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Problem sheet 4
Problem 4.1. Show that the function h : G → [0, 1] defined as h(G, o) = |G|−1

{|G|<∞}
is continuous in the weak local topology.

Proof. We have to show that the inverse image h−1(B) of each open subset B ⊂ [0, 1]
is open in G . Since the topology of open sets in [0, 1] is generated by open intervals,
it suffices to consider B = (a, b) ⊂ [0, 1]. Let

n(a) = max{n ∈ N : 1
n

> a} and n(b) = min{n ∈ N : 1
n

< b}.

By definition, each finite rooted graph (G, o) with |V| ∈ [n(b), n(a)] yields h(G, o) ∈
(a, b). Next, write Gn for the subset of all rooted graph on exactly n vertices. Then,
Gn is open as

Gn =


G∈Gm

{G},

which is a finite union of open sets (recall that singletons of finite graphs are open in
the local topology). Therefore,

h−1(a, b) =
n(a)

n=n(b)
Gn

is a union of open sets and thus open itself. This finishes the proof.

Problem 4.2. Consider the Stochastik block model on the vertices Vn = V (1)
n ∪ V (2)

n ,
where Vn = [n] and V (1)

n contains of all even labels and V (2)
n of all uneven labels.

We connect each vertex of the same type independently with probability a/n and
each pair of different types with probability b/n. Identify the Poisson BGW tree T
that describes the weak local limit and identify, for which a, b the tree has positive
probability of survival.

Proof. First of all, recall that the stochastik block model is an IRG with type space
{0, 1} with limiting type distribution µ(1) = µ(2) = 1/2 (in the current situation).
Moreover, the connection kernel is given as κn(xi, xj) = κ(xi, xj) = a + (b − a) {a ∕=b}.
Hence, the limiting BGW tree T has Poisson offspring with mean

λi,j = κ(i, j)µ(j) = 1
2


a {i=j} + b {i ∕=j}



by Theorem 3.1. This yields the expectation matrix

M = 1
2


a b
b a



.

In order to determine the supercritical regime, we have to identify the largest eigen-
value ρ. To this end, we calculate

0 = det(M − λ ) = (a
2 − λ)2 − b2

4 = λ2 − aλ + a2−b2

4 .
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This equation has the solutions

λ1,2 = a

2 ±


a2

4 − a2 − b2

4 = a ± b

2 .

Thus, ρ = (a + b)/2 and the BGW tree is supercritical if ρ > 1 ⇔ a + b > 2.

Problem 4.3 (Theorem 4.6). Prove Theorem 4.6 of the lecture notes: Let (Gn)
be the inhomogeneous random graph associated with the kernels (κn) that converge
graphically to κ. Then the empirical degree-degree distribution converges to the
probability measure ν2 given by

ν2(k, l) = 1
c

 λ(x)k−1

(k − 1)!e
−λ(x)

  λ(y)l−1

(l − 1)!e
−λ(y)κ(x, y)µ(dy)


µ(dx),

where c =
 

κ(x, y)µ(dy)µ(dx).

Proof. We apply Proposition 4.4 and note that uniform integrability in the assump-
tions was only used to ensure sparsity. Hence, it is not required here by Lemma 1.5
and we have

ν2(k, l) = k

ED(o)P(D(o) = k, D(V ) = l).

As c = E(D(o)), it hence remains to calculate kP(D(o) = k, D(V ) = l) for the
limiting BGW tree. Recall that the number of offsprings of a type x vertex in the
limiting BGW tree is Poisson distributed with parameter λ(x) =


κ(x, y)µ(dy).

Thus, denoting (o, x) for the root of type x,

P(D(o) = k, D(V ) = l) =


S
P(D(o, x) = k, D(V ) = l)µ(dx)

=


S
P(D(o, x) = k)P(D(V ) = l | D(o, x) = k)µ(dx)

=


S

λ(x)k

k! e−λ(x)P(D(V ) = l | D(o, x) = k)µ(dx)

To calculate the remaining probability, recall that, given D(o, x) = k, the k chil-
dren of the root are independently distributed according to the normalised intensity
measure κ(x, y)µ(dy)/λ(x), which follows from the Poisson point process structure of
the neighbourhood. As V is chosen uniformly at random among these k vertices, it
follows the same distribution. Hence,

P(D(V ) = l | D(o, x) = k) =


S
P(D(v, y) = ℓ)κ(x, y)µ(dy)

λ(x) ,

where (v, y) is a root’s child of type y. In order to have degree l, the vertex v that is
already connected to the root must have l −1 children itself. As each vertex produces
its offspring independently, we have

P(D(v, y) = l) = λ(y)l−1

(l − 1)!e
−λ(y).
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Putting everything together, we finally infer,

kP(D(o) = k, D(V ) = l) =


S

λ(x)k

(k − 1)!e
−λ(x)P(D(V ) = l | D(o, x) = k)µ(dx)

=
 λ(x)k

(k − 1)!e
−λ(x)

  λ(y)l−1

(l − 1)!e
−λ(y) κ(x, y)µ(dy)

λ(x)


µ(dx),

as claimed.

Problem 4.4 (Global clustering). In the lecture, we studied the local clustering
coefficient, describing the probability that two neighbours of a uniformly chosen vertex
are neighbours themselves and thus form a triangle. In contrast the global clustering
coefficient is defined as

cglob
n =


v∈Gn

∆(Gn, v)
1
2


v∈Gn

D(v)(D(v) − 1) ,

i.e. the overall proportion of wedges that complete a triangle. Assume (Gn)n converges
weakly locally to (G, o) ∈ G and that the sequence (D(On)2)n is uniformly integrable.
Show that

cglob
n −→ E[∆(G, o)]

1
2E[D(o)(D(o) − 1)] ,

in probability, as n → ∞.

Proof. (a): Consider the function h(G, o) = ∆(G, o), which is continuous but un-
bounded. Note that

1
n



v

h(Gn, v) = h(Gn, On) ≤ 1
2D(On)(D(On) − 1) ≤ D(On)2.

Therefore, we can choose ε, δ > 0 and K > 1, such that for all k > K

P


1
n



v

∆(Gn, v) {D(v)>k} > δ


≤ 1
δ
E[∆(Gn, On) {D(On)>k}]

≤ 1
δ
E[D(On)2

{D(On)2>k}]
< ε

2 ,

by the uniform integrability of D(On)2. Next, for k > K, we have by local convergence

P
∆(Gn, On) {D(On)≤k} − ∆(G, o) {D(o≤k)}

 > δ


≤ ε
2 .

Finally, we have E[D(o)2] < ∞ by uniform integrability. Therefore,

E[∆(G, o)] − E[∆(G, o)) {D(o)≤k}] < δ,
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for sufficiently large k > K. Combined, this yields

P
 1

n



v

∆(Gn, v) − E[∆(G, o))
 > 3δ



≤ P
 1

n



v

∆(Gn, v) − E[∆(G, o)) {D(o)≤k}
 > 2δ



≤ P
 1

n



v

∆(Gn, v) {D(v)≤k} − E[∆(G, o)) {D(o)≤k}
 > δ



+ P
 1

n



v

∆(Gn, v) {D(v)>k} > δ


≤ ε.

Put differently,
1
n



v∈Gn

∆(Gn, v) −→ E[∆(G, o)], in probability.

With exactly the same arguments, we also have
1
n



v∈Gn

D(v)(D(v) − 1) −→ E[D(o)(D(o) − 1)], in probability.

Combined, we infer

2cglob =


v ∆(Gn, v)
n

· n


v D(v)(D(v) − 1) −→ E∆(G, o)
E[D(o)(D(o) − 1)] ,

in probability.
Problem 4.5 (Proposition 4.11). Finish the proof of Proposition 4.11: Let (Gn) be
a sequence of random graphs converging weakly locally to a random rooted graph
(G, o). Then, in probability,

Kn

n
−→ E


1

|G|


≥ 0.

Proof. Define the function h : G → [0, 1] via h(G, o) = |C(o)|−1
{|C(o)|<∞}. Recall

that, in the space G of rooted connected locally finite graphs, we identify the graph
G with the connected component C(o) of its root. Hence, h(G, o) = |G|−1

{|G|<∞}
and it is continuous and bounded by Problem 4.1. Moreover, in a finite graph all
components are finite. Note further

Kn =


v∈Gn

|C(v)|−1,

as each component appears in the sum precisely as often as its size. Therefore, local
convergence yields

Kn

n
= 1

n



v∈Gn

h(Gn, v) −→ E[h(G, o)] = E[|G|−1
{G<∞}]

However, as 1/∞ = 0, we also have

E|G|−1 = E[|G|−1
{G<∞}] + E[0 · {G=∞}] = E[|G|−1

{G<∞}],

in probability, which concludes the proof.
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Problem 4.6. Let (Gn)n be a sequence of random graphs converging weakly locally
to a rooted graph (G, o), and V (2)

n be the set of all vertices of degree at least two.
Show that

n

|V (2)
n |

−→ 1
P(D(o) ≥ 2) (1)

in probability. Using (1), show that 1
n


v∈V(2)

n
cloc

n (v) −→ E


∆(G,o))
1
2 D(o)(D(o)−1)

{D(o)≥2}


in

probability implies

cav
n −→ E

 ∆(G, o)
1
2D(o)(D(o) − 1)

 D(o) ≥ 2

,

in probability.

Proof. Clearly,
|V (2)

n |
n

= 1
n



v∈Gn

{D(v)≥2} −→ P(D(o) ≥ 2),

in probability by local convergence. This proves (1). Hence, in probability,

cav
n = n

|V (2)
n |

·


v∈V(2)
n

cloc
n (v)

n
−→ 1

P(D(o) ≥ 2)E
 ∆(G, o))

1
2D(o)(D(o) − 1) {D(o)≥2}



= E
 ∆(G, o)

1
2D(o)(D(o) − 1)

 D(o) ≥ 2

.


