Philipp Bringmann
29. April 2019

Partial Differential Equations
Exercise Sheet 3

Exercise 9: Transformation of quasilinear equations.

We consider the quasilinear problem

a(x, u(x)) · ∇u(x) = g(x, u(x)) for x ∈ Ω ⊂ Rd, (Q)

where the function u : Ω→ R is to be determined.

(a) Consider a coordinate change x = Φ(y) with a bijective mapping Φ : Ω̃ → Ω, where
Φ and Φ−1 are in C1. We let v(y) = u(Φ(y)) = (u◦Φ)(y). Which equation holds for v, if
u is a solution of (Q)?

(b) Moreover, consider a bijection ψ : R → R, such that ψ and ψ−1 are in C1. Which
equation holds for w : Ω→ R;x 7→ ψ(u(x)), if u is a solution of (Q)?

(c) For the special case ∂tu + ã(t, x, u) · ∇xu = b(t, x, u) give the equations for v and w
from (a) und (b) in the form ∂tv + . . . and ∂tw + . . ., respectively. Here, the coordinate
change Φ in (a) should not depend on t.

(d) Which bijections Φ and ψ transform the equation ∂tu + ∂x1u + x1∂x2u = u into the
equation ∂tw + ∂x1w = 1? Construct the general solution w and provide a formula for
the general solution u.

Exercise 10: The Fundamental Lemma of the Calculus of Variations.

Consider an open domain Ω ⊂ Rd, a scalar function b ∈ C(Ω) and a vector field v ∈
C1(Ω;Rd).

(a) Assume that for all closed balls Br(x) ⊂ Ω (as test volumes) we have
∫
Br(x)

b(y)dy = 0.

Conclude that b ≡ 0.

(b) Assume that for all closed balls Br(x) ⊂ Ω we have
∫
Br(x)

b(y) dy =
∫
∂Br(x)

v(η) ·
ν(η)da(η). Conclude b = div v in Ω.

(c) Assume that
∫

Ω
b(x)ψ(x) dy = 0 for all ψ ∈ C∞c (Ω). Show that b ≡ 0. (Here C∞c (Ω)

denotes the space of all infinitely often differentiable functions ψ : Ω → R such that the
support sppt(ψ) = closure

(
{x ∈ Ω | ψ(x) 6= 0 }

)
is compact and contained in Ω.)

(please turn over)
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Exercise 11: The Lemma of Du Bois–Reymond. This is a variant of the funda-
mental lemma of the calculus of variations. (See there for the definition of C∞c (Ω).)

(a) (Classical version) Consider an open interval I ⊂ R and a function a ∈ C(I) satisfying

∀φ ∈ C∞c (I) :

∫
I

.
φ(t) a(t)dt = 0.

Show that there exists a∗ ∈ R such that a(t) = a∗ for all t ∈ R.
(Hint: Choose h ∈ C∞c (I) with

∫
I
h(t) dt = 1 and show that every ψ ∈ C∞c (I) can be

written in the form ψ =
.
φ +ch for suitable c ∈ R and φ ∈ C∞c (I).)

(b) Consider now a function a ∈ C(R×Rd) satisfying∫
(t,x)∈R×Rd

∂tφ(t, x)a(t, x)d(t, x) = 0 for all φ ∈ C∞c (R×Rd).

Construct a function a∗ ∈ C(Rd) such that a(t, x) = a∗(x) for all (t, x) ∈ R×Rd.
(Hint: Maybe test functions in product form are useful.)

Exercise 12: Weak solutions of a linear transport equation.
We define the weak solutions for the equation ∂tu(t, x) + v · ∇xu(t, x) = bu(t, x) to be
any function u ∈ C0(R×Rd) satisfying∫

R×R

(
∂tφ(t, x) + v · ∇xφ(t, x) + bφ(t, x)

)
u(t, x)d(t, x) = 0 for all φ ∈ C∞c (R×Rd).

(a) For a function U ∈ C1(Rd) find the unique (classical) solution of the Cauchy problem
∂tu+ v · ∇xu = bu and u(0, x) = U(x).

(b) Consider W ∈ C0(Rd) and set ũ(t, x) = ebtW (x−tv). Show that ũ is a weak solution.
(Hint: It may be helpful to introduce the coordinate ξ = x−tv and ψ(t, ξ) = e±btφ(t, x).)

(c) Show that the Cauchy problem with ũ(0, x) = W (x) has a unique solution ũ ∈
C0(R×Rd). (Hint: The lemma of Du Bois-Reymond can be useful.)
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