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Problem sheet 3

Problem 3.1. Let (G,0) € ¢4 be a rooted graph and r > 0. Show that the ball
B={H e€G:d(G, H) <r} is both, open and closed.

Proof. We start with openness. We show that for every (H, 0o') € B, there exists € > 0
such that the ball

B. = {(%/’0//) €g: d((HaO/)a (H/aoﬂ)) < E}

is contained in B. Fix (H,o') € B. Then, by the definition, we have d ((G, 0), (H,0")) <
r. Set now Ry := min {R eN: H%% < r}; then (G,0) A Ry = (H,0") A\ Ry. Define
¢ = 13 Then for any (H',0") € B. we have (H,0') A Ry = (H',0") A Ry, and
hence, by transitivity, (G,0) A Ry = (H',0") A Ry, which implies (H',0") € B, being
e<r.

We now show closeness. To do so, we show that the complement set of B is open.

Consider now (H,0') ¢ B, i.e.,
d((G,0),(H,0) =z 1.
We show that there exists € > 0 such that
B.cG\B={HecG: dGH) >r}

Let Ry :=max{R € N: - > rt. Then, by construction, (G,0) A Ry # (H,0') A Ry.
T+R

Now, set & := . By definition, any (#,0") € B is such that (H',0") A Ry =

0,

(H,0') ARy # (G,0) A Ry = d ((G,0),(H,0") > e >r= (H,") €G\B. 0

Problem 3.2. Consider the map ¢: 4 — 9 Ak, (G,0) — (G,0) Ak for a fixed k € N.
Show that ¢ is continuous.

Proof. Let € > 0 and choose 6 < 1/(k + 1). Let (G,0),(H,r) be two rooted graphs
such that d((G,o0),(H,r)) =1/(N +1) <. Hence, N > (1/§) — 1, where N denotes,
as usual, the maximal depth, for which G and H agree. By choice of ¢, in particular,
N > k and therefore (G,0) Ak = (H,r) A k. Thus,

|(10(g7 0) - (p(?‘[,’f’)| =0< g,
implying continuity. O

Problem 3.3. Fix some (H,0y4) € 4 and consider the map h: 4 — {0,1}, (G,0) —
L {(G,0)Ak=(H,05)} for some k € N. Show that h is a continuous bounded map.

Proof. For every £ > 0, we show that there exists § > 0 such that for all (G’,0) € ¢,

d((G,0),(G",d)) <6 = |h(G,0)—h(G )| <e.




L. Liichtrath SOSE 25
E. Magnanini RANDOM GRAPHS

1. Case h(G,0) = 1, hence (G,0) Ak = (H,03). Choose § < 4. Then, by

definition of the distance d ((G,0),(G',0)) < — = (G,0) ANk = (G',d') N k.

1+k

Therefore, for all (G',0) with d((G,0),(G’,0")) < 6§, we have
(G, YNk =(G,0) Nk=(H, o) = h(G',d)=1.

2. Case h(G,0) = 0, hence (G,0) Ak # (H, 03). Using the same § < ;5 as before,
for all (G',0') with d ((G,0),(G',0")) < 0, we have

(G ) Nk= (G o) Nk #£(H,00) = h(G,0)=0.

So again,

|h(G',0") — h(G,0)| =0 <e.
This shows coninuity. O

Problem 3.4. We identify with (Z,0) the rooted graph, which has root 0 and all
nearest neighbour edges, i.e. 5( )= {{i,i+1}:i € Z}. Let G be the line of length
n, i.e. V(GV) = [n] and £(GVY) = {{1 2},{2,3},...,{n — 1,n}}. Let further G»
be the cycle of length n, i.e. V(Qn ) = [n] and 8( 2)) = {{1,2},{2,3},...,{n —
1,n},{n,1}}. Show that both, GV and G® converge weakly locally to (Z O), as
n — 0.

Proof. Fix k € N. Choose a vertex uniformly at random from [n], call it U and

consider ok — 9
]P’(Ue{k-i—l,...,n—k—l}):n_T_—M,

assuming n > 2k + 2. On this event, the graph (G, U) N k consists of the vertices
{U—Fk,...,U,...,U + k} and the edges

(U—k,U—k+1}, {U—k+1,U—k+2},... {U=1,U},{U, U+1},... {U+k—1,U+k},

as the boundary points are not seen. After shifting each label by U, thus centring in
0, this coincides with the graph (Z,0) A k. Hence,

P(GM,U) Ak = (2,0)) > P((GV,U) Ak = (Z,0),U € {k+1,...,n—k —1})
=1PUe{k+1,....n—k—-1}) — 1L
The same applies verbatim for G). O

Problem 3.5. Let 1 be a Poisson process with intensity v on .. Show that, for
every measurable function f: .7 — [0, 00), we have

B[S @) = [ s,

xen
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Proof. We first consider the case v(.¥) < co. In that case we have

N (9] k
EY fla)=E)Y f(Xi) =) P(N=k)) E[f(Xi)| N =4k]
TEN i=1 k=0 i=1
Now recall, that N is Poisson distributed with parameter v(.) and X3, ..., X} are,
given N = k, i.i.d. with respect to the normalised intensity measure v(dz)/v().
Therefore, we have

S BN = K) B | N =4 = BN =8) [ fap(dn)/vl7)
=0 1

i= k=0 4

- g[g | f@wida)m)

= yf(x)l/(dx)/y(f)

Next, we turn to the general case where v(¥) = oo is possible. We first show the
equality for f(x) =1 ,c4 for a Borel set .A. Then,

EY 1 peay = E[ﬁ{x €En:x € A}] =v(A) = /T]$6A1/(daz),

xren

by the properties of the Poisson point process. By the monotone class theorem, the
equality is valid for all bounded measurable functions. For any measurable function
f, we approximate f with the sequence of bounded functions f, = f A k, for which
the equation applies. The proof then finishes with monotone convergence. O




