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Abstract. This paper compares different a posteriori error estimators for nonconforming
first-order Crouzeix-Raviart finite element methods for simple second-order partial differ-
ential equations. All suggested error estimators yield a guaranteed upper bound of the
discrete energy error up to oscillation terms with explicit constants. Novel equilibration
techniques and an improved interpolation operator for the design of conforming approxim-
ations of the discrete nonconforming finite element solution perform very well in an error
estimator competition with six benchmark examples.

1. Introduction

The a posteriori error analysis of conforming FEM is well established and contained even in
textbooks [BS08, Bra07, AO00, Han05, Rep08]. Although a unified framework is established
[Car05], much less is known about a posteriori error analysis for nonconforming lowest-
order Crouzeix-Raviart finite element methods [Ago94, HW96, DM98, Joh98, DM98, BCJ02,
Ain04, Kim07, AR08, Bra09].

The Helmholtz decomposition allows a split of the error in the broken energy norm

~e~2
NC ď η2 ` ~ResNC ~

2
‹.

The first term η on the right-hand side involves contributions of the data f and is dir-
ectly computable (up to quadrature errors); cf. (3.1) for an explicit representation. The
second term ~ResNC ~‹ in the upper error bound is the weighted dual norm of some residual
which can indeed be estimated by a posteriori error estimators for Poisson problems such
as equilibration error estimators [AO00, LW04, Bra07, CM10, CDN10, Voh11], least-square
error estimators [Rep08] or localisation error estimators [CF99]; another class of possible
estimators exploits the identity

~ResNC ~‹ “ min
vPH1pΩq

v“uD on BΩ

∥∥κ1{2p∇NC uCR ´∇ vq
∥∥
L2pΩq

of [Ain04, Car05] and Theorem 3.1.b below. Those upper bounds of ~ResNC ~‹ compute
some test functions vxyz P H

1pΩq with u “ uD on BΩ and evaluate

~ResNC ~‹ ď
∥∥κ1{2p∇NC uCR ´∇ vxyzq

∥∥
L2pΩq

.
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Three explicit designs in Subsection 4.1-4.2 provide estimators from µA after [Ain04] and
µAP2 after [Voh07, Ain08, Bra09], plus novel error estimators µMP1RED(0) and µPMRED while
global minimisation in some discrete subspace leads in Subsection 4.3 to µMP1, µMP1RED and
µMP2.

This paper concerns the Poisson model interface problem: Given a right-hand side f P
L2pΩq, the Dirichlet data uD P H1pΩq and some bounded, piecewise constant diffusion
coefficient

0 ă κ ď κpxq ď κ ă 8 for a.e. x P Ω(1.1)

in the domain Ω, seek u P H1pΩq with

´divpκ∇uq “ f in Ω and u “ uD on BΩ.(1.2)

The primal variable u will be discretised with nonconforming Crouzeix-Raviart FEMs on
some regular triangulation T of Ω into triangles.

Table 1. Benchmark Poisson examples and subsection references.

Ref. Short name Problem data Feature

7.1 L-shaped domain f ” 0, uD ‰ 0,κ ” 1 corner singularity
7.2 Slit domain f ” 1, uD ‰ 0,κ ” 1 slit singularity
7.3 Square domain f R P0pT q, uD ” 0,κ ” 1 oscillations
7.4 3/4-Disk domain f R P0pT q, uD ” 0,κ ” 1 osc. & corner sing.
7.5 Square domain f ” 0, uD ‰ 0,κ ‰ 1 diffusion jumps
7.6 Octagon domain f ” 0, uD ‰ 0,κ ‰ 1 diffusion jumps

Table 2. Classes of a posteriori error estimators in this paper.

No Classes of error estimators Class representatives

1 interpolation ηA, ηMP1REDp0q, ηPMRED, ηAP2

2 minimisation ηMP1, ηMP1REDpkq, ηMP2

3 equilibration ηB, ηLW

4 least-square ηRepin

5 localisation ηCF

In this paper, the a posteriori error estimators of Table 2 compete in the 6 benchmark
problems of Table 1. The 11 error estimators also give rise to adaptive mesh-refinement
strategies with the overall experience that all lead to comparable mesh refinement that
recovers the optimal convergence rate. Numerical evidence supports the superiority of the
novel error estimator ηPMRED from Subsection 4.2 and ηAP2 for adaptive a posteriori error
control with efficiency indices in the range of 1.2 to 1.5. Since the overhead by η leads to
only little overestimation of around 15 percent, it is indeed worth to utilise a more costly and
more accurate evaluation of ~Res~‹. In examples with constant coefficients, three iterations
of some preconditioned conjugated gradient scheme with initial value µMP1RED(0) leads to
a cheap and highly efficient error estimator µMP1REDp3q close to the optimum µMP1REDp8q;
in examples with discontinuous coefficients the improvement after three iterations is less
significant.

The remaining parts of this paper are outlined as follows. Section 2 introduces the neces-
sary notation and preliminaries. Section 3 presents the a posteriori error analysis. Section
4 gives details on the realisations of upper bounds of ~ResNC ~‹. Section 5 deals with
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modifications in case of inhomogeneous boundary conditions. The novel application of equi-
libration techniques for a posteriori error control of nonconforming finite element methods
is introduced in Section 6. In Section 7 all estimators of Table 2 are compared with the
six benchmark problems from Table 1. Section 8 draws some conclusions on the numerical
experiments and adds some overall remarks.

2. Notation and Preliminaries

2.1. Crouzeix-Raviart finite element spaces. Given a regular triangulation T of the
bounded Lipschitz domain Ω Ď Rd, d “ 2, 3, into triangles with edges E , nodes N and free
nodes M, the midpoints of all edges are denoted by midpEq :“ tmidpEq

ˇ

ˇE P Eu and the

boundary edges along BΩ are denoted by EpBΩq :“ tE P E
ˇ

ˇE Ď BΩu while EpΩq :“ EzEpBΩq.
With the elementwise first-order polynomials P1pT q, the nonconforming Crouzeix-Raviart

finite element space reads

CR1pT q :“ tv P P1pT q
ˇ

ˇ v is continuous at midpEqu,
CR1

0pT q :“ tv P CR1pT q
ˇ

ˇ@E P EpBΩq, vpmidpEqq “ 0u.

The Crouzeix-Raviart finite element space forms a subspaces of the broken Sobolev functions
H1pT q :“ tv P L2pΩq

ˇ

ˇ@T P T , v|T P H1pT qu with piecewise gradient p∇NC vq|T “ ∇ v|T for

v P H1pT q and T P T . The tangential component γtpvq of some vector v P Rd with respect
to some normal vector ν reads

γtpvq :“

#

v ¨ p0,´1; 1, 0qν if d “ 2,

v ˆ ν if d “ 3.

2.2. Discrete problem. The discrete nonconforming formulation of Problem (1.2) employs
κ P P0pT q from (1.1) and the bilinear form aNC : H1pT q ˆH1pT q Ñ R,

aNCpu, vq :“

ż

Ω
pκ∇NC uq ¨∇NC v dx :“

ÿ

TPT

ż

T
pκ∇uq ¨∇ v dx.

The (broken) energy norm ~ ¨ ~NC :“ aNCp¨, ¨q
1{2 is indeed positive definite on CR1

0pT q ˆ
CR1

0pT q. The right-hand side F : L2pΩq Ñ R for f P L2pΩq reads

F pvq :“

ż

Ω
fv dx for all v P L2pΩq.

The elementwise integral mean of f is denoted by

fT |T :“

 
T
f dx :“

ż

T
f dx{ |T | for T P T .

The discrete solution uCR P CR1pT q satisfies the boundary conditions uCRpmidpEqq “ffl
E uD ds for E P EpBΩq and

apuCR, vCRq “ F pvCRq for all vCR P CR1
0pT q.

2.3. Helmholtz decomposition. The error e “ u ´ uCR is measured in the (discrete or

broken) energy norm ~e~NC “
∥∥κ1{2 ∇NC e

∥∥
L2pΩq

. To consider d “ 2, 3 at the same time,

set k :“ 1 for d “ 2 and k :“ 3 in case of d “ 3. One key ingredient of the error analysis is
the Helmholtz decomposition of the error

∇NC e :“ ∇u´∇NC uCR
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with the Curl v P L2pΩ;Rdq for some v P H1pΩ;Rkq defined by

Curl v :“ p0,´1; 1, 0q∇ v for d “ 2 and Curl v :“ ∇ˆ v for d “ 3.

The space of divergence-free functions is denoted by

Hpdiv0,Ωq :“ tY P Hpdiv,Ωq
ˇ

ˇ div Y “ 0u.

Theorem 2.1 (Helmholtz decomposition). Let Ω be a bounded Lipschitz domain. Given
any p P L2pΩ;Rdq, there exist α P H1

0 pΩq and Y P Hpdiv0,Ωq with

κp “ κ∇α` Y.

This split is orthogonal in the sense of
ż

Ω
pκpq ¨∇ v dx“

ż

Ω
pκ∇αq ¨∇ v dx for all v P H1

0 pΩq.

Proof. The Lax-Milgram lemma yields a unique solution α P H1
0 pΩq. The remainder Y :“

κpp´∇αq is divergence-free [GR86]. �

2.4. Adaptive mesh refinement algorithm and notation. This section introduces our
adaptive mesh-refinement algorithm.

Algorithm (ACRFEM). INPUT coarse mesh T0 and ` :“ 0.
For level ` “ 0, 1, 2, . . . until termination do

SOLVE discrete problem on T` with ndof degrees of freedom.

ESTIMATE for every triangle T P T with its set of edges EpT q and the edge patch ωE
compute

ηRpT q
2 :“ |T |

∥∥f∥∥2

L2pT q
` |T |1{2

ÿ

EPEpT q
‖κ‖L8pωEq

∥∥rγtp∇NCuCRqsE
∥∥2

L2pEq
.

MARK a minimal subset M` of T` such that

Θ
ÿ

TPT`

ηRpT q
2 ď

ÿ

TPM`

ηRpT q
2.

REFINE T` by red-refinement of elements in M` and red-green-blue-refinement of further
elements to avoid hanging nodes and compute T``1. od

OUTPUT Sequence of meshes T0, T1, . . . with sequence of discrete solutions.

Remark 2.2. For a proof of optimality of this algorithm refer to [Rab10, MZS10].

Remark 2.3. The remaining sections are devoted to different a posteriori error estimators
which motivate different refinement indicators ηxyzpT q specified in Sections 4-6.
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3. A posteriori error estimation for Poisson problems

This section is devoted to the a posteriori error analysis of the Poisson problem and a
general reliability result which involves essentially two ingredients. The first one contains
the right-hand side f and the elementwise oscillations of κ´1{2f ,

oscpκ´1{2f, T q :“
∥∥hT κ´1{2pf ´ fT q

∥∥
L2pΩq

,

with the piecewise integral mean fT and the piecewise constant mesh-size hT , hT |T :“ hT :“
diampT q for T P T . It reads

η :“

˜

ÿ

TPT

´

hT {π
∥∥κ´1{2pf ´ fT q

∥∥
L2pT q

`
∥∥κ´1{2fT {d p‚ ´midpT qq

∥∥
L2pT q

¯2
¸1{2

.(3.1)

The second ingredient derives from the dual norm of the residual

~ResNC ~‹ :“ sup
ζPHpdiv0,Ωq

Curl vı0

ResNCpζq{
∥∥κ´1{2ζ

∥∥
L2pΩq

,

where, for any test function ζ P Hpdiv0,Ωq,

ResNCpζq :“

ż

BΩ
uDζ ¨ ν ds´

ż

Ω
∇NC uCR ¨ ζ dx.

Here and throughout, the boundary integral is to be understood in a distributional sense as
the dual pairing in H´1{2pBΩq.

Theorem 3.1. (a) Reliability of η ` ~ResNC ~‹ holds in the sense of

~e~2
NC “ ~α~

2 ` ~ResNC ~
2
‹ ď η2 ` ~ResNC ~

2
‹

where α P H1
0 pΩq stems from the Helmholtz decomposition of ∇ e “ ∇α ` κ´1Y from

Theorem 2.1.
(b) There exists an alternative characterisation of ~ResNC ~‹,

~ResNC ~‹ “ min
vPH1pΩq

v“uD on BΩ

~uCR ´ v~NC ď ~e~NC.

(c) Efficiency holds in the sense of

η2 À ~e~2
NC ` oscpκ´1{2f, T q2.

Remark 3.2. For every triangle T P T with s2 :“
ř

PjPN pT q
ř

PkPN pT q |Pj ´ Pk|
2
{2 for its set

N pT q of nodes, it holds ∥∥ ‚ ´midpT q
∥∥2

L2pT q
“

s2 |T |
pd` 2qpd` 1q2

.

This allows for a direct calculation of the leading quantity in (3.1).

Remark 3.3. The constant hT {π in (3.1) relates to a Poincaré inequality on T P T . For
triangles in 2D, [LS10] recently showed the refined constant 1{j1,1 with the first positive root
j1,1 of the Bessel function J1.

Remark 3.4. The theorem is a collection of already known results extended to inhomogen-
eous Dirichlet conditions to cover the benchmark examples. The idea to use a Helmholtz
decomposition to split up the error as in (a) dates back to [DDPV96]. The identifica-
tion of the nonconforming part of the error as a residual is due to the unified approach
[Car05]. The efficiency proof of the conforming part η in (c) involves bubble functions as
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in [Ver96, Ain04, Bra09]. A further control of ~α~ different from the overhead term η is
possible with the approach in [DM98, VHS11]. It even can be rewritten as the dual norm
~α~ “ supvPH1

0 pΩq
Respvq{~v~ of the residual

Respvq :“

ż

Ω
fv dx´

ż

Ω
κ∇NC uCR ¨∇ v dx for v P H1

0 pΩq.

Any known error estimator for Poisson problems can be applied to estimate the dual norm.
Since in our experiments ~Res~‹ is smaller than ~ResNC ~‹, we here concentrate on a sharp
estimation of the latter residual.

Proof. Step 1. Helmholtz decomposition. Theorem 2.1 implies the existence of some
α P H1

0 pΩq and Y P Hpdiv0,Ωq with

κ∇NC e “ κ∇α` Y

and, with the energy norm ~ ¨ ~ :“
∥∥κ1{2 ∇ ¨

∥∥
L2pΩq

, the error decomposition

~e~2
NC “

ż

Ω
pκ∇αq ¨∇NC e dx`

ż

Ω
Y ¨∇NC e dx “ ~α~

2 `
∥∥κ´1{2Y

∥∥2

L2pΩq
.

Step 2. Proof of ~α~ ď η. Consider the nonconforming interpolation αNC P CR1pT q of α
defined by

αNCpmidpEqq :“

 
E
αds :“

ż

E
αds{ |E| for all E P E .

An integration by parts yields
ż

T
∇pα´ αNCq dx “ 0 for all T P T .(3.2)

Notice that (3.2) yields∥∥∇pα´ αNCq
∥∥2

L2pT q
“

ż

T
|∇α|2 dx´ 2

ż

T
∇α ¨∇αNC dx`

ż

T
|∇αNC|2 dx

“

ż

T
|∇α|2 dx´

ż

T
|∇αNC|2 dx ď

∥∥∇α
∥∥2

L2pT q
.

This allows for the estimation of the first term
ż

Ω
pκ∇αq ¨∇NC e dx “

ż

Ω
pκ∇αq ¨∇u dx´

ż

Ω
pκ∇αNCq ¨∇NC uCR dx

“

ż

Ω
fpα´ αNCq dx

“

ż

Ω
pf ´ fT qpα´ αNCq dx`

ż

Ω
fT pα´ αNCq dx.

An integration by parts and p‚ ´midpT qq ¨ ν P P0pEpT qq show

´

ż

T
px´midpT qq ¨∇pα´ αNCq dx

“

ż

T
pα´ αNCq divpx´midpT qq dx´

ż

BT
pα´ αNCqpx´midpT qq ¨ ν ds

“

ż

T
dpα´ αNCq dx.
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The orthogonality of f´fT onto P0pT q allows the subtraction of the piecewise integral mean
vT of v :“ α ´ αNC. An elementwise Poincaré inequality with Payne-Weinberger constant
diampT q{π [PW60, Beb03] and a Cauchy inequality in R|T | yield

ż

Ω
pf ´ fT qv dx “

ÿ

TPT

ż

T
pf ´ fT qpv ´ vT q dx

ď
ÿ

TPT
hT {π

∥∥κ´1{2pf ´ fT q
∥∥
L2pT q

∥∥κ1{2 ∇ v
∥∥
L2pT q

.

The last three estimates and a Cauchy inequality in R|T | result in

~α~2 “

ż

Ω
pκ∇αq : ∇NC e dx

“

ż

Ω
pf ´ fT qpα´ αNCq dx´ 1{d

ż

Ω
fT px´midpT qq ¨∇pα´ αNCq dx

ď

˜

ÿ

TPT

´

hT {π
∥∥κ´1{2pf ´ fT q

∥∥
L2pT q

`
∥∥κ´1{2fT {d p‚ ´midpT qq

∥∥
L2pT q

¯2
¸1{2

ˆ

˜

ÿ

TPT

∥∥κ1{2 ∇pα´ αNCq
∥∥2

L2pT q

¸1{2

ď η~α~.

This leads to the assertion ~α~ ď η. �

Step 3. Proof of
∥∥κ´1{2Y

∥∥
L2pΩq

“ ~ResNC ~‹. The notation from Step 1, Theorem 2.1,

and an integration by parts lead, for any ζ P Hpdiv0,Ωq, to
ż

BΩ
uDζ ¨ ν ds´

ż

Ω
∇NC uCR ¨ ζ dx “

ż

Ω
pκ1{2 ∇NC eq ¨ pκ´1{2ζq dx

“

ż

Ω
pκ´1{2Y q ¨ pκ´1{2ζq dx

ď
∥∥κ´1{2Y

∥∥
L2pΩq

∥∥κ´1{2ζ
∥∥
L2pΩq

.

This implies ~ResNC ~‹ ď
∥∥κ´1{2Y

∥∥
L2pΩq

. Moreover, ζ “ Y leads to equality. �

Step 4. Proof of∥∥κ´1{2Y
∥∥
L2pΩq

“ min
vPH1pΩq

v“uD on BΩ

∥∥κ1{2p∇NC uCR ´∇ vq
∥∥
L2pΩq

.

Given any v P H1pΩq with u´ v “ 0 on BΩ, Theorem 2.1 yields∥∥κ´1{2Y
∥∥2

L2pΩq
“

ż

Ω
Y ¨∇NC e dx “

ż

Ω
Y ¨ p∇NC uCR ´∇ vq dx

ď
∥∥κ´1{2Y

∥∥
L2pΩq

∥∥κ1{2p∇NC uCR ´∇ vq
∥∥
L2pΩq

.

Therefore ∥∥κ´1{2Y
∥∥
L2pΩq

ď min
vPH1pΩq

v“uD on BΩ

∥∥κ1{2p∇NC uCR ´∇ vq
∥∥
L2pΩq

.

There exists a unique minimiser of the right-hand side that equals v :“ u ´ α such that
κ1{2 ∇NC uCR´κ1{2 ∇ v “ ´κ´1{2Y . In fact, this is the nature of the Helmholtz decompos-
ition and concludes the proof. �
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Step 5. Proof of η2 À ~e~2
NC`oscpκ´1{2f, T q2. For a proof refer to [Bra09, Lemma 1]. �

4. Realisations of upper bounds for ~ResNC ~‹

Seven designs for v and the estimation of ~ResNC ~‹ via (3.1) will be discussed in the
subsequent Subsections 4.1-4.3.

4.1. Interpolation after Ainsworth. This subsection introduces the interpolation after
Ainsworth [Ain04] that designs some piecewise linear vA P H

1pΩq with respect to the original
triangulation T by averaging on node patches T pzq :“ tT P T

ˇ

ˇ z P T u,

vApzq :“

#

uDpzq if z P N zM,
´

ř

TPT pzq κ
1{2
T uCR|T pzq

¯

{

´

ř

TPT pzq κ
1{2
T

¯

if z PM.

The error estimator reads

η2
A :“ η2 `

∥∥κ1{2 p∇NC uCR ´∇ vAq
∥∥2

L2pΩq
.

The ηA-driven ACRFEM algorithm in Subsection 2.4 replaces ηRpT q
2 by

ηApT q
2 :“

∥∥κ´1{2fT {d p‚ ´midpT qq
∥∥2

L2pT q
` h2

T {π
2
∥∥κ´1{2pf ´ fT q

∥∥2

L2pT q

`
∥∥κ1{2 p∇NC uCR ´∇ vAq

∥∥2

L2pT q
.

For a proof of the efficiency of ηA refer to [Ain04, Theorem 6.4].
An improved interpolation from [Voh07, Ain08, Bra09] employs the auxiliary function

v0 :“ uCR ´ fT ψ{pκdq P P2pT q with ψpxq :“ |x´midpT q|2 {2 ´
ffl
T |y ´midpT q|2 dy for

x P T P T . An averaging as above leads to some piecewise quadratic and continuous
function vAP2 P P2pT q X CpΩq,

vAP2pzq :“

#

uDpzq if z P pN YmidpEqq X BΩ,
´

ř

TPT pzq κ
1{2
T v0|T pzq

¯

{

´

ř

TPT pzq κ
1{2
T

¯

if z P pMYmidpEqq zmidpEpBΩqq.

The ηAP2-driven ACRFEM algorithm in Subsection 2.4 replaces ηRpT q
2 by

ηAP2pT q
2 :“

∥∥κ´1{2fT {d p‚ ´midpT qq
∥∥2

L2pT q
` h2

T {π
2
∥∥κ´1{2pf ´ fT q

∥∥2

L2pT q

`
∥∥κ1{2 p∇NC uCR ´∇ vAP2q

∥∥2

L2pT q
.

4.2. Modified interpolation operator. This subsection introduces an improved inter-
polation that designs some piecewise linear vRED P H1

0 pΩq with respect to the red-refined
triangulation redpT q. For simplicity, the design here restricts to d “ 2 dimensions. A similar
design for d “ 3 dimensions is more involved. The nodes of redpT q consists of the nodes N
and the edge midpoints midpEq of T . At the boundary the interpolation equals the nodal
interpolation of uD and on all edge midpoints it equals uCR,

vREDpzq :“

$

’

&

’

%

uCRpzq for z P midpEqzmidpEpBΩqq,
uDpzq for z P pN YmidpEqq X BΩ,
vz for z PM.

In this way, the interpolation equals uCR on all central subtriangles like T4 in Figure 4.2
and it remains to determine the values vz at free nodes z PM. They may be chosen as in the
design of vA, but we suggest to choose them locally optimal as follows. Consider the node
patch pωz with respect to the red-refined triangulation as in Figure 4.1. Then minimise the
contribution

∥∥κ1{2p∇NC uCR ´∇ vq
∥∥
L2ppωzq

amongst v P P1predpT qq X Cppωzq under the side
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z

P1 “ P6

P2

P3P4

P5

Q1

Q2

Q3
Q4

Q5

T1

T2

T3

T4

T5

pωz

Figure 4.1. Interior Patch

condition of the fixed values at the edge midpoints Qj of the adjacent edges. The value vz
at z remains the only degree of freedom in this local problem. The complete error estimator

P1

T1

T2

T4

T3

P2

T1

T2

T4

T3

P3

T1

T2

T4

T3 Q1

T1

T2

T4

T3

Q2

T1

T2

T4

T3

Q3

T1

T2

T4

T3

Figure 4.2. Central subtriangle T4 “ convtmidpEpT qquin redpT q for T P T .

reads

η2
RED :“ η2 `

∥∥κ1{2 p∇NC uCR ´∇ vREDq
∥∥2

L2pΩq
.

The ηRED-driven ACRFEM algorithm in Subsection 2.4 replaces ηRpT q
2 by

ηREDpT q
2 :“

∥∥κ´1{2fT {d p‚ ´midpT qq
∥∥2

L2pT q
` h2

T {π
2
∥∥κ´1{2pf ´ fT q

∥∥2

L2pT q

`
∥∥κ1{2 p∇NC uCR ´∇ vREDq

∥∥2

L2pT q
.

We distinguish between the optimal version ηPMRED, where vz is chosen patchwise minimal
(PM) as described above, and ηMP1REDp0q with the suboptimal choice vz as in Subsection 4.1.
This can be seen as a modification vMP1RED(0) of vA at the edge midpoints.

4.3. Optimal choices. The optimal v P P1pT qXCpΩq is attained at the solution uC of the
conforming formulation of the Poisson problem, since the nodal basis functions are included
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in CR1pT q and hence
ż

Ω
fvC dx “

ż

Ω
pκ∇NC uCRq ¨∇ vC dx

“

ż

Ω
pκ∇uCq ¨∇ vC dx for all vC P P1pT q XH1

0 pΩq.

For comparison, we also compute the optimal vMP1RED P P1predpT qq X CpΩq on the red-
refined triangulation redpT q and the optimal piecewise quadratic vMP2 P P2pT q X CpΩq.
Note that they do not have to equal the corresponding conforming solutions. To reduce
the computational costs of vMP1RED one might use vMP1RED(0) as an initial guess for some
iterative solver to draw near the optimal value. We use a preconditioned conjugate gradients
algorithm and stop at the third iterate vMP1RED(3). For the preconditioner we use the
diagonal of the system matrix also known as Jacobi preconditioner. The associated error
estimators ηMP1REDp0q, ηMP1, ηMP2, ηMP1RED and ηMP1REDp3q and adaptive algorithms based

on local refinement indicators ηxyzpT q
2 are defined in the same manner as for ηA.

5. Inhomogeneous boundary conditions

The designs of the test function v of Section 4 illustrate that inhomogeneous boundary
data uD may not be resolved exactly. Hence, let v “ vD on BΩ and extend the boundary
values wD “ uD´ vD on BΩ to some function wD P H

1pΩq after [BCD04]. Since wD satisfies
u´ pv ` wDq P H

1
0 pΩq,

~ResNC ~‹ “ min
pvPH1pΩq

pv“uD on BΩ

~uCR ´ pv~NC ď ~uCR ´ pv ` wDq~NC ď ~uCR ´ v~NC ` ~wD~.

The term ~wD~ can be computed and may be of higher order for a reasonable choice of vD.

Theorem 5.1. Assume that uD P H1pBΩq X CpBΩq and vD P H1pBΩq X CpBΩq satisfy
uD ´ vD P H2

0 pEq for all E P EpBΩq. Let B2
EuD{Bs

2 denote the edgewise second surface
derivative of uD along BΩ. Then there exists wD P H

1pΩq and some constant

C1 :“ max
EPEpBΩq

ˆ

pπδ ` hEq
2 ` h2

E

π2
?

2hE%

˙1{2

À 1

(where δ :“ maxxPE |x´midpTEq| and % :“ distpE,midpTEqq of the adjacent triangle TE of
E P EpBΩq depend only on interior angles in T ) with

wD|BΩ “ uD ´ vD and ~wD~ ď C1

∥∥h3{2
E κ1{2B2

EpuD ´ vDq{Bs
2
∥∥
L2pBΩq

.

Proof. The proof employs an explicit construction of wD from [BCD04] and is repeated
here to calculate C1 for guaranteed error control for d “ 2. The case d “ 3 allows similar
arguments. Consider a triangle TE “ convtP1, P2, P3u P T with a Dirichlet edge E :“
convtP2, P3u P EpBΩq. The connection between the center of gravity midpTEq and the three
vertices of TE results in three subtriangles of the same area depicted in Figure 5.1. Let KE

denote the subtriangle of Figure 5.1 with E “ BKEXBTE . For every point x P KEztmidpTEqu
there exist some unique ζx P E and 0 ă λx ď 1, with x “ p1´ λxqmidpTEq ` λxζx. Then,

wDpxq|KE
“

#

λxpuDpζxq ´ vDpζxqq for x P KEztmidpTEqu,

0 else.

On all other triangles wD is set to zero.
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P1

P2

P3

F

midpTEq

ζx

%
x

E Ă BΩ

KE

Figure 5.1. Visualisation of notation for the construction of wD in the proof
of Theorem 5.1.

Without loss of generality, we assume midpTEq “ 0 P R2. Polar coordinates yield the
parameterisation

KE “ tx “ pr cospϕq, r sinpϕqq
ˇ

ˇα ă ϕ ă β, 0 ă r ă Rpϕq :“ |ζx|u

where α and β are the angles at the points P2 and P3, respectively. For x P KE and
ζx “ %νE`sτE with normal vector νE , tangential vector τE and height % “ distpmidpTEq, Eq,

it holds Rpϕq2 “ |ζx|2 “ %2 ` s2. Furthermore, for gpϕq :“ uDpζxq ´ vDpζxq, it holds
wDpxq “ r{Rpϕqgpϕq and

|∇wDpr, ϕq|2 “ |BwD{Br|2 ` |BwD{Bϕ|2 {r2

“ |gpϕq{Rpϕq|2 `
∣∣Rpϕqg1pϕq ´R1gpϕq∣∣2 {R2pϕq.

The expressions

Rpϕq “ %{ cospϕ´ χq and spϕq “ % tanpϕ´ χq,

where χ is the angle of the perpendicular point F , depicted in Figure 5.1, yield the differen-
tials

R1pϕq “ spϕqRpϕq{%, s1pϕq “ %{ cos2pϕ´ χq,

g1pϕq “
Bg

Bs

Bs

Bϕ
“
Bg

Bs
Rpϕq2{%.

Hence,

ż

KE

|∇wDpxq|2 dx “
ż β

α

ż Rpϕq

0
|∇wDpr, ϕq|2 r dr dϕ “

1

2

ż β

α
g2 `

`

R2g1{%´ gs{%
˘2
dϕ.

The transformation dϕ “ cos2pϕ´ χq ds{% “ % ds{p%2 ` s2q yields

ż β

α
gpϕq2 dϕ “

ż b

a
gpsq2%{p%2 ` s2q ds ď 1{%

∥∥g∥∥2

L2pEq
.
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The same transformation and the Young inequality for some λ ą 0 in the second summand
show

ż β

α

`

R2g1{%´ gs{%
˘2
dϕ “

ż b

a

ˆ

R2

%

Bg

Bs
´ gs{%

˙2

%{p%2 ` s2q ds

ď

ż b

a
p1` λq

R2

%

ˆ

Bg

Bs

˙2

` p1` 1{λq
s2

%p%2 ` s2q
g2 ds.

The estimate s2{p%p%2 ` s2qq ď 1{% results in
ż β

α

`

R2g1{%´ gs{%
˘2
dϕ ď p1` λqmax

ϕ
Rpϕq2{%

∥∥Bg{Bs∥∥2

L2pEq
` p1` 1{λq{%

∥∥g∥∥2

L2pEq
.

The Friedrichs inequality for g P H1
0 pEq and the Poincaré inequality for Bg{Bs yield

ż

KE

|∇wDpxq|2 dx ď
p1` λqmaxϕRpϕq

2

2%

∥∥Bg{Bs∥∥2

L2pEq
`

2` 1{λ

2%

∥∥g∥∥2

L2pEq

ď

ˆ

p1` λqδ2

2hEπ2%
`
p2` 1{λqhE

2π4%

˙ ∥∥h3{2
E B2g{Bs2

∥∥2

L2pEq
.

Elementary calculations lead to the optimal λ “ hE{pπδq and the claimed constant C1. Since
κ P P0pT q is constant on KE Ă T it acts as an global constant that can be easily multiplied
to both sides. This concludes the proof. �

Remark 5.2. For right isosceles triangles, numerical calculations suggest the constant C1 “

.4980. If v|BΩ is the nodal interpolation of uD on the red-refined triangulation, wD can be
designed on the red-refined triangulation with halved edge lengths and the constant reduces
to C1 “ .4980{23{2 “ .1761.

Remark 5.3. Due to the inhomogeneous boundary conditions all error estimators η2
xyz in

Section 4 have to be replaced by

η2 `

´∥∥κ1{2 p∇NC uCR ´∇ vxyzq
∥∥
L2pΩq

` C1

∥∥h3{2
E κ1{2B2

EuD{Bs
2
∥∥
L2pBΩq

¯2
.

The refinement indicators ηxyzpT q
2 are accordingly replaced by

ηxyzpT q
2 ` C2

1

∥∥h3{2
E κ1{2B2

EuD{Bs
2
∥∥2

L2pBTXBΩq
.

6. Equilibration estimators

This section concerns the application of equilibration techniques known from Poisson
problems to compute upper bounds for ~ResNC ~‹. At this point we only discuss the case
for simply-connected two-dimensional domains Ω as the modifications to d “ 3 are more
involved. In the 2D case, the divergence-free part of the Helmholtz decomposition has
a vector potential [GR86] and it holds Hpdiv0,Ωq “ CurlpH1pΩqq “ S∇pH1pΩqq with a
rotation matrix S :“ p0,´1; 1, 0q. This allows to test the residual ResNC with curls of
v P H1pΩq and to rewrite it into

ResNCpCurl vq “

ż

BΩ
uD Curl v ¨ ν ds´

ż

Ω
∇NC uCR ¨ Curl v dx

“

ż

BΩ
v γtp∇uDq ds´

ż

Ω
CurlNC uCR ¨∇ v dx.
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6.1. Introduction of equilibration. Given some q P Hpdiv,Ωq, an integration by parts
leads, for any v P H1pΩq, to

ResNCpCurl vq “

ż

BΩ
v γtp∇uDq ds´

ż

Ω
CurlNC uCR ¨∇ v dx

“

ż

Ω
div q v dx`

ż

BΩ
vpγtp∇uDq ´ q ¨ νq ds`

ż

Ω
pq ´ CurlNC uCRq ¨∇ v dx.(6.1)

A careful but straightforward estimation of (6.1) proves the following a posteriori error
control. The Friedrichs constant is given as

CF :“ sup
!∥∥f∥∥

L2pΩq
: f P H1

0 pΩq &
∥∥∇f∥∥

L2pΩq
“ 1

)

.

Theorem 6.1. Given q P Hpdiv,Ωq with
ż

E
pγtp∇uDq ´ q ¨ νq ds “ 0 for all E P EpBΩq(6.2)

and C2 :“
a

2{pdπq ` 1{π2 maxEPEpBΩq diampωEq{ |ωE |1{2 , it holds

~ResNC ~‹ ď CF
∥∥κ1{2 div q

∥∥
L2pΩq

`
∥∥κ1{2pq ´ CurlNC uCRq

∥∥
L2pΩq

` C2

∥∥phEκq1{2pγtp∇uDq ´ q ¨ νq
∥∥
L2pBΩq

.

Proof. Set g :“ γtp∇uDq ´ q ¨ ν and select one adjacent triangle ωE :“ convttP u Y Eu for
every boundary edge E P EpBΩq. Given v P H1pΩq, fix vE :“

ffl
ωE
v dx. The trace identity

(from an integration by parts and divpxq “ d) reads∥∥v ´ vE∥∥2

L2pEq
“

ż

E
pv ´ vEq

2 ds

“
|E|
|ωE |

ż

ωE

pv ´ vEq
2 dx`

|E|
d |ωE |

ż

ωE

px´ P q ¨∇ppv ´ vEq2q dx.

It holds
ż

ωE

px´ P q ¨∇ppv ´ vEq2q dx ď 2 diampωEq

ż

ωE

pv ´ vEq∇pv ´ vEq dx

ď 2 diampωEq
∥∥v ´ vE∥∥L2pωEq

∥∥∇ v
∥∥
L2pωEq

.

Together with a Poincaré inequality this yields∥∥v ´ vE∥∥2

L2pEq
ď diampωEq

2 |E| { |ωE |
`

2{pdπq ` 1{π2
˘
∥∥∇ v

∥∥2

L2pωEq
ď C2

2 |E|
∥∥∇ v

∥∥2

L2pωEq
.

We use
ş

E g ds “ 0 for E P EpBΩq to estimate the second term in (6.1) by
ż

BΩ
vpγtp∇uDq ´ q ¨ νq ds “

ÿ

EPEpBΩq

ż

E
gpv ´ vEq ds

ď
ÿ

EPEpBΩq

∥∥κ1{2g
∥∥
L2pEq

∥∥κ´1{2pv ´ vEq
∥∥
L2pEq

ď C2

∥∥phEκq1{2pγtp∇uDq ´ q ¨ νq
∥∥
L2pBΩq

∥∥κ´1{2∇v
∥∥
L2pΩq

.

The Friedrichs inequality in the first term of (6.1) gives
ż

Ω
div q v dx ď CF

∥∥κ1{2 div q
∥∥
L2pΩq

∥∥κ´1{2∇v
∥∥
L2pΩq

.
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The last two estimates plus a Poincaré inequality in the second term of (6.1) conclude the
proof. �

Equilibration estimators techniques for Poisson problems [AO00, LW04, Bra07, CM10,
CDN10, Voh11], least-square methods [Rep08] or mixed methods [GR86, Bra07] compute
q P Hpdiv,Ωq where

q ¨ ν « γtp∇uDq along BΩ

acts as Neumann boundary conditions on q. The particular choice q ¨ νE |E :“
ffl
E γtp∇uDq ds

for E P EpBΩq leads to boundary oscillations of κ1{2 γtp∇uDq,

oscpκ1{2 γtp∇uDq, EpBΩqq :“
∥∥phEκq1{2pγtp∇uDq ´ q ¨ νEq

∥∥
L2pBΩq

.

Three possible designs are given in Subsections 6.2-6.5.

Remark 6.2. For triangulations into right isosceles triangles, it holds C2 ď 2
a

1{π ` 1{π2 “

1.2956. This constant is used for all numerical computations of Section 7.

Remark 6.3. To guarantee the solvability of local problems for certain a posteriori error
estimators one has to check that the nodal basis functions ϕz for all z P N (also the nodes at
the boundary to impose Neumann conditions on q at the Dirichlet boundary) are included
in the kernel of ResNC. In fact, an elementwise integration by parts shows

ResNCpϕzq “

ż

BΩ
ϕz ¨ γtp∇uDq ds´

ż

Ω
∇uCR ¨ Curlϕz dx

“
ÿ

TPT

ż

BΩXBT
uD Curlϕz ¨ ν ds´

ż

BT
uCR Curlϕz ¨ νT ds

“
ÿ

TPT

ÿ

EPEpT q

ˆ 
BΩXE

uD ds´ uCRpmidpEqq

˙
ż

E
Curlϕz ¨ νT ds.

All contributions on inner edges are zero, because uCR is continuous in edge midpoints,
Curlϕz ¨ ν “ 0 along Bωz, and Curlϕz has no normal jumps. Since

uCRpmidpEqq “

 
E
uD ds for all E P EpBΩq,

the contributions on boundary edges EpBΩq vanish. Hence ResNCpϕzq “ 0.

6.2. Equilibration after Luce and Wohlmuth. The technique by Luce and Wohlmuth
[LW04] employs the dual triangulation T ‹ which connects each midpT q with adjacent nodes
and edge midpoints and so divides every T P T into six triangles of area |T | {6.

Consider some node z P N pT q and its nodal basis function ϕ‹z with the fine patch ω‹z :“
tϕ‹z ą 0u of the dual triangulation T ‹ and its neighbouring triangles T ‹pzq :“ tT ‹ P T ‹

ˇ

ˇ z P

N ‹pT ‹qu and adjacent edges E‹pzq “ tE P E‹
ˇ

ˇ z P Eu. Since CurlNC uCR P P0pT ;Rdq is
continuous along Bω‹z XT for any T P T , q ¨ ν “ CurlNC uCR ¨ ν P P0pE‹pBω‹zqq is well-defined
on the boundary edges E‹pBω‹zq of ω‹z . The original Luce-Wohlmuth design does not involve
Neumann boundary conditions, but they may be easily included by some interpolation g‹ P
P0pE‹pBΩqq of γtp∇uDq defined by

g‹|E :“ 2

ż

E
ϕz γtp∇uDq ds { |E| for z P N pBΩq, E P E˚pBωzq X E‹pzq.

This leads to the bound
ż

BΩ
pγtp∇uDq ´ g‹q v ds ď C2

∥∥phEκq1{2pγtp∇uDq ´ g‹q
∥∥
L2pBΩq

~v~
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with the calculated constant C2 from Remark 6.2. The modified Luce-Wohlmuth estimator
similar to [Voh11] computes the minimiser

qLW|ω‹z :“ argmin
τhPQpT ‹pzqq

∥∥κ1{2pg ´ τhq
∥∥
L2pω‹zq

in the set

QpT ‹pzqq :“
 

τh P RT0pT ‹pzqq
ˇ

ˇ div τh “ 0 in ω‹z & τh ¨ ν “ CurlNC uCR ¨ ν along Bω‹zzBΩ

& τh ¨ ν “ g‹ along Bω‹z X BΩ
(

.

The Luce-Wohlmuth error estimator reads

η2
LW :“ η2 `

´∥∥κ1{2pqLW ´ CurlNC uCRq
∥∥
L2pΩq

` C2

∥∥phEκq1{2pγtp∇uDq ´ qLW ¨ νq
∥∥
L2pBΩq

¯2
.

The ηLW-driven ACRFEM algorithm in Subsection 2.4 replaces ηRpT q
2 by

ηLWpT q
2 :“

∥∥κ´1{2fT {2 p‚ ´midpT qq
∥∥2

L2pT q
` h2

T {π
2
∥∥κ´1{2pf ´ fT q

∥∥2

L2pT q

`
∥∥κ1{2pqLW ´ CurlNC uCRq

∥∥2

L2pT q
` C2

2

∥∥phEκq1{2pγtp∇uDq ´ qLW ¨ νq
∥∥2

L2pBTXBΩq
.

6.3. Equilibration after Braess. Braess [Bra07] designs patchwise broken Raviart-Tho-
mas functions rz P RT´1pT pzqq :“ tq P L2pωzq

ˇ

ˇ q|T P RT0pT q for any T P T pzqu that satisfy
div qz ” 0,

rrz ¨ νEsE “ ´rCurlNC uCR ¨ νEsE{2 on E P Epzq X EpBΩq,
rz ¨ ν “ 0 along BωzzEpBΩq,

rz ¨ ν “

ż

E
ϕz γtp∇uDq ds along Bωz X EpBΩq.

The solution rz of these problems is unique up to multiplicatives of Curlϕz and may be chosen
such that

∥∥κ1{2rz
∥∥
L2pωzq

is minimal. Eventually, the quantity qB :“ CurlNC uCR`
ř

zPN rz P

RT0pT q satisfies ∥∥ γtp∇uDq ´ qB ¨ ν
∥∥
L2pBΩq

ď C2 oscpκ1{2 γtp∇uDq, EpBΩqq.

The estimator reads

η2
B :“ η2 `

`∥∥κ1{2pqB ´ CurlNC uCRq
∥∥
L2pΩq

` C2 oscpκ1{2 γtp∇uDq, EpBΩqq
˘2
.

The ηB-driven ACRFEM algorithm in Subsection 2.4 replaces ηRpT q
2 by

ηBpT q
2 :“

∥∥κ´1{2fT {2 p‚ ´midpT qq
∥∥2

L2pT q
` h2

T {π
2
∥∥κ´1{2pf ´ fT q

∥∥2

L2pT q

`
∥∥κ1{2pqB ´ CurlNC uCRq

∥∥2

L2pT q
` C2

2 oscpκ1{2 γtp∇uDq, EpT q X EpBΩqq2.

6.4. Least-square estimator after Repin. Following Repin [Rep08], we seek the best
qRepin P RT0pT q with (6.2) and a priori unconstrained divergence via a series of least square
problems that minimises

min
qPRT0pT q

q¨ν|BΩ“pγtp∇uDqqEpΩq

´

CF
∥∥div q

∥∥
L2pΩq

`
∥∥κ1{2pqRepin ´ CurlNC uCRq

∥∥
L2pΩq

¯

,
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with Friedrichs’ constant CF :“ supvPV zt0u
∥∥v∥∥

L2pΩq
{~v~ (or any upper bound of it). See

[Val09] for details on the following algorithm for the computation of qLS . For any β ą 0, the
Young inequality yields

´∥∥κ1{2pqRepin ´ CurlNC uCRq
∥∥
L2pΩq

` CF
∥∥div q

∥∥
L2pΩq

¯2

ď p1` βq
∥∥κ1{2pqRepin ´ CurlNC uCRq

∥∥2

L2pΩq
` C2

F p1` 1{βq
∥∥div q

∥∥2

L2pΩq
“: Mpβ, qq.

Therefore,

~ResNC ~‹ ď min
0ăβ

min
qPHpdiv,Ωq

Mpβ, qq1{2

and we now have to minimise the quadratic functional Mpβ, qq. For some fixed q the optimal
choice for β is

β “
CF

∥∥div q
∥∥
L2pΩq∥∥κ1{2pqRepin ´ CurlNC uCRq

∥∥
L2pΩq

.(6.3)

Given an initial β ą 0, compute the optimal qβ P RT0pT q. Then, use (6.3) to update β for the
next minimisation of qβ. After three iterations we arrive at (some very good approximation
of) qRepin. The estimator reads

η2
Repin :“ η2 `

`

CF
∥∥κ1{2 div qRepin

∥∥
L2pΩq

`
∥∥κ1{2pqRepin ´ CurlNC uCRq

∥∥
L2pΩq

` C2 oscpκ1{2 γtp∇uDq, EpBΩqq
˘2
.

The ηRepin-driven ACRFEM algorithm in Subsection 2.4 replaces ηRpT q
2 by

ηRepinpT q
2 :“

∥∥κ´1{2fT {2 p‚ ´midpT qq
∥∥2

L2pT q
` h2

T {π
2
∥∥κ´1{2pf ´ fT q

∥∥2

L2pT q

` C2
F

∥∥div qRepin

∥∥2

L2pT q
`
∥∥κ1{2pqRepin ´ CurlNC uCRq

∥∥2

L2pT q

` C2
2 oscpκ1{2 γtp∇uDq, EpT q X EpBΩqq2.

6.5. Localisation after Carstensen and Funken. The partition of unity property of the
nodal basis functions yields the residual split

ResNCpvq “
ÿ

zPN
ResNCpϕzvq

and since ResNCpϕzq “ 0 for z P N there exists an unique solution wz PWz :“
 

v P H1
locpωzq

ˇ

ˇ∥∥κ´1{2ϕ
1{2
z ∇v

∥∥
L2pωzq

ă 8
(

{R such that
ż

ωz

ϕzpκ´1∇ωzq ¨∇v dx “ ResNCpϕzvq for all v PWz.(6.4)

It holds (see [CF99])

~ResNC ~‹ ď

˜

ÿ

zPN

∥∥κ´1{2ϕ1{2
z ∇wz

∥∥2

L2pωzq

¸1{2

.

In the actual computations, the local problems (6.4) are solved with fourth-order polynomi-
als. The final error estimator reads

η2
CF :“ η2 `

ÿ

zPN

∥∥κ´1{2ϕ1{2
z ∇wz

∥∥2

L2pωzq
.
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The ηCF-driven ACRFEM algorithm in Subsection 2.4 replaces ηRpT q
2 by

ηCFpT q
2 :“

∥∥κ´1{2fT {2 p‚ ´midpT qq
∥∥2

L2pT q
` h2

T {π
2
∥∥κ´1{2pf ´ fT q

∥∥2

L2pT q

` 1{3
ÿ

zPN pT q

∥∥κ´1{2ϕ1{2
z ∇wz

∥∥2

L2pωzq
.

6.6. Link between interpolation and equilibration. The interpolation error estimators

from Section 4 design piecewise polynomial interpolations v P P1ppT qXCpΩq of uCR. However,

the rotation of their gradients ∇v results in some divergence-free q :“ Curl v P RT0ppT q with

~uCR ´ v~NC “
∥∥κ1{2pCurlNC uCR ´ Curl vq

∥∥
L2pΩq

.

The arguments of Subsection 6.1 on equilibration techniques apply to the aforementioned
q and result in Theorem 6.1 which is equivalent to the outcome from Theorem 3.1.b for
homogeneous Dirichlet data. This explains the comparable performance of ηA and ηB in the
numerical experiments of Section 7.

6.7. Further postprocessing. Some postprocessing in the spirit of [CM13] simply replaces
q in (6.1) by q`Curlw for any w P H1

0 pΩq. Since Curlw is zero along the boundary and has
zero divergence, Theorem 6.1 immediately leads to

~ResNC ~‹ ď CF
∥∥κ1{2 div q

∥∥
L2pΩq

`
∥∥κ1{2pq ´ CurlNC uCR ´ Curlwq

∥∥
L2pΩq

` C2

∥∥phEκq1{2pγtp∇uDq ´ q ¨ νq
∥∥
L2pBΩq

.

The design of w employs the red-refinement pT :“ redpT q (or the dual mesh pT :“ T ‹ in case
of qLW) and approximates

argmin
wPP1p pT qXCpΩq{R

∥∥κ1{2pq ´ CurlNC uCR ´ Curlwq
∥∥
L2pΩq

.

Following our experiences from [CM13], we use a Jacobi-preconditioned cg scheme with initial

value 0 and stop after one single iteration. This defines some wp1q and

η2
xyzpr,1q :“ η2 `

´∥∥κ1{2pqxyz ´ CurlNC uCR ´ Curlwp1qq
∥∥
L2pΩq

` ηDb

¯2

(with some non-changing contribution ηDb that reflects the influence of the inhomogeneous

boundary conditions) or, for pT “ T ‹,

η2
LWp1q :“ η2 `

`∥∥κ1{2pqLW ´ CurlNC uCR ´ Curlwp1qq
∥∥
L2pΩq

`C2

∥∥phEκq1{2pγtp∇uDq ´ qLW ¨ νq
∥∥
L2pBΩq

˘2
.

Since the quantity q “ Curl vMP1REDp8q is already the best-approximation amongst Curl
`

P1predpT qqXCpΩq
˘

, ηMP1REDp8q acts as a lower bound for all postprocessed quantities based

on q P RT0predpT qq and pT “ redpT q. Of course, more red-refinements lead to better accuracy
but also more costly computations.

7. Numerical Experiments

This section is devoted to some numerical experiments to report on the efficiency of the
estimators in the benchmark examples from Table 1. Note, that for these 2D examples the
constant 1{π in (3.1) is replaced by the smaller constant 1{j1,1, see Remark 3.3 for details.
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7.1. Numerical example on L-shaped domain with corner singularity. The first
benchmark problem employs f ” 0,κ ” 1 and inhomogeneous Dirichlet data uD given by
the exact solution

upr, ϕq “ r2{3 sinp2ϕ{3q

on the L-shaped domain Ω “ p´1, 1q2z pr0, 1s ˆ r´1, 0sq. The problem involves a typical
corner singularity and shows an empirical convergence rate of 1{3 related to the degrees of
freedom for uniform mesh refinement. Since the source term is zero, the overhead contribu-
tion η of the estimator vanishes. Adaptive mesh refinement with any described estimators
improves the convergence rate to the optimal value 0.5 (see Figure 7.3). Figures 7.1 and 7.2
compare the efficiency indices of all estimators for uniform and adaptive mesh refinement,
respectively. The efficiency indices vary between 1.1 for ηMP2 and 1.6 for ηA and ηB. The im-
proved estimators ηMP1REDp0q and ηPMRED perform slightly better than ηA for uniform mesh
refinement, but significantly better for adaptive mesh refinement. Here, the overestimation
decreases under 30 percent which is even better than ηRepin. The estimator ηLW performs
similar but slightly worse compared to ηMP1REDp0q. The efficiency of the error estimator
ηAP2 is even comparable to the postprocessed quantities ηRepinpr,1q, ηApr,1q, ηBpr,1q or ηMP1

for adaptive mesh refinement.
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Figure 7.1. History of efficiency indices ηxyz{~e~NC of various a posteriori
error estimators ηxyz labeled xyz in the figure as functions of the number of
unknowns on uniform meshes in Subsection 7.1.

7.2. Numerical example on slit domain with slit singularity. Our second benchmark
problem employs f ” 1,κ ” 1 and uD matching the exact solution upr, ϕq “ r1{2 sinpϕ{2q ´
p1{2qpr sinpϕqq2 on the slit domain

Ω “ tpx, yq P R2
ˇ

ˇ |x|` |y| ă 1uz pr0, 1s ˆ t0uq .

Figures 7.4 and 7.5 show similar efficiency histories of the estimators as in the first example.
The large pre-asymptotic range of the efficiency indices of some estimators indicate an influ-
ence of the oscillations of the inhomogeneous boundary data. Estimator like ηMP2, ηMP1RED,
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Figure 7.2. History of efficiency indices ηxyz{~e~NC of various a posteriori
error estimators ηxyz labeled xyz in the figure as functions of the number of
unknowns on adaptive meshes in Subsection 7.1.
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Figure 7.3. Convergence history of the energy error for uniform and ad-
aptive mesh-refinements in Subsection 7.1.

ηMP1REDp0q or ηPMRED with more degrees of freedom along BΩ (due to the employment
of P1predpT qq or P2pT q elements) are less affected by these oscillations. The proportion
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η{~e~NC decreases from 30 percent on the initial triangulation to below 3 percent. Hence,
the overhead term does not dominate the upper bound.
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Figure 7.4. History of efficiency indices ηxyz{~e~NC of various a posteriori
error estimators ηxyz labeled xyz in the figure as functions of the number of
unknowns on uniform meshes in Subsection 7.2.

7.3. Numerical example on square domain with oscillations [LW04]. The third
benchmark problem employs homogeneous boundary data uD ” 0,κ ” 1, and an oscillating
source term f that matches the exact solution upx, yq “ xpx ´ 1qypy ´ 1q expp´100px ´
1{2q2´ 100py´ 117{1000q2q on the square domain Ω “ p0, 1q2. Since the solution is smooth,
there is no improvement of the convergence rate by adaptive mesh refinement, but there is
a significant reduction of the pre-asymptotic range. The overall efficiency of all estimators
is very good (below 1.5) and similar for uniform and adaptive mesh refinement, see Figures
7.6 and 7.7. Our improved estimator ηMP1REDp0q and ηPMRED perform slightly better than
ηAP2, ηLW and ηA. The influence of the overhead term η is more significant than in the
other examples before, η{~e~NC arrives at values around 0.6. However, the other contribu-
tion

∥∥∇NC uCR ´∇ vxyz

∥∥
L2pΩq

is still crucial for the sharpness of the upper bound and the

efficiency indices of ηMP2 below 1.1 suggest that η is also a very sharp upper bound of ~α~.

7.4. Numerical example on 3/4-disk domain with corner singularity [Ain04]. The

fourth problem employs uD ” 0 and f matching the exact solution upr, ϕq “ pr2{3 ´

r2q sinp2ϕ{3q on the sector domain

Ω “ tx “ pr cosϕ, r sinϕq P Bp0, 1q
ˇ

ˇϕ P r0, 3π{2su.

As in the L-shape example from Subsection 7.1, we have a singularity due to a reentrant
corner. Since the domain is not matched exactly, uCR is extended by zero outside of

Ť

T
such that uCR “ 0 along BΩz

Ť

T . Similarly, the design of v from Section 4 on T or redpT q
can be extended H1pΩq-conformly by vxyz “ 0 on Ωz

Ť

T . Since the normal fluxes of q are
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Figure 7.5. History of efficiency indices ηxyz{~e~NC of various a posteriori
error estimators ηxyz labeled xyz in the figure as functions of the number of
unknowns on adaptive meshes in Subsection 7.2.
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Figure 7.6. History of efficiency indices ηxyz{~e~NC of various a posteriori
error estimators ηxyz labeled xyz in the figure as functions of the number of
unknowns on uniform meshes in Subsection 7.3.

zero along B
Ť

T for any design from Section 6, also q can be extended Hpdiv,Ωq-conformly
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Figure 7.7. History of efficiency indices ηxyz{~e~NC of various a posteriori
error estimators ηxyz labeled xyz in the figure as functions of the number of
unknowns on adaptive meshes in Subsection 7.3.

by qxyz “ 0 on Ωz
Ť

T . This leads to the guaranteed upper bound

~e~2
NC ď pη2 ` µ2

xyz.

with the modified first contribution

pη2 :“ η2 `

¨

˝

ÿ

EPEpB
Ť

T q

2widthppωEq

π

∥∥f∥∥
L2ppωEq

`
|pωE |1{2

|E|
|RespψEq|

˛

‚

2

where pωE is the circular segment that is enclosed by the circle line BΩ and the boundary
edge E P EpB

Ť

T q of the triangulation. Note, that the integrals in RespψEq are evaluated
only on

Ť

T . The two new terms in the sum stem from additional integrals that arise in
Step 2 of the proof in Theorem 3.1 due to α ‰ 0 along the boundary of

Ť

T zBΩ, i.e.,

ÿ

EPEpB
Ť

T q

ż

pωE

fα dx`

 
E
αdsRespψEq.

A 1D Friedrichs inequality orthogonal to E yields

ż

pωE

fα dx ď
2widthppωEq

π

∥∥f∥∥
L2ppωEq

∥∥∇α
∥∥
L2ppωEq

.
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The estimation of the second integral employs the 1D fundamental theorem of calculus along
BΩX BpωE in outer normal direction νE of E and a Cauchy inequality, i.e., 

E
αdsRespψEq “

1

|E|

ż

E

ż distpx,BΩXpx`νERqq

0
∇αpx` tνEq ¨ νE dt dsx RespψEq

ď
1

|E|

ż

pωE

|∇α| dx |RespψEq| ď
|pωE |1{2

|E|
|RespψEq|

∥∥∇α
∥∥
L2ppωEq

.

Figures 7.8 and 7.9 show that the efficiency indices are similar to the first examples and
are not polluted by the modifications.
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Figure 7.8. History of efficiency indices ηxyz{~e~NC of various a posteriori
error estimators ηxyz labeled xyz in the figure as functions of the number of
unknowns on uniform meshes in Subsection 7.4.

7.5. Numerical example on square domain with discontinuous diffusion [Ain04].
Our fifth benchmark involves f ” 0 and uD matches the exact quadratic function upx, yq “
px2´ y2q{κ on the square domain Ω “ p´1, 1q2. The diffusion parameter κ assumes the val-
ues 1, 100, 10000 on subdomains depicted in Figure 7.10. Since u P P2pT q X CpΩq, the error
estimator ηMP2 is almost exact as depicted in Figures 7.11 and 7.12. There is only a small
reliability-efficiency gap due to the inhomogeneous boundary conditions. The two equilibra-
tion error estimator ηB and ηA show extremely large efficiency gaps on coarse meshes. All
other error estimators perform similar as in the previous experiments with κ ” 1, but in
this example ηAP2 is very close to the optimal ηMP2.

7.6. Numerical example on octagon domain with discontinuous diffusion [HHW96].
The last benchmark problem employs f ” 0 and uD matching the exact solution upx, yq “
ppax2 ´ y2qpay2 ´ x2qq{κ with a “ tanpp3πq{8q2 on the octagon domain

Ω “ conv tpcospp2j ` 1qπ{8q, sinpp2j ` 1qπ{8qq , j “ 0, 1, .., 7u .
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Figure 7.9. History of efficiency indices ηxyz{~e~NC of various a posteriori
error estimators ηxyz labeled xyz in the figure as functions of the number of
unknowns on adaptive meshes in Subsection 7.4.

Figure 7.10. Distribution of κ “ 1 (white) and κ “ 1000 (light gray) in
octagon domain of Subsection 7.6 (left) and distribution of κ “ 1 (white),
κ “ 100 (light gray) and κ “ 10000 (dark gray) in square domain of Subsec-
tion 7.5.

The diffusion coefficients κ take alternately the values 1 and 1000 as depicted in Figure 7.10.
The results from Figure 7.13 and 7.14 are similar to the results from Subsection 7.5.

8. Remarks and Conclusions

8.1. On improved interpolation operators. The novel interpolation vMP1RED(0) from
Subsection 4.2 performs far better than vA in all numerical experiments of Section 7, espe-
cially in problems with jumping diffusion coefficients (Subsections 7.5 and 7.6) and all ex-
amples with adaptive mesh refinement. The further improvement of vMP1RED(0) by vPMRED

is significant and its efficiency is comparable to that of ηAP2 in most examples.

8.2. On global minimisation. The optimal estimators ηMP1, ηMP1RED and ηMP2 involve
the solution of high-dimensional linear systems of equations. The truncated iterative solve
via a preconditioned conjugate gradients scheme based on the initial value vMP1RED(0) of
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Figure 7.11. History of efficiency indices ηxyz{~e~NC of various a posteriori
error estimators ηxyz labeled xyz in the figure as functions of the number of
unknowns on uniform meshes in Subsection 7.5.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

1

1.5

2

2.5

 

 
A

A(r,1)

MP1

MP1RED(0)

MP1RED(0)(r,1)

MP1RED(3)

MP1RED(∞)

PMRED

PMRED(1)

AP2

MP2

B

B(r,1)

LW

LW(1)

Repin

Repin(r,1)

CF

Figure 7.12. History of efficiency indices ηxyz{~e~NC of various a posteriori
error estimators ηxyz labeled xyz in the figure as functions of the number of
unknowns on adaptive meshes in Subsection 7.5.

Subsection 4.2 leads to ηMP1REDp3q. The truncation after three iterations is highly efficient
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Figure 7.13. History of efficiency indices ηxyz{~e~NC of various a posteriori
error estimators ηxyz labeled xyz in the figure as functions of the number of
unknowns on uniform meshes in Subsection 7.6.
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Figure 7.14. History of efficiency indices ηxyz{~e~NC of various a posteriori
error estimators ηxyz labeled xyz in the figure as functions of the number of
unknowns on adaptive meshes in Subsection 7.6.

in Subsections 7.1-7.4, but not for the examples with jumping coefficients of Subsections 7.5-
7.6. The P2 interpolation vAP2 allows a very efficient estimator but with a large gap to the
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optimal P2 function vMP2. This may motivate its use for an initial value for some iterative
approximation of vMP2.

8.3. On other error estimators. Equilibration or localisation techniques after [LW04,
Rep08, CF99] lead to accurate error control with efficiency indices between those of ηA and
ηMP1REDp0q in most examples of Section 7. The overhead term η neither dominates the upper
bound nor pollutes the efficiency of the sharper estimators like ηMP2.

8.4. On postprocessing. The postprocessing of Subsection 6.7 leads to more accurate error
estimators which are competitive even with ηMP1REDp8q.

8.5. On adaptive mesh refinement. The steering of the adaptive mesh refinements can be
based on each of the 11 estimators from Table 2. In all numerical examples the convergence
of the error in the energy norm is quite comparable for all these cases. There is no particular
strategy of superior convergence — any of ηA, ηMP1REDp0q, ηPMRED, . . . will do.
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Rat. Mech. Anal. 5 (1960), 286–292.

[Rab10] H. Rabus, A natural adaptive nonconforming fem of quasi-optimal complexity, CMAM 10 (2010),
no. 3, 316–326.

[Rep08] Sergey Repin, A posteriori estimates for partial differential equations, Radon Series on Computa-
tional and Applied Mathematics, vol. 4, Walter de Gruyter GmbH & Co. KG, Berlin, 2008.

[Val09] Jan Valdman, Minimization of functional majorant in a posteriori error analysis based on H(div)
multigrid-preconditioned cg method, Advances in Numerical Analysis 2009 (2009).
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