Problem sheet 3

Problem 3.1. Let $(\mathcal{G}, o) \in \mathcal{G}$ be a rooted graph and r > 0. Show that the ball $\mathcal{B} = \{\mathcal{H} \in \mathcal{G} : d(\mathcal{G}, \mathcal{H}) < r\}$ is both, open and closed.

Problem 3.2. Consider the map $\varphi : \mathscr{G} \to \mathscr{G} \land \mathscr{G} \land k$, $(\mathcal{G}, o) \mapsto (\mathcal{G}, o) \land k$ for a fixed $k \in \mathbb{N}$. Show that φ is continuous.

Problem 3.3. Fix some $(\mathcal{H}, o_{\mathcal{H}}) \in \mathscr{G}$ and consider the map $h: \mathscr{G} \mapsto \{0, 1\}, (\mathcal{G}, o) \mapsto \mathbb{1}_{\{(\mathcal{G}, o) \land k = (\mathcal{H}, l_{\mathcal{H}})\}}$ for some $k \in \mathbb{N}$. Show that h is a continuous bounded map.

Problem 3.4. We identify with $(\mathbb{Z}, 0)$ the rooted graph, which has root 0 and all nearest neighbour edges, i.e. $\mathcal{E}(\mathbb{Z}) = \{\{i, i+1\}: i \in \mathbb{Z}\}$. Let $\mathcal{G}_n^{(1)}$ be the line of length n, i.e. $\mathcal{V}(\mathcal{G}_n^{(1)}) = [n]$ and $\mathcal{E}(\mathcal{G}_n^{(1)}) = \{\{1, 2\}, \{2, 3\}, \ldots, \{n-1, n\}\}$. Let further $\mathcal{G}_n^{(2)}$ be the cycle of length n, i.e. $\mathcal{V}(\mathcal{G}_n^{(2)}) = [n]$ and $\mathcal{E}(\mathcal{G}_n^{(2)}) = \{\{1, 2\}, \{2, 3\}, \ldots, \{n-1, n\}\}$. Let further $\mathcal{G}_n^{(2)}$ be the system of length n, i.e. $\mathcal{V}(\mathcal{G}_n^{(2)}) = [n]$ and $\mathcal{E}(\mathcal{G}_n^{(2)}) = \{\{1, 2\}, \{2, 3\}, \ldots, \{n-1, n\}, \{n, 1\}\}$. Show that both, $\mathcal{G}_n^{(1)}$ and $\mathcal{G}_n^{(2)}$ converge weakly locally to $(\mathbb{Z}, 0)$, as $n \to \infty$.

Problem 3.5. Let η be a Poisson process with intensity ν on \mathscr{S} . Show that, for every measurable function $f: \mathscr{S} \to [0, \infty)$, we have

$$\mathbb{E}\bigg[\sum_{x\in\eta}f(x)\bigg] = \int_{\mathscr{S}}f(x)\nu(\mathrm{d}x).$$