Dr. Caroline Löbhard

Research interests

  • Optimal control with partial differential equations and state constraints
  • Mathematical Programs with Equilibrium Constraints (MPECs)
  • A posteriori error estimation and adaptive finite element methods
  • Mathematical modeling and simulation of fluid structure interaction with contact
  • Shape optimisation / parameter identification in computational biomedicine
 Research group "Non-smooth variational problems and
  operator equations"

Short CV

Since July 2016Research assistent at WIAS (group of Michael Hintermüller), Berlin
April 2014 - June 2016 Assistent professor ("Lehrkraft für besondere Aufgaben") at Humboldt-Universität zu Berlin (HU Berlin)
2010 - 2014Ph.D. Student in the group of Michael Hintermüller (HU Berlin)
2009Ph.D. Student in the group of Carsten Carstensen (HU Berlin)
2002 - 2008Diploma, Technische Universität München

Contact details

E-mail loebhard-please remove this text-@wias-berlin.de
Phone +49 (0) 30 20372 308
Fax +49 (0) 30 20372 303
Office Hausvogteiplatz 11A, room 4.11
Address Weierstrass Institute
Dr. Caroline Löbhard
Mohrenstrasse 39
10117 Berlin
Germany

Publications

  • C. Brett, C. Elliott, M. Hintermüller, C. Löbhard: Mesh Adaptivity in Optimal Control of Elliptic Variational Inequalities with Point-Tracking of the State, Interfaces and Free Boundaries 17(1), pp. 21–53, 2015.
  • M. Hintermüller, C.L., H. Tber: An l1-penalty scheme for the optimal control of elliptic variational inequalities, Numerical Analysis and Optimization (Vol. 134 of Springer Proceedings in Mathematics \& Statistics), pp. 151-190, 2015
  • C.L.: Optimal Control of Elliptic Variational Inequalities: Numerical Methods and Point Tracking Objectives, PhD Thesis, Humboldt-Universität zu Berlin, 2015
  • M. Hintermüller, A. Laurain, C.L., C.N. Rautenberg, T.M. Surowiec: Elliptic Mathematical Programs with Equilibrium Constraints in Function Space: Optimality Conditions and Numerical Realization, in Trends in PDE Constrained Optimization, Birkhäuser, pp. 133-153, 2014
  • A. Gaevskaya, M. Hintermüller, R.H.W. Hoppe, and C. L.: Adaptive finite elements for optimally controlled elliptic variational inequalities of obstacle type, In: Optimization with PDE Constraints (R.H.W. Hoppe, ed.), Lecture Notes in Computational Science and Engineering, Vol. 101, Springer 2014
  • M. Hintermüller, R.H.W. Hoppe and C.L.: A dual-weighted residual approach to goal-oriented adaptivity for optimal control of elliptic variational inequalities, ESAIM: Control, Optimisation and Calculus of Variations 20(2), 2014, pp. 524-546
  • M. Hintermüller and C.L.: Solvability and stationarity for the optimal control of variational inequalities with point evaluations in the objective functional, PAMM Vol. 13, 1, pp. 459–460, 2013
  • C. Carstensen, M. Eigel, C.L. and R. H. W. Hoppe: A Review of Unified A Posteriori Finite Element Error Control, Numer. Math. Theor. Meth. Appl. 5 (2012), pp. 509-558.

Research talks

  • European Women in Mathematics Annual Meeting 9/2018, Universität Graz: Analysis, algorithms and applications for the optimal control of variational inequalities
  • PGMO Days 11/2017, EDF Lab Paris-Saclay: Parabolic becomes elliptic: A solution method with space-time adaptivity for parabolic optimal control problems with state constraints
  • Non-Smooth Systems 10/2017, TU Darmstadt: An Adaptive Discontinuous Galerkin Method for a Parabolic Optimal Control Problem with State Constraints
  • French-German-Italian Conference on Optimization 09/2017, Uni Paderborn: Space-time discretization of a parabolic optimal control problem with state constraints
  • Research Seminar at WIAS 06/2017:
  • OCIP 2014, TU München: An elastic mode algorithm for the optimal control of elliptic variational inequalities
  • Research seminar SoSe 2014, HU Berlin: An elastic mode algorithm for the optimal control of variational inequalities
  • EUCCO 2013, Chemnitz: An adaptive algorithm for the optimal control of variational inequalities with pointwise objective functionals
  • Seminar SoSe 2013, HU Berlin: Adaptive Finite Elemente Methoden in der Optimierung bei partiellen Differentialgleichungen: Ein DWR-Fehlerschätzer für ein Optimierungsproblem mit Variationsungleichungsnebenbedingung
  • GAMM Annual Meeting 2013, Novi Sad, Serbien: Solvability, stationarity and a solution algorithm for the optimal control of variational inequalities with pointwise objective functionals
  • Applied PDEs working Seminar, March 2013, University of Warwick, UK: Optimal control with point evaluations and elliptic variational inequalities: Solvability and stationarity conditions
  • Research seminar 2012, HU Berlin: Optimal control with point evaluations and elliptic variational inequalities: Solvability and stationarity conditions
  • ISMP 2012, Berlin: Optimal control of elliptic variational inequalities: A mesh-adaptive finite element solver
  • RMMM 2011, Lausanne, Schweiz: Error Estimators in the optimal control of elliptic variational inequalities
  • Research seminar 2011, HU Berlin: Optimalitätsbedingungen erster Ordnung für die Volatilitätskalibrierung bei amerikanischen Optionen
  • SIGOPT 2011, Lambrecht/Pfalz: Optimal control of elliptic variational inequalities: A mesh-adaptive finite element solver
  • Research seminar WiSe 2010/2011, HU Berlin: AFEM für ein optimales Kontrollproblem

Teaching

HU Berlin, 2011-2016
  • Vorlesung und Übung Mathematik 2 für Naturwissenschaftler (04/2016)
  • Vorlesung und Übung Mathematik 1 für Naturwissenschaftler (10/2014, 10/2015)
  • Übung Optimierung bei partiellen Differentialgleichungen (Dr. Rautenberg, 10/2015)
  • Übung Analysis 1* (Prof. Hintermüller, 10/2014)
  • Proseminar Lineare Optimierung (04/2014)
  • Übungsleitung Analysis für Physiker (PD Recke, 04/2014),
  • Übungsleitung Lineare Algebra für Informatiker 1,2 (Prof. Reiß, 2011-2012; Prof. Griewank, 04/2014)
TU München 2004-2008
  • Übungsleitung Analysis 3-4 (Prof. Suris, 2007/08)
  • Repetitorien zu den Vorlesungen Lineare Algebra 1-2, Analysis 1 (2007-2008)
  • Übungsleitung Analysis 1 (Prof. Rößler, 2007/08)
  • Übungsleitung Lineare Algebra 1-2 (Prof. Rößler, 2006/07)
  • Übungsleitung/Korrektur Analysis für Physiker 1-3 (Prof. Castrigiano, 2005-2007)
  • Übungsleitung/Korrektur Lineare Algebra 1-2 (Prof. Heise, 2004-2005)

Courses/Workshops/Summer Schools

  • ROMSOC MidtermCheck 2018, Bremen
  • Jahrestreffen DFG SPP1962 2018, Kremmen
  • ROMSOC Ethics Workshop, Nürnberg
  • Oberwolfach Workshop 1815, 2018, Challenges in Optimal Control of Nonlinear PDE- Systems
  • Leibniz Symposium, Biomaterial-based Approaches in Personalized Medicine, 2017, Berlin
  • SFB-Workshop, Mariatrost, 2017, Graz, Modelling and Simulation in Biomechanics
  • Annual meeting 2017 of the DFG SPP 1962, WIAS Berlin
  • Autumn School on Nonsmooth Structures in Mathematical Models 2017 DFG SPP 1962, WIAS Berlin
  • Annual meeting 2016 of the DFG SPP 1962, WIAS Berlin
  • ICCP 2014, HU Berlin: Website, IT, graphic design
  • Oberwolfach Seminar 1448b 2014, Projection Based Model Reduction: Reduced Basis Methods, Proper Orthogonal Decomposition, and Low Rank Tensor Approximations
  • SFB-Workshop 2014, Mariatrost, Graz, Modelling and Simulation in Biomechanics
  • VI Symposium 2013, HU Berlin, Organisation, Website, IT
  • Abschlusstreffen DFG SPP1253, Banz 2013
  • PDE's/MASDOC Workshop 2012, University of Warwick, UK
  • Oberwolfach Seminar 1047b 2010, Mathematics of PDE Constrained Optimization
  • Annual meeting DFG SPP 1253, 2010, Freising
  • Oberwolfach Workshop 0925 2009, Computational Multiscale Methods
  • AFEM Workshops in Prague/CEU Budapest (2009)
  • Joined Advanced Student School der TU München 2008, St. Petersburg, Russland
  • Ferienakademie der TU München 2005, 2008, Sarntal, Italien

Public talks

  • Tag der Mathematik 2016, FU Berlin: Simpson sucht die Null: Wie eine uralte Idee heute genutzt wird
  • Tage der Forschung 2014, Berlin-Adlershof: Simpson sucht die Null -- Wozu man Nullstellen braucht und wie man sie finden kann
  • Tag der Mathematik 2014, TU Berlin: Das Newton-Verfahren in der Praxis: Was Simpson alles kann!