Numerical Discretisation = Navier Stokes + Transport Equations

- Stationary solvent flow with velocity \(\vec{u} \), pressure \(p \), dynamic viscosity \(\eta \) and density \(\rho \) inside the flow cell is governed by the incompressible Navier-Stokes equations

\[
-\eta \Delta \vec{u} + \rho \vec{u} \cdot \nabla \vec{u} + \nabla p = 0 \quad \text{in} \; \Omega, \quad \nabla \cdot \vec{u} = 0 \quad \text{in} \; \Omega
\]

- Divergence-constraint: crucial for mass conservation → use divergence-free finite element methods (Scott-Vogelius FEM, novel modified nonconforming Crouzeix-Raviart FEM [4]).
- Less expensive (non-divergence-free) Taylor-Hood FEM gives comparable results [2, 3].

- Species transport with concentration \(c \), diffusion coefficient \(D \):

\[
\nabla \cdot (-D \nabla c + \vec{c} \cdot \vec{u}) = s \quad \text{in} \; \Omega \quad \text{and} \quad c = c_{inlet} \quad \text{at} \; \text{inlet}
\]

discretised by an exponentially fitted volume method with Voronoi cells as control volumes. On every \(\partial K_L \cap \partial L \) set

\[
u_{KL} = \int_{\partial K_L} \vec{u} \cdot \hat{n}_L - \hat{n}_K ds/|\sigma_{KL}|
\]

Find \(c_K \in B(\epsilon) \) with \(|\epsilon_K - c_{inlet}| \) such that

\[
\sum_{L \text{ neighbour of } K} \frac{|\sigma_{KL}|}{|\hat{n}_L - \hat{n}_K|} \cdot g(\epsilon_K, c_L, u_{KL}) = |K| \cdot s_K \quad \text{for all} \; K \in K_0 \setminus K_0
\]

where \(g(\epsilon_K, c_L, u_{KL}) = D \left(B(u_{KL}) \right) - B(-u_{KL}/D) c_L \) with \(B(z) = z/(1-e^{-z}) \).

Detection of \(O_2 \) diffusion coefficients in various solvents

- Experiment:
 - Detection of relation between mass flow and mass spectrometric current by independent experiment
 - Detection of mass spectrometric current \(i \) from \(O_2 \) diffusing through the membrane of the measurement chamber for flow rates \(u = 0.1 \ldots 80 \text{mm}^3/s \)

- Interpretation:
 - Detection of inlet concentration from lowest flow rate under the assumption that no \(O_2 \) remains in the outlet (strongly diffusion dominated case)
 - Levenberg-Marquardt fit of diffusion coefficient \(D \) using coupled flow+transport simulation as forward solver
 - Detection of working chamber height (uncertain due to experimental construction) based on known solvents \((O_2/H_2O, [1]) \)
 - Use fit procedure with known cell height to detect diffusion coefficient for new solvents

References

This research has been partially funded in the framework of the project “Macroscopic Modeling of Transport and Reaction Processes in Magnesium-Air-Batteries” (Grant 03EK3027D) under the research initiative “Energy storage” of the German Federal government.