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Problem sheet 1

Problem 1.1 (WLLN for Bernoulli). Let Xl-(g) be independent Bernoulli random

variables with expectation p§j;), such that
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Show that, in probability,
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Proof. We first calculate for the variance
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By assumption, for each € > 0, there exists N such that
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for all n > N. Thus,
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using Chebyshev’s inequality. O
Problem 1.2 (Coupling).

(a) Let X and Y be two real random variables with distribution function Fx and
Fy, such that Fx(z) < Fy(z) for all z € R. Show that there exists a probability
space, on which X and Y can jointly be defined such that X > Y almost surely.
We call this coupling.

(b) Let (G,) and (G,) be two sequences of inhomogeneous random graphs with
kernels x,, and %,, respectively. Assume that k,(x;,z;) < &,(z;,z;) for all
n € Nand z;,z; € .. Show that both graph sequences can be coupled in a
way that &, C &,, i.e., each edge appearing in G, also appears in G,,.
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Proof. We start with (a). Let U be a random variable uniformly distributed on (0, 1).
Let us define the generalised inverse of the distribution functions as Fy' and Fy*,
respectively. We set X = Fy'(U) and Y = Fy'(U). Clearly, X ~ Fy and Y ~ Fy.
Further, for each z, we have X <z < U < Fx(z). As Fx(z) < Fy(x), this implies
U< Fy(x) <Y <z Summarising, X <z =Y <z for all x and thus Y < X.

To show (b), we again use uniform random variables. More precisely, let (U jy: i, €
N) be a family of i.i.d. uniforms. We then define graph G, as a functional of the
random variables (Uy; j3: 4, j € [n]), that maps these to the graph with vertex set [n]
and edge set

gn = {{Z,j} U{i,j} S /in(.’ﬁi, x])/n}
Clearly, G,, has the law of the inhomogeneous random graph associated with kernel k.
We define the graph % in the same way. Then, {i,7} € &, implies U, ; < kp(xi, z5)/n <
Fn(xi, ;) /n, hence {1, j} € &,. O
Problem 1.3. Let A be a positive random variable on a probability space (2, %, P).

Let X be a random variable that is, conditioned on A, Poisson distributed with mean
A. Put differently, X is mixed-Poisson distributed with mixing distribution P o A~!

(a) Assume that A has a density f satisfying
cx™m < fx) < Cx™™, forallx > A,

where 7 > 2 and 0 < ¢ < C < oo and A > 0 is some bound. Show that there
exist constants 0 < ¢ < C’ < oo such that

A7 <P(X =2x)<Cz7".

Hint: The -function is defined as T'(k) = [5° 2" e ®dx and it has the following

useful property F%k(;; ) ~ k=7, as k — oc.

(b) Assume that there are Ay, ..., A\, > 0 such that P(A € {\y,..., A\, }) = 1. Show
that X is light-tailed.

Proof. We first show (a). Let us write D = {y: f(y) > 0} C (0,00). Let us for
simplicity assume D = (A, co) for some A > 0. By definition, we have

A 1 % k-
P(X = k) = [ e f(A)dA_m/A Nee=A F(0) dA
C oo o F'k+1—71)
< )\k—l—l T—1 /\d)\:
_F(k+1)/(J ‘ CrED)
<k,

where the constant C” exists as Fg,k(:_:; ) ~ k™" and additionally P(X = k) < 1. For

the opposite direction, we have by similar argumentation

Fk+1—7) ¢ 4 4 _\
P(X = k) > —__/ T
( k) > c T 1) o AN TTe M dA,
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Since A is finite and fixed, the integral on the right-hand side can be at most of the
same order than I'(k + 1 — 7). If it is of strictly smaller order, we have

1 A k—7 _—X -7
H/o ANTe ™ =o(k™T).

If it is of the same order, we have

S ol )

where the limiting constant must be smaller than 1. In both scenarios, we find a very
small constant ¢’ < ¢ such that

1 A, Fk+1—1)
- )\k T )‘d>\> p-\v 1 1)
Ck!/o C =T

from which we infer the lower bound
P(X =k) >k,

for a significantly small constant ¢

In order to show (b), we show that the moment generation function of X exists on
the positive half line (0, c0). To this end, fix ¢ > 0. Recall, that a Poisson()\) random
variable Y has the moment generating function

EetY — e)\(et—l)

Then, by definition,

m m
Z ]P> —tX | A = )\ — Z]P) )\j(et—l)
Jj=1 7j=1
< rmax(e ) iP = ermax(e'=1) 0,
7j=1
where Apay := max{Ay,..., \,} < o0. O

Problem 1.4. Prove or falsify the following statements:
log”’ n = o(n'/?), as n — oo, for any p > 1.

)

b) 3" =0(2"), as n — 0.

(c) i yi!l =< nl as n — oo.
)

(d) Let X®™ be a binomial random variable with n trials and success probability
p™ =9/n? then EX™ = O(1/n).

(e) sin(1/x) ~ 1/z, as © — 0.
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Proof. (a) For any p > 1, we have with I’'Hospital

_(logz)? . pllogx)P)/z . (logz)’!
S /P —g}br&_(l_l/p)xl/p—l—cg}% RV R

Repeating this p times then yields log”(z)/x'/? — 0, thus proving Statement (a).
(b) As (3/2)" — oo, Statement (b) is wrong.
(c) Clearly, we have > ;i! > nl. Moreover,

n n—1 n—1
donl=nl+> i <nl+n-1)> 1=2nl
=0 1=0 =0

Therefore, n! < 77" il < Qn' and thus n! =< > "l

(d) We have EX (™ m - =np™ =9/n = 0O(1/n).

(e) We write y = 1/ and consider y — 0. Writing sin(y) in its series representation,
we have

sin(y) 1 o] y2n+1 00 n 9
Yy ynzo( ) (2n+1)! n=1 2n+ 2,/ 7
—>0 as y—0

this proves Statement (e). O




