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Problem sheet 4

Problem 4.1. Show that the function h: ¢ — [0,1] defined as h(G, 0) = |G| "1 {1g|<co}
is continuous in the weak local topology.

Proof. We have to show that the inverse image h™*(B) of each open subset B C [0, 1]
is open in ¢. Since the topology of open sets in [0, 1] is generated by open intervals,
it suffices to consider B = (a,b) C [0, 1]. Let

n(a) =max{n € N: £ >a} and n(b) =min{n € N: L <b}.

By definition, each finite rooted graph (G, o) with |V| € [n(b),n(a)] yields h(G,0) €
(a,b). Next, write ¢, for the subset of all rooted graph on exactly n vertices. Then,

%, is open as

GEYm

which is a finite union of open sets (recall that singletons of finite graphs are open in
the local topology). Therefore,

n(a)
hia,b)= | %

n=n(b)
is a union of open sets and thus open itself. This finishes the proof. O

Problem 4.2. Consider the Stochastik block model on the vertices V,, = V() U V@),
where V,, = [n] and V(! contains of all even labels and V{?) of all uneven labels.
We connect each vertex of the same type independently with probability a/n and
each pair of different types with probability b/n. Identify the Poisson BGW tree T
that describes the weak local limit and identify, for which a,b the tree has positive
probability of survival.

Proof. First of all, recall that the stochastik block model is an IRG with type space
{0,1} with limiting type distribution p(1) = p(2) = 1/2 (in the current situation).
Moreover, the connection kernel is given as ki, (2, z;) = K(24, ;) = a + (b — a)l (424}
Hence, the limiting BGW tree 7 has Poisson offspring with mean

Aij = k(i ))pu(d) = %(a]l {i=j} + 01 {i;éj})

by Theorem 3.1. This yields the expectation matrix

_1fa b
M_2<b )

In order to determine the supercritical regime, we have to identify the largest eigen-
value p. To this end, we calculate

O:det(M—)\]]_):( _/\)Q_E:/\Q_(IA+a24_b2.

a
2
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This equation has the solutions

a a> a?—-b azxb
)\ = — :t _— — —
TR 4 2
Thus, p = (a + b)/2 and the BGW tree is supercritical if p > 1< a+b > 2. O

Problem 4.3 (Theorem 4.6). Prove Theorem 4.6 of the lecture notes: Let (G,)
be the inhomogeneous random graph associated with the kernels (k,,) that converge
graphically to x. Then the empirical degree-degree distribution converges to the
probability measure v, given by

T k-1 -1
(k) = ¢ [ 55 [ 5L e O nCouta) ),

C

where ¢ = [ [ x(z,y)pu(dy)p(dz).

Proof. We apply Proposition 4.4 and note that uniform integrability in the assump-
tions was only used to ensure sparsity. Hence, it is not required here by Lemma 1.5
and we have

k
ED(o)
As ¢ = E(D(0)), it hence remains to calculate kP(D(o) = k,D(V) = 1) for the
limiting BGW tree. Recall that the number of offsprings of a type z vertex in the

limiting BGW tree is Poisson distributed with parameter A(z) = [ &(z,y)u(dy).
Thus, denoting (o, z) for the root of type x,

Vg(k, l) =

P(D(o) = k, D(V) = I).

P(D(o) = k, D(V) =) = /y P(D(o,z) = k, D(V) = )u(da)
- /y P(D(o0,z) = k)P(D(V) =1 | D(o,z) = k)u(dz)
A

k
=/, %e‘A(I)P(D(V) =1|D(o,x) = k)p(dz)
To calculate the remaining probability, recall that, given D(o,xz) = k, the k chil-
dren of the root are independently distributed according to the normalised intensity
measure k(z,y)u(dy)/A(z), which follows from the Poisson point process structure of
the neighbourhood. As V is chosen uniformly at random among these k vertices, it
follows the same distribution. Hence,

k(z,y)u(dy)
P(D(V) =1 | Do, :k:/IP’D ) = 0)RE DR
(D) =1 Dlo.) =) = [ BD(w.y) =08
where (v,y) is a root’s child of type y. In order to have degree [, the vertex v that is
already connected to the root must have [ —1 children itself. As each vertex produces
its offspring independently, we have

P(D(v,y) =1) = Ay)™ e AW,
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Putting everything together, we finally infer,

kP(D(0) =k, D(V) =1) = /y %e‘A(I)P(D(V) = 1| D(o,x) = k)p(dz)

A2 . Aly) ! ) B y)p(dy)
:/(k—l)!e ()(/(z—n!e Y ) )“(dx)’

as claimed. O

Problem 4.4 (Global clustering). In the lecture, we studied the local clustering
coefficient, describing the probability that two neighbours of a uniformly chosen vertex
are neighbours themselves and thus form a triangle. In contrast the global clustering
coefficient is defined as

glob _ Z’Uegn A(gm U)
" 3w, DO)(D(v) — 1)’

(&

i.e. the overall proportion of wedges that complete a triangle. Assume (G, ), converges
weakly locally to (G,0) € ¢ and that the sequence (D(O,,)?), is uniformly integrable.

Show that
E[A(G,0)]
3E[D(0)(D(0) — 1)’

glob s
cn
in probability, as n — oo.

Proof. (a): Consider the function h(G,0) = A(G,0), which is continuous but un-
bounded. Note that

1
n ;h(gn,’u) = h(Gn,On) < %D(On)(p(on) —1) < D(0n)*.
Therefore, we can choose €,0 > 0 and K > 1, such that for all k > K

P(% ZA(gna”)ﬂ{D(vbk} > 5) < %]E[A(gm On)]l{D(On)>k}]

LE[D(0n)*1L (p(0n)2>k}]

)

IN

A\
N

by the uniform integrability of D(O,,)?. Next, for k > K, we have by local convergence
]P)(‘A(gna On)1po,)<ky — A(G,0)1 {D(ogk)}‘ > 5) <:.
Finally, we have E[D(0)?] < co by uniform integrability. Therefore,

E[A(G, 0)] = E[A(G, 0))1 (p(o)<ky] < 6,




L. Liichtrath SOSE 25
E. Magnanini RANDOM GRAPHS

for sufficiently large £ > K. Combined, this yields
B([} X A(Gn.v) ~ E[A(G.0))| > 30)

<P(|E 3 AGnv) — EIAG. o)L oo | > 20)
< P(’% ZA(gn’ V)L (pw)<ky — E[A(G,0))L {D(o)gk}‘ > 5)

+ IP’(‘% > A(Go, )L pysky > 0)
<e.
Put differently,

% Z A(G,,v) — E[A(G,0)], in probability.

vEGn
With exactly the same arguments, we also have
1
— > D(v)(D(v) — 1) — E[D(0)(D(0) — 1)],  in probability.
n vEGn
Combined, we infer
QCglob — Zv A(gn? U) i n — EA(Q? 0) ,
n >, D)(D(v) =1)  E[D(0)(D(0) - 1)]
in probability. O
Problem 4.5 (Proposition 4.11). Finish the proof of Proposition 4.11: Let (G,) be

a sequence of random graphs converging weakly locally to a random rooted graph
(G,0). Then, in probability,

’Cn

Proof. Define the function h: ¢ — [0,1] via h(G,0) = |C(0)| "L {c()j<cc}- Recall
that, in the space ¢ of rooted connected locally finite graphs, we identify the graph
G with the connected component C(o) of its root. Hence, h(G,0) = |G| "1 {jgj<o0}
and it is continuous and bounded by Problem 4.1. Moreover, in a finite graph all
components are finite. Note further

Kn= 3> IC@)]™,

vEGn

| >0

as each component appears in the sum precisely as often as its size. Therefore, local
convergence yields

P LS h(Ga) — BIA(G.0)) = E[IG]L g

vEGn

However, as 1/00 = 0, we also have
E|G|™" = E[IG]7'L {g<ool) + E[0 - L {g=o}] = E[|G|7'L {500,
in probability, which concludes the proof. O
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Problem 4.6. Let (G,), be a sequence of random graphs converging weakly locally
to a rooted graph (G, o), and V? be the set of all vertices of degree at least two.
Show that

n 1
V@ BD(0) > 2) @

in probability. Using (1), show that %ZU @ €°(v) — E[TMH (D(o)>2} | In

probability implies

av

in probability.

Proof. Clearly,

VO 1
W) _ 1 > Lipw)>2y — P(D(0) > 2),

n n Uegn

in probability by local convergence. This proves (1). Hence, in probability,

v o (V) 1 A(G,0))
¢, = V| " — P > 2)E[%D(o)(D(o) — 1)]1{13(0)22}
A(G,0)

- %D(o)(D(o)—l)‘ (0)22]'




