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Problem sheet 1
Problem 1.1 (WLLN for Bernoulli). Let X

(n)
i,j be independent Bernoulli random

variables with expectation p
(n)
i,j , such that

lim
n→∞

1
n

n

i,j=1
p

(n)
i,j = c.

Show that, in probability,
1
n

n

i,j=1
X

(n)
i,j −→ c.

Proof. We first calculate for the variance

Var(


i,j

X
(n)
i,j ) =



i,j

p
(n)
i,j (1 − p

(n)
i,j ) ≤



i,j

p
(n)
i,j = O(n).

By assumption, for each ε > 0, there exists N such that

| 1
n



i,j

p
(n)
i,j − c| ≤ ε/2

for all n ≥ N . Thus,

lim
n→∞

P(|


i,j

X
(n)
i,j − c| ≥ nε) ≤ lim

n→∞
P(|



i,j

X
(n)
i,j −



i,j

p
(n)
i,j | + |



i,j

p(n) − c| ≥ nε)

≤ lim
n→∞

P(|


i,j

X
(n)
i,j −



i,j

p
(n)
i,j | ≥ nε/2)

≤ lim
n→∞

4 Var(
i,j X

(n)
i,j )

n2ε2

= 0,

using Chebyshev’s inequality.

Problem 1.2 (Coupling).

(a) Let X and Y be two real random variables with distribution function FX and
FY , such that FX(x) ≤ FY (x) for all x ∈ R. Show that there exists a probability
space, on which X and Y can jointly be defined such that X ≥ Y almost surely.
We call this coupling.

(b) Let (Gn) and (Gn) be two sequences of inhomogeneous random graphs with
kernels κn and κn, respectively. Assume that κn(xi, xj) ≤ κn(xi, xj) for all
n ∈ N and xi, xj ∈ S . Show that both graph sequences can be coupled in a
way that En ⊂ En, i.e., each edge appearing in Gn also appears in Gn.
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Proof. We start with (a). Let U be a random variable uniformly distributed on (0, 1).
Let us define the generalised inverse of the distribution functions as F −1

X and F −1
Y ,

respectively. We set X = F −1
X (U) and Y = F −1

Y (U). Clearly, X ∼ FX and Y ∼ FY .
Further, for each x, we have X ≤ x ⇔ U ≤ FX(x). As FX(x) ≤ FY (x), this implies
U ≤ FY (x) ⇔ Y ≤ x. Summarising, X ≤ x ⇒ Y ≤ x for all x and thus Y ≤ X.
To show (b), we again use uniform random variables. More precisely, let (U{i,j} : i, j ∈
N) be a family of i.i.d. uniforms. We then define graph Gn as a functional of the
random variables (U{i,j} : i, j ∈ [n]), that maps these to the graph with vertex set [n]
and edge set

En := {{i, j} : U{i,j} ≤ κn(xi, xj)/n}.

Clearly, Gn has the law of the inhomogeneous random graph associated with kernel κ.
We define the graph κ in the same way. Then, {i, j} ∈ En implies Ui,j ≤ κn(xi, xj)/n ≤
κn(xi, xj)/n, hence {i, j} ∈ En.

Problem 1.3. Let Λ be a positive random variable on a probability space (Ω, F ,P).
Let X be a random variable that is, conditioned on Λ, Poisson distributed with mean
Λ. Put differently, X is mixed-Poisson distributed with mixing distribution P ◦ Λ−1

(a) Assume that Λ has a density f satisfying

cx−τ ≤ f(x) ≤ Cx−τ , for all x ≥ A,

where τ > 2 and 0 < c < C < ∞ and A > 0 is some bound. Show that there
exist constants 0 < c′ < C ′ < ∞ such that

c′x−τ ≤ P(X = x) ≤ C ′x−τ .

Hint: The Γ-function is defined as Γ(k) =
 ∞

0 xk−1e−xdx and it has the following
useful property Γ(k−τ)

Γ(k) ∼ k−τ , as k → ∞.

(b) Assume that there are λ1, . . . , λm > 0 such that P(Λ ∈ {λ1, . . . , λm}) = 1. Show
that X is light-tailed.

Proof. We first show (a). Let us write D = {y : f(y) > 0} ⊂ (0, ∞). Let us for
simplicity assume D = (A, ∞) for some A ≥ 0. By definition, we have

P(X = k) =


D

λk

k! e−λf(λ) dλ = 1
Γ(k + 1)

 ∞

A
λke−λf(λ) dλ

≤ C

Γ(k + 1)

 ∞

0
λk+1−τ−1e−λ dλ = C

Γ(k + 1 − τ)
Γ(k + 1)

≤ C ′k−τ ,

where the constant C ′ exists as Γ(k+1−τ)
Γ(k+1) ∼ k−τ and additionally P(X = k) ≤ 1. For

the opposite direction, we have by similar argumentation

P(X = k) ≥ c
Γ(k + 1 − τ)

Γ(k + 1) − c

k!

 A

0
λk−τ e−λ dλ,
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Since A is finite and fixed, the integral on the right-hand side can be at most of the
same order than Γ(k + 1 − τ). If it is of strictly smaller order, we have

1
k!

 A

0
λk−τ e−λ = o(k−τ ).

If it is of the same order, we have

Γ(k + 1 − τ)
Γ(k + 1) = O

 1
k!

 A

0
λk−τ e−λ


,

where the limiting constant must be smaller than 1. In both scenarios, we find a very
small constant c′′ < c such that

c
1
k!

 A

0
λk−τ e−λdλ ≥ c′′ Γ(k + 1 − τ)

Γ(k + 1) ,

from which we infer the lower bound

P(X = k) ≥ c′k−τ ,

for a significantly small constant c′.
In order to show (b), we show that the moment generation function of X exists on
the positive half line (0, ∞). To this end, fix t > 0. Recall, that a Poisson(λ) random
variable Y has the moment generating function

EetY = eλ(et−1)

Then, by definition,

E[etX ] =
m

j=1
P(Λ = λj)E[e−tX | Λ = λj] =

m

j=1
P(Λ = λj)eλj(et−1)

≤ eλmax(et−1)
m

j=1
P(Λ = λj) = eλmax(et−1) < ∞,

where λmax := max{λ1, . . . , λm} < ∞.

Problem 1.4. Prove or falsify the following statements:

(a) logp n = o(n1/p), as n → ∞, for any p > 1.

(b) 3n = O(2n), as n → ∞.

(c) n
i=0 i! ≍ n!, as n → ∞.

(d) Let X(n) be a binomial random variable with n trials and success probability
p(n) = 9/n2, then EX(n) = O(1/n).

(e) sin(1/x) ∼ 1/x, as x → ∞.
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Proof. (a) For any p > 1, we have with l’Hospital

lim
x→∞

(log x)p

x1/p
= lim

x→∞

p(log x)p−1)/x

−(1 − 1/p)x1/p−1 = c lim
x→∞

(log x)p−1

x1/p
.

Repeating this p times then yields logp(x)/x1/p → 0, thus proving Statement (a).
(b) As (3/2)n → ∞, Statement (b) is wrong.
(c) Clearly, we have n

i=0 i! ≥ n!. Moreover,

n

i=0
n! = n! +

n−1

i=0
i! ≤ n! + (n − 1)!

n−1

i=0
1 = 2n!.

Therefore, n! ≤ n
i=0 i! ≤ 2n!, and thus n! ≍ n i!.

(d) We have EX(n) = np(n) = 9/n = O(1/n).
(e) We write y = 1/x and consider y → 0. Writing sin(y) in its series representation,
we have

sin(y)
y

= 1
y

∞

n=0
(−1)n y2n+1

(2n + 1)! = 1 +
∞

n=1

(−1)n

(2n + 1)! y2n


→0 as y→0

→ 1,

this proves Statement (e).


