
L. Lüchtrath
E. Magnanini

SoSe 25
Random Graphs

Problem sheet 3
Problem 3.1. Let (G, o) ∈ G be a rooted graph and r > 0. Show that the ball
B = {H ∈ G : d(G, H) < r} is both, open and closed.

Proof. We start with openness. We show that for every (H, o′) ∈ B, there exists ε > 0
such that the ball

Bε := {(H′, o′′) ∈ G : d((H, o′), (H′, o′′)) ≤ ε}

is contained in B. Fix (H, o′) ∈ B. Then, by the definition, we have d ((G, o), (H, o′)) <

r. Set now R0 := min
󰁱
R ∈ N : 1

1+R
< r

󰁲
; then (G, o) ∧ R0 = (H, o′) ∧ R0. Define

ε := 1
1+R0

. Then for any (H′, o′′) ∈ Bε we have (H, o′) ∧ R0 = (H′, o′′) ∧ R0, and
hence, by transitivity, (G, o) ∧ R0 = (H′, o′′) ∧ R0, which implies (H′, o′′) ∈ B, being
ε < r.
We now show closeness. To do so, we show that the complement set of B is open.
Consider now (H, o′) /∈ B, i.e.,

d ((G, o), (H, o′)) ≥ r.

We show that there exists ε > 0 such that

Bε ⊂ G \ B = {H ∈ G : d(G, H) ≥ r}.

Let R0 := max
󰁱
R ∈ N : 1

1+R
≥ r

󰁲
. Then, by construction, (G, o) ∧ R0 ∕= (H, o′) ∧ R0.

Now, set ε := 1
1+R0

. By definition, any (H′, o′′) ∈ Bε is such that (H′, o′′) ∧ R0 =
(H, o′) ∧ R0 ∕= (G, o) ∧ R0 ⇒ d ((G, o), (H′, o′′)) ≥ ε ≥ r ⇒ (H′, o′′) ∈ G \ B.

Problem 3.2. Consider the map ϕ : G → G ∧k, (G, o) 󰀁→ (G, o)∧k for a fixed k ∈ N.
Show that ϕ is continuous.

Proof. Let ε > 0 and choose δ < 1/(k + 1). Let (G, o), (H, r) be two rooted graphs
such that d((G, o), (H, r)) = 1/(N + 1) < δ. Hence, N > (1/δ) − 1, where N denotes,
as usual, the maximal depth, for which G and H agree. By choice of δ, in particular,
N > k and therefore (G, o) ∧ k = (H, r) ∧ k. Thus,

|ϕ(G, o) − ϕ(H, r)| = 0 < ε,

implying continuity.

Problem 3.3. Fix some (H, oH) ∈ G and consider the map h : G 󰀁→ {0, 1}, (G, o) 󰀁→
{(G,o)∧k=(H,oH)} for some k ∈ N. Show that h is a continuous bounded map.

Proof. For every ε > 0, we show that there exists δ > 0 such that for all (G ′, o′) ∈ G ,

d ((G, o), (G ′, o′)) < δ ⇒ |h(G, o) − h(G ′, o′)| < ε.
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1. Case h(G, o) = 1, hence (G, o) ∧ k = (H, oH). Choose δ < 1
k+1 . Then, by

definition of the distance d ((G, o), (G ′, o′)) < 1
1+k

⇒ (G, o) ∧ k = (G ′, o′) ∧ k.
Therefore, for all (G ′, o′) with d ((G, o), (G ′, o′)) < δ, we have

(G ′, o′) ∧ k = (G, o) ∧ k = (H, oH) ⇒ h(G ′, o′) = 1.

2. Case h(G, o) = 0, hence (G, o) ∧ k ∕= (H, oH). Using the same δ < 1
k+1 as before,

for all (G ′, o′) with d ((G, o), (G ′, o′)) < δ, we have

(G ′, o′) ∧ k = (G, o) ∧ k ∕= (H, oH) ⇒ h(G ′, o′) = 0.

So again,
|h(G ′, o′) − h(G, o)| = 0 < ε.

This shows coninuity.

Problem 3.4. We identify with (Z, 0) the rooted graph, which has root 0 and all
nearest neighbour edges, i.e. E(Z) = {{i, i + 1} : i ∈ Z}. Let G(1)

n be the line of length
n, i.e. V(G(1)

n ) = [n] and E(G(1)
n ) = {{1, 2}, {2, 3}, . . . , {n − 1, n}}. Let further G(2)

n

be the cycle of length n, i.e. V(G(2)
n ) = [n] and E(G(2)

n ) = {{1, 2}, {2, 3}, . . . , {n −
1, n}, {n, 1}}. Show that both, G(1)

n and G(2)
n converge weakly locally to (Z, 0), as

n → ∞.

Proof. Fix k ∈ N. Choose a vertex uniformly at random from [n], call it U and
consider

P(U ∈ {k + 1, . . . , n − k − 1}) = n − 2k − 2
n

−→ 1,

assuming n > 2k + 2. On this event, the graph (G(1)
n , U) ∩ k consists of the vertices

{U − k, . . . , U, . . . , U + k} and the edges

{U−k, U−k+1}, {U−k+1, U−k+2}, . . . , {U−1, U}, {U, U+1}, . . . , {U+k−1, U+k},

as the boundary points are not seen. After shifting each label by U , thus centring in
0, this coincides with the graph (Z, 0) ∧ k. Hence,

P((G(1), U) ∧ k = (Z, 0)) ≥ P
󰀓
(G(1), U) ∧ k = (Z, 0), U ∈ {k + 1, . . . , n − k − 1}

󰀔

= 1P(U ∈ {k + 1, . . . , n − k − 1}) −→ 1.

The same applies verbatim for G(2).

Problem 3.5. Let η be a Poisson process with intensity ν on S . Show that, for
every measurable function f : S → [0, ∞), we have

E
󰀗 󰁛

x∈η

f(x)
󰀘

=
󰁝

S
f(x)ν(dx).
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Proof. We first consider the case ν(S ) < ∞. In that case we have

E
󰁛

x∈η

f(x) = E
N󰁛

i=1
f(Xi) =

∞󰁛

k=0
P(N = k)

k󰁛

i=1
E[f(Xi) | N = k].

Now recall, that N is Poisson distributed with parameter ν(S ) and X1, . . . , Xk are,
given N = k, i.i.d. with respect to the normalised intensity measure ν(dx)/ν(S ).
Therefore, we have

∞󰁛

k=0
P(N = k)

k󰁛

i=1
E[f(Xi) | N = k] =

∞󰁛

k=0
kP(N = k)

󰁝

S
f(x)ν(dx)/ν(S )

= E[N ]
󰁿 󰁾󰁽 󰂀
=ν(S )

󰁝

S
f(x)ν(dx)/ν(S )

=
󰁝

S
f(x)ν(dx)/ν(S ).

Next, we turn to the general case where ν(S ) = ∞ is possible. We first show the
equality for f(x) = x∈A for a Borel set A. Then,

E
󰁛

x∈η
{x∈A} = E

󰁫
󰂒{x ∈ η : x ∈ A}

󰁬
= ν(A) =

󰁝
x∈Aν(dx),

by the properties of the Poisson point process. By the monotone class theorem, the
equality is valid for all bounded measurable functions. For any measurable function
f , we approximate f with the sequence of bounded functions fn = f ∧ k, for which
the equation applies. The proof then finishes with monotone convergence.


