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Problem sheet 2
Problem 2.1. Let Gn be an Erdős-Rényi graph on n vertices, where each edge is
present independently with probability c/n, c > 0. Let Xn be the number of triangles
in Gn, where we call {u, v, w} ⊂ Vn a triangle if u ∼ v, v ∼ w and w ∼ u. Find the
limiting distribution of Xn, as n → ∞.
Proof. Let u, v, w ∈ [n] be three distinct vertices. By assumption the form a triangle
with probability

pn := P(u ∼ v, v ∼ w, w ∼ u) = c3

n3 .

Let X{u,v,w} = {u∼v,v∼w,w∼u} be the indicator of the event that u, v, w form a triangle,
which is Bernoulli(pn) distributed. Then, by independence of all edges, the random
variables (X{x,y,z}) form a collection of Bernoulli(pn) random variables, which are
independent, whenever the triangles in question share no common edge, as

P(X{u,v,w} = 1, X{u,v,x} = 1) = P(u ∼ v, v ∼ w, v ∼ x, w ∼ u, x ∼ u) = c5

n5 ∕= p2
n. (1)

Still, by definition
Xn =

n󰁛

u=1

n󰁛

v=1
v ∕=u

n󰁛

w=1
w ∕∈{u,v}

X{u,v,w}.

If all these random variables were independent, then Xn would be binomially dis-
tributed with parameters

󰀓
n
3

󰀔
and pn, and as

󰀣
n

3

󰀤

pn = n3 − 3n2 + 2n

6
c3

n3 −→ c3

6 ,

the limiting distribution would be Poisson(c3/6). We aim to showing that this is still
the case. First of all, recall that a discrete random variable is uniquely defined via
its probability generating function

gn(t) = EtXn =
(n

3)󰁛

j

tj P(Xn = j)
󰁿 󰁾󰁽 󰂀

=:p(n)

.

The important property, giving the probability generating function its name, is p(r) =
g(r)

n (0)/r!. However, by definition, g(r)
n (0) = E[Xn(Xn − 1) . . . (Xn − r + 1)], the r-th

factorial moment. Hence, we have to show that factorial moments of Xn converge
towards the factorial moments of a Poisson random variable. Using that the PGF
of a Poisson(λ) random variable is eλ(t−1), it is straightforward that the factorial
moments are simply of the form λr. Hence, we have to show, that for each r ∈ N

E[(Xn)r] := E[Xn(Xn − 1) . . . (Xn − r + 1)] →=
󰀓

c3

6

󰀔r
=: λr.

To easy notation, let τ1, . . . , τ(n
3) denote all potential triangles, i.e., each τ represents

a subset of size 3 of [n]. Consequently,

Xn =
(n

3)󰁛

i=1
Xτi
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We start with r = 1, for which we immediately infer E(Xn)1 → λ by our observations
above. For the second factorial moment, we obtain

E[(Xn)2] = E[X 2
n ] − EXn =

󰁛

i ∕=j

E[Xτi
Xτj

] +
󰁛

i

E[X2
τi

] −
󰁛

i

EXτi
=

󰁛

i ∕=j

E[Xτi
Xτj

],

as X2
τ = Xτ . Similarly, for the third factorial moment we first have

E(Xn)3 = EX 3
n − 3EX 2

n + 2EXn = EX 3
n − EX 2

n − 2 (EX 2
n − EXn)

󰁿 󰁾󰁽 󰂀
=

󰁓
i ∕=j

E[Xτi Xτj ]

.

For the third moment, we infer

EX 3
n =

󰁛

i,j,k
i ∕=j,i ∕=k,k ∕=j

E[Xτi
Xτj

Xτk
] + 3

󰁛

i ∕=j

E[Xτi
Xτj

] +
󰁛

i

EXτi

and therefore

E(Xn)3 =
󰁛

i,j,k
i ∕=j,i ∕=k,k ∕=j

E[Xτi
Xτj

Xτk
] +

󰁛

i ∕=j

E[Xτi
Xτj

] + EXn − EX 2
n

=
󰁛

i,j,k
i ∕=j,i ∕=k,k ∕=j

E[Xτi
Xτj

Xτk
].

Proceeding as such, we inductively infer

E(Xn)r =
󰁛

i1,...,ir

E
󰁫 r󰁜

j=1
Xτj

󰁬

and we are left to show that
󰁛

i1,...,ir

E
󰁫 r󰁜

j=1
Xτj

󰁬
−→ λr

for each r ∈ N. For r = 1 this has already been done above. For r = 2, we have
to distinguish two cases: Either τi ∩ τj = ∅, in which case the occurrence of the two
triangles is completely independent, or τi and τj share an edge, in which case the
expectation is given by (1). Note that if the triangles share two edges, they must
be the same, implying i = j, which is no part of the sum. The number of disjoint
triangles is

󰀓
n
3

󰀔󰀓
n−3

3

󰀔
and therefore

󰁛

i ∕=j
τi∩τj=∅

E[Xτi
Xτj

] =
󰀣

n

3

󰀤󰀣
n − 3

3

󰀤󰀓 c3

n3 )2 −→
󰀓c3

6
󰀔2

= λ2.

As there are
󰀓

n
3

󰀔
(n − 3) many triangles that share an edge, we infer

󰁛

i ∕=j
τi∩τj ∕=∅

E[Xτi
Xτj

] =
󰀣

n

3

󰀤

(n − 3) c5

n5 −→ 0.
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Together, 󰁛

i ∕=j

E[Xτi
Xτj

] −→ λ2.

Here (and in the following), we used that
󰀓

n−k
3

󰀔
= (n3/6) + o(n3) as n → ∞ and k

fixed. Finally, consider the case of general r. Again, we have to distinguish the two
cases of disjoint triangles, in which case the expectation again factorises and the case,
in which some of the triangles share an edge. Assuming n to be large enough, we
have for the first case

󰁛

i1,...,ir
disjoint

E
󰁫 r󰁜

j=1
Xτj

󰁬
=

󰀣
n

3

󰀤󰀣
n − 3

3

󰀤

. . .

󰀣
n − 3(r − 1)

3

󰀤󰀓 c3

n3

󰀔r

=
󰀓c3

6
󰀔r

(n3r + o(n3r))n−3r −→ λr.

It therefore remains to show that all the summands left out tend to zero. Consider
τi1 , . . . , τir that are not all pairwise disjoint, so that at least two of the involved
triangles share an edge and let m = |τi1 ∪ · · · ∪ τir | be the total number of distinct
vertices among all the triangles. Let t = ti−1,...,ir be the number of all distinct edges
needed to draw all these triangles. Then always t > m. This is due to the fact,
that no triangle is allowed to appear twice. Therefore, whenever two triangles are
not disjoint they either share a vertex or an edge. In the first case, 6 distinct edges
are needed to draw the two triangles (in fact they are independent). In the second
case, two additional edges are needed to create the second triangle but only a single
additional vertex. Let Vm = {τ = (τi1 , . . . , τr) : |τ | = m} the set of all r many
triangles on m vertices. Let tm = min{tτ : τ ∈ Vm} the minimal number of edges
among all the triangle-collections in Vm. By the above, tm ≥ m + 1. Additionally,
|Vm| = C

󰀓
n
m

󰀔
, where the constant C counts the number of possibilities to sort m

vertices into triangles, which does not depend on n. Therefore, |Vm| = O(nm), and
thus 󰁛

τ∈Vm

ptτ
n ≤ O(nm)O(n−m−1) = O(n−1).

In order to be not completely distinct, the different triangles must share at least one
vertex, in which case m = 3r − 1. Further, τ can clearly not contain less than 4
different vertices. Therefore,

󰁛

i1,...,ir
not disjoint

E
󰁫 r󰁜

j=1
Xτj

󰁬
≤

3r−1󰁛

m=4
O(n−1) ≤ 3rO(n−1) → 0,

as r is fixed. This finishes the proof.

Problem 2.2. Show that the space G of rooted graphs is not compact.

Proof. Recall that, in a metric space, compactness is equivalent to sequential com-
pactness, meaning that each sequence has a convergent subsequent. For n ∈ N, let
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Sn ∈ G , the rooted star of size n. That is, Sn consists of a root that has n children.
Consider the sequence (Sn : n ∈ N). As two stars, Sn and Sm differ in the number
of children of the root, they differ at graph distance 1 from the root and only agree
on the root. Therefore, d(Sn, Sm) = 1 for all n ∕= m. Therefore, (Sn) cannot contain
a convergent subsequence, as each convergent sequence is also a Cauchy sequence,
which cannot be the case here.

Problem 2.3 (Poisson Thinning). Let N be a Poisson distribution with parameter
λ > 0. Let X be a multinomial distribution with N trials and probabilities p1, . . . , pm,
i.e., we perform N independent experiments with m potential outcomes and outcome
j has probability pj. Let Nj denote the number of outcomes j. Show that, N1, . . . , Nm

are independently Poisson distributed with respective parameters λp1, . . . , λpm.

Proof. See Lemma 3.11 in the book [1].

Problem 2.4 (Uniform model and Erdős-Rényi ). Fix m ∈ N and consider the space
Gn,m := {G : |V(G)| = n, |E(G)| = m}, the space of all graphs on n vertices and m
edges. Consider the uniform measure on Gn,m, i.e.,

Pn,m(G) := 1
󰀓(n

2)
m

󰀔 , for any G ∈ Gn,m. (2)

The corresponding random graph drawn with this distribution is denoted by G(n, m).
Let G(n, p) the Erdős-Rényi random graph on n vertices, where each edge is present
independently with probability p ∈ (0, 1). Show that G(n, p), conditioned on having
exactly m edges, is distributed as G(n, m).

Proof.
P(G(n, p)|G(n, p) ∈ Gn,m) = P(G(n, p), |E(G(n, p))| = m)

P(G(n, p) ∈ Gn,m) (3)

Note that P(G(n, p) ∈ Gn,m) = 󰁓
G∈Gn,m

P(G(n, p) = G) = |Gn,m|pm(1 − p)(
n
2)−m,

therefore, from (3), we get,

P(G(n, p)|G(n, p) ∈ Gn,m) = |pm(1 − p)(
n
2)−m

|Gn,m|pm(1 − p)(
n
2)−m

= 1
|Gn,m| = 1

󰀓(n
2)
m

󰀔 ,

which is exactly the law in (2).
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