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Anderson model where the speed of the diffusion is coupled with time, in-
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via some average, but not via its extreme values. We make out altogether
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of their methods, as well as a variational convergence method borrowed from
finite elements theory.
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1 Introduction

We consider the solution u(t) : [0,∞) × Zd → [0,∞), t > 0, to the Cauchy
problem for the heat equation with random coefficients and t-dependent dif-
fusion rate,

∂

∂s
u(t)(s, z) = κ(t)∆u(t)(s, z) + ξ(z)u(t)(s, z), s > 0, z ∈ Zd, (1.1)

u(t)(0, ·) = 1l0,

where ∆ is the discrete Laplacian,

∆f(z) =
∑

x∈Zd : |x−z|=1

[f(x)− f(z)],

(ξ(z))z∈Zd is a field of independent and identically distributed random vari-
ables, and κ : [0,∞)→ [0,∞) is a function with limt→∞ tκ(t) =∞. Our main
goal is to understand the asymptotic behaviour as t → ∞ of the expected
total mass at time t,

U(t) =
∑
z∈Zd

u(t)(t, z).

The total mass may be represented in terms of the famous Feynman–Kac
formula,

U(t) = E(t)

0

[
exp

{∫ t

0

ξ(Xs) ds
}]
, (1.2)

where (Xs)s∈[0,∞) is a random walk with generator 2dκ(t)∆, starting from
zero under E(t)

0 . Denoting by 〈 · 〉 the expectation with respect to the random
potential ξ, we will study the logarithmic asymptotics of 〈U(t)〉 for various
choices of the diffusion function t 7→ κ(t).

The model with constant diffusion rate κ(t) ≡ 1 has been analysed in
[GM98] and [BK01] for three important classes of tail distributions of ξ(0),
see also [GK05] for a survey and [CM94] for more background. In [HKM06]
a classification of all potential distributions into four universality classes was
made out such that the qualitative behaviour of 〈U(t)〉 in each of the classes
is similar. This classification holds under mild regularity assumptions and
depends only on the upper tails of the potential. Heuristically, the main
effect in each of these classes is the concentration of the total mass on a so-
called intermittent island the size of which is t-dependent and deterministic.
The (rescaled) shape of the solution and the potential on this island can be
described by a deterministic variational formula. The thinner the tails of the
potential distribution are, the larger the islands are, ranging from single sites
to large areas, however still having a radius � t1/d.

In (1.1), the diffusion is coupled with time so that it is accelerated if
the diffusion function t 7→ κ(t) grows or decelerated if it decreases. Now an
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interesting competition between the speed of the diffusion and the thickness
of the tails of the potential distribution arises: the faster κ(t) is, the stronger
the flattening effect of the diffusion term is. One rightfully expects that if
the speed of this function is not too extreme, then similar formulas should
be valid as for constant diffusion rate. Indeed, we will identify a lower critical
scale for κ(t), which depends on the upper tails of the potential distribution,
and marks the threshold below which the mass does not flow unboundedly far
away from the origin in the Feynman–Kac formula, see below Assumption 2.1.
Then we are in the case of [GM98]. Furthermore, we will see that – if κ(t)
is above this lower critical scale – t2/d presents an upper critical scale in the
sense that, for κ(t) � t2/d, the main contribution to the total mass comes
from extremely high potential values, while for κ(t) ≈ t2/d, it comes from
just super-average, but not extreme, values. This is reflected by the fact that
the asymptotics can be described in terms of the upper tails of the potential
distribution in the former case (then we find the formulas derived in [BK01]
and [HKM06]), but all the details of this distribution are required in the
latter. (If the speed is even faster, then, conjecturally, only a rough mean
behaviour of the potential values will influence the asymptotics.)

The paper is organised as follows. In Section 2, we formulate our assump-
tions on the potential and on the function κ. Then we state our results for
the moment asymptotics of U(t) in Section 3. Our main result will be the
identification of five phases with qualitatively different behaviour, which we
will describe informally in Section 3.1 and rigourously in Section 3.2 (for
four of them). We will also give a proposition concerning the convergence
of a discrete variational formula to the corresponding continuous version,
representing one of the main tools used in the proof of the asymptotics. In
Sections 4–6, we give sketches of the proofs of this proposition and of the
theorems. The details are rather lengthy and involved; they may be found in
the second author’s thesis [S10].

2 Assumptions and Preliminaries

2.1 Model Assumptions

Let
H(t) = log〈etξ(0)〉, t > 0,

be the logarithmic moment generating function of ξ(0). We assume H(t) <∞
for all t > 0, which is sufficient for the existence of a nonnegative solution
of (1.1) and the finiteness of all its positive moments [GM90]. Now we re-
call the discussion on regularity assumptions in [HKM06, Section 1.2]. If we
assume that t 7→ H(t)/t is in the de Haan class, then the theory of reg-
ularly varying functions provides us with an asymptotic description of H
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that depends only on two parameters γ and ρ, see [BGT87] and [HKM06,
Proposition 1.1]. This leads to the following assumption which will be in force
throughout the rest of this paper.

Assumption 2.1 There exist parameters γ ≥ 0 and ρ > 0 and a continuous
function KH : (0,∞)→ (0,∞), regularly varying with parameter γ, such that,
locally uniformly in y ∈ [0,∞),

lim
t→∞

H(ty)− yH(t)

KH(t)
= ρĤ(y), (2.1)

where

Ĥ(y) =


y log y if γ = 1,

y − yγ

1− γ
if γ 6= 1.

(2.2)

The scale function KH roughly describes the thickness of the potential tails at
infinity. As we will see later, the function t 7→ KH(t)/t presents a lower critical
scale for the diffusion function κ(t). The following lemma is a consequence of
[BGT87, Theorem 3.6.6].

Lemma 2.2. Let Assumption 2.1 hold.

(a) If ess sup ξ(0) ∈ {0,∞}, then H is regularly varying with index γ.
(b) If 〈ξ(0)〉 = 0, then H is regularly varying with index γ ∨ 1.

Now we formulate some mild regularity assumptions on the speed func-
tion κ.

Assumption 2.3 The following limits exist:

lim
t→∞

tκ(t) =∞, lim
t→∞

tκ(t)

KH(t)
∈ [0,∞], lim

t→∞

κ(t)

t2/d
∈ [0,∞].

We also need a scale function α : [0,∞)→ [0,∞), which will be interpreted
as the order of the radius of the relevant island. While we can define α = 1 in
the results for Phases 1 and 2 of our classification, we will need the following
fixed point equation in Phase 3:

KH

( t

αdt

)
=
tκ(t)

αd+2
t

. (2.3)

Let us state existence and some important properties of a solution of (2.3).

Lemma 2.4. Let κ(t) be regularly varying with index β ∈ (γ − 1, 2/d). Then
there exists a regularly varying function α such that (2.3) holds for all large t.
Any solution α(t) = αt satisfies limt→∞ αt =∞. Furthermore, t/αdt � 1 and
αxt � tκ(t) for each x < d+ 2.

Proof. Similar to the proof of [HKM06, Proposition 1.2]. For details, see [S10,
Lemma 2.1.5].
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From the assumptions of Theorem 3.1(c) below, we will see that the in-
terval for the index of regular variation for κ is not a hard restriction in
Phase 3.

2.2 Variational Formulas

The following variational formulas will play a role in our results. Here, H1(Rd)
is the Sobolev space on Rd andM1(Zd) is the space of probability measures
on Zd. The inner product on Zd is denoted by (· , ·). All integrals are with
respect to Lebesgue measure. We always have ρ, θ > 0 and γ ≥ 0.

χ(B)

γ (ρ) = inf
g∈H1(Rd)
‖g‖2=1

{∫
Rd
|∇g|2 +

ρ

1− γ

∫
Rd

(g2γ − g2)
}
, (2.4)

χ(AB)(ρ) = inf
g∈H1(Rd)
‖g‖2=1

{∫
Rd
|∇g|2 − ρ

∫
Rd
g2 log g2

}
, (2.5)

χ(DE)(ρ) = inf
p∈M1(Zd)

{
−
(
∆
√
p,
√
p
)
− ρ
(
p, log p

)}
, (2.6)

χ(DB)

γ (ρ) = inf
p∈M1(Zd)

{
−
(
∆
√
p,
√
p
)

+
ρ

1− γ
(
pγ − p, 1

)}
, (2.7)

χ(RWRS)

H (θ) = inf
g∈H1(Rd)
‖g‖2=1

{∫
Rd
|∇g|2 − θ

∫
Rd
H ◦ g2

}
. (2.8)

If γ = 0, then we use the interpretation
∫
Rd g

2γ = |supp g| and (pγ , 1) =

|supp p|. We sometimes refer to the formulas that are defined in Rd (that is,
χ(B)
γ , χ(AB) and χ(RWRS)

H ) as to ‘continuous’ formulas and to the others as to
the ‘discrete’ ones. Clearly, χ(B)

γ and χ(AB) are the continuous variants of χ(DB)
γ

and χ(DE), respectively. Note that χ(B)
γ is degenerate in the case γ > 1 + 2/d

(which we do not consider here).
The formulas χ(DE), χ(AB) and χ(B)

γ are already known from the study of the
parabolic Anderson model for constant diffusion κ(t) ≡ 1 in three universal-
ity classes, see the summary in [HKM06]. Our notation refers to the names of
these classes introduced there: ‘DE’ for ‘double-exponential’, ‘AB’ for ‘almost
bounded’, and ‘B’ for ‘bounded’. Informally, the functions g2 and p, respec-
tively, in the formulas have the interpretation of the shape (up to possible
rescaling and vertical shifting) of those realisations of the solution u(t)(t, ·)
that give the overwhelming contribution to the expected total mass, 〈U(t)〉.
If the total mass comes from an unboundedly growing island, then a rescaling
is necessary, and a continuous formula arises, otherwise a discrete one.

In [S09] the existence, uniqueness (up to shift) and some characterisations
of the minimiser of χ(B)

γ are shown for γ < 1, in [HKM06] it is shown that
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the only minimiser of χ(AB) is an explicit Gaussian function, and in [GM98]
and [GH99], the minimisers of χ(DE)(ρ) are analysed, which are unique (up
to shifts) for any sufficiently large ρ. Formula χ(RWRS)

H is a rescaling of the
Legendre transform of a variational formula which appeared in the study of
large deviations for the random walk in random scenery in [GKS07], see (6.2).
Its properties have not been analysed yet.

However, formula χ(DB)
γ (‘DB’ refers to ‘discrete bounded’) appears in the

study of the parabolic Anderson model for the first time in the present paper.
Here are some of its properties.

Proposition 2.5. (a) For any ρ > 0 and any γ 6= 1 with 0 ≤ γ < max{1 +
1/d, 1 + ρ/(2d)}, there exists a minimiser for χ(DB)

γ (ρ).
(b) Let p be a minimiser for χ(DB)

γ (ρ). Then supp p is finite if and only if
γ ≤ 1/2. In the case γ > 1/2 the support of p is the whole lattice.

Proof. See [S10, Prop. 2.1.8]. This uses ideas from [GK09, Lemma 3.2] for
the existence and from [GH99, p. 44] for the size of the support.

Similarly to the continuous analogue in [HKM06, Proposition 1.16], it
is possible to show that limγ→1 χ

(DB)
γ (ρ) = χ(DE)(ρ), furthermore we have

limρ→∞ χ(DB)
γ (ρ) = 2d.

3 Results

In what follows, we will use the notation ft � gt if limt→∞ ft/gt = ∞ and
ft � gt if limt→∞ ft/gt exists in (0,∞). We will always work under the
assumptions made in Section 2.1.

3.1 Five Phases

Depending on the ratio between the speed κ(t) and the critical scales KH(t)/t
and t2/d, we make out up to five phases. In the following, we resume heuristi-
cally our results for these phases. Recall the Feynman–Kac formula in (1.2).

Phase 1. κ(t)� KH(t)/t.
The mass stays in the origin, where the potential takes on its highest
value. The expected total mass behaves therefore like 〈U(t)〉 ≈ 〈u(t)(t, 0)〉 ≈
exp(H(t)− 2dtκ(t)). This includes the single-peak case of [GM98].

Phase 2. κ(t) � KH(t)/t.
The radius of the intermittent island remains bounded in time, and conse-
quently the moment asymptotics are given in terms of a discrete variational
formula. Denoting κ∗ = limt→∞ tκ(t)/KH(t),
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lim
t→∞

1

tκ(t)
log〈U(t)e−H(t)〉 = −

{
χ(DE)(ρ/κ∗) if γ = 1,

χ(DB)
γ (ρ/κ∗) if γ 6= 1.

(3.1)

While the case γ = 1 is qualitatively the same as the case of the double-
exponential distribution analysed in [GM98], the case γ 6= 1 shows a new
effect that was not present for constant diffusion speed κ(t) ≡ 1. The diffusion
is decelerated so strongly that the mass moves only by a bounded amount.

Phase 3. KH(t)/t� κ(t)� t2/d.
The relation between ac-/deceleration and thickness of potential tails is so
strong that the mass flows an unbounded amount of order αt defined by (2.3).
Since the acceleration is not too strong, the total mass comes from sites of
extremely high potential values. Therefore, we get the continuous analogue
to (3.1), but on scale tκ(t)/α2

t ,

lim
t→∞

α2
t

tκ(t)
log〈U(t) exp(−αdtH(tα−dt ))〉 = −

{
χ(AB)(ρ) if γ = 1,

χ(B)
γ (ρ) if γ 6= 1.

(3.2)

Hence, for γ = 1 we are in the almost-bounded case [HKM06] and for γ < 1
in the bounded case [BK01]. Note that we can have γ ∈ [0, 1 + 2/d) here,
which has never been considered before in the parabolic Anderson model.

Phase 4. KH(t)/t� κ(t) � t2/d.
As in Phase 3, the mass flows an unbounded distance away from the origin.
The acceleration reaches the critical level, such that this distance is of or-
der t1/d, which is much larger than in Phase 3. Only so little mass reaches the
sites in this large island that the potential is not extremely large here, but
only by a bounded amount larger than the mean. Therefore, the characteristic
variational formula does not only depend on the tails of the distribution, but
on all values of the logarithmic moment generating function H. This regime
has strong connections to the large deviation result for a random walk in
random scenery model described in [GKS07].

Phase 5. κ(t)� KH(t)/t and κ(t)� t2/d.
The speed is so high that, conjecturally, the values of the potential influence
the expected total mass only via their mean, and the diffusion behaves like
free Brownian motion with some diffusion constant that depends on the po-
tential distribution. We will not present rigorous results for this phase in the
present paper.

Note that, because of regular variation, KH(t) = tγ+o(1). Hence, Phases 3
and 4 can only appear if we have γ ≤ 1 + 2/d. The four universality classes
for the constant-diffusion case κ(t) ≡ 1 are found in Phases 1–3 depending
on whether γ = 1 or γ 6= 1.
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3.2 Moment Asymptotics

We now formulate our results. Recall the variational formulas defined in the
Section 2.2 and set

χd
γ =

{
χ(DE) if γ = 1,

χ(DB)
γ if γ 6= 1,

and χc
γ =

{
χ(AB) if γ = 1,

χ(B)
γ if γ 6= 1.

Then we have the following result for the first three regimes of our model.

Theorem 3.1 (Phase 1 – Phase 3). Assume ess sup ξ(0) ∈ {0,∞}.

(a) If κ(t)� KH(t)/t, then we have for t→∞

〈U(t)〉 = exp
(
H(t)− 2dtκ(t)(1 + o(1))

)
. (3.3)

(b) If κ(t) � KH(t)/t, then

〈U(t)〉 = exp
(
H(t)− tκ(t)χd

γ

( ρ
κ∗

)
(1 + o(1))

)
(3.4)

with κ∗ = limt→∞ tκ(t)/KH(t) ∈ (0,∞).
(c) Let the assumption of Lemma 2.4 hold, in particular we have KH(t)/t�

κ(t)� t2/d. Furthermore suppose KH(t)� log t and γ < 2. Then

〈U(t)〉 = exp
(
αdtH

( t

αdt

)
− tκ(t)

α2
t

χc
γ(ρ)(1 + o(1))

)
. (3.5)

Note that the assumption ess sup ξ(0) ∈ {0,∞} is not restrictive, since a shift
of the potential would only lead to an additive constant in our results. The
assumptions KH(t) � log t and γ < 2 in part (c) of the theorem are purely
technical, the first one only needed in the case γ = 0. Since γ < 1+2/d in the
respective phase (which follows from the assumption of Lemma 2.4), γ < 2
is only a restriction in dimension 1.

Now we come to Phase 4, where we will meet the variational formula
χ(RWRS)

H (θ) defined in (2.8). Since the result will no longer depend on the upper
tails of the potential distribution, it will make sense to have an assumption
for the expectation of ξ(0) instead of its essential supremum. Again, this is
no loss of generality.

Theorem 3.2 (Phase 4). Assume 〈ξ(0)〉 = 0 and KH(t)/t � κ(t) � t2/d.
Let γ ∈ [0, 1 + 2/d), γ < 2. Then we have for t→∞

〈U(t)〉 = exp
(
−tκ∗χ(RWRS)

H

( 1

κ∗

)
(1 + o(1))

)
(3.6)

with κ∗ = limt→∞ κ(t)/t2/d ∈ (0,∞).
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3.3 Variational Convergence

We now state a result which is both important in the proof of Theorem 3.1(c)
and of independent interest as a connection between the discrete variational
formula χd

γ(ρ) and its continuous analogue χc
γ(ρ). In the case γ = 1, this

fact is stated in [HKM06] and is derived without difficulties from an explicit
representation of χ(AB)(ρ). The proof for the case γ 6= 1 is much more involved
and uses techniques from the theory of finite elements.

Proposition 3.3. Let ρ > 0. As κ→∞, we have

κχ(DE)

(ρ
κ

)
= χ(AB)(ρ) + ρ

d

2
log κ+ o(1) (3.7)

and for γ ∈ [0, 1 + 2/d) \ {1}

κ1−dνχ(DB)

γ

(ρ
κ

)
= χ(B)

γ (ρ) + ρ
1− κ−dν

1− γ
+ o(1) (3.8)

with ν = 1−γ
2+d(1−γ) .

Note that (3.7) and (3.8) are consistent, as (3.7) is a continuous contin-
uation of (3.8) to γ = 1. Proposition 3.3 shows that Phases 2 and 3 can be
continuously transformed into each other, i.e., the transition between them
is actually no phase transition in the sense of statistical mechanics.

4 Proof of Variational Convergence (Proposition 3.3)

The asymptotics (3.7) follows from the arguments in [HKM06, p. 313]. To
show (3.8), we remark first that the summand ρ

1−γ drops out in both (2.4)

and (2.7). Therefore (3.8) is equivalent to

lim
κ→∞

κ1−dν inf
p∈M1(Zd)

{
−
(
∆
√
p,
√
p
)

+
ρ

κ(1− γ)

∑
z∈Zd

p(z)γ
}

= χ̂γ(ρ), (4.1)

where

χ̂γ(ρ) = inf
g∈H1(Rd)
‖g‖2=1

{∫
Rd
|∇g|2 +

ρ

1− γ

∫
Rd
g2γ
}
.

The proof of the upper bound of (4.1) is standard and we will here only give
the idea. To an approximate minimiser g for the infimum in χ̂γ(ρ) and for
small ε > 0, we define a probability measure pε by

pε(z) =

∫
εz+[0,ε)d

g(x)2 dx, z ∈ Zd.
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Assuming that g is smooth and compactly supported, we can make use of
Taylor expansions to see that, as ε ↓ 0,

−ε−2
(
∆
√
pε,
√
pε
)
→
∫
Rd
|∇g|2 and εd(1−γ)

∑
z∈Zd

pε(z)
γ →

∫
Rd
g2γ .

Recall γ < 1 + 2/d. Putting ε = κ−(1−dν)/2 = κ−1/(2+d(1−γ)) ↓ 0 as κ → ∞,
this shows the upper bound.

Let us now turn to the lower bound. This proof is pretty involved and
comes in several steps. The principal idea and main arguments are taken
from [HKM06, Proof of (5.3)]. However, we could not find an argument for
the L2-normalisation of the limit function in their approximation approach,
since this involves interchanging integral and limit, which seems to be hard to
justify. Hence, we use a different construction. Furthermore, our consideration
of γ > 1 causes some additional difficulties.

We will only treat the case γ > 1. The structure for γ < 1 is similar, for
details we refer to the proofs of [S10, Prop. 3.4.7 and Prop. 5.2.1]. We denote
S(p) = −

(
∆
√
p,
√
p
)
.

Step 1. We choose minimising sequences κn →∞ and (pn)n from M1(Zd)
for the left hand side of (4.1). Put an = κ

(1−dν)/2
n . We now argue that we

can assume, without loss of generality, that

sup
n∈N

a2nS(pn) <∞. (4.2)

For this, we need the following discrete Sobolev inequality:

Lemma 4.1. Let γ > 1 with γ(d − 2) < d. There exists a constant c = cd,γ
such that for all p ∈M1(Zd)∑

z∈Zd
p(z)γ ≤ cS(p)d(γ−1)/2.

Proof. See [S10, Lemma 3.2.10].

Now suppose that (4.2) does not hold. Then, by Lemma 4.1 and because of
d(γ − 1)/2 < 1,

lim
n→∞

a2n

{
S(pn) +

ρ

a
2+d(1−γ)
n (1− γ)

∑
z∈Zd

pn(z)γ
}

≥ lim sup
n→∞

{
a2nS(pn)− cρ

γ − 1

(
a2nS(pn)

)d(γ−1)/2}
=∞.

Since (pn)n is a minimising sequence, the lower bound would now be trivially
satisfied. Hence, we can assume (4.2).



The Parabolic Anderson Model with Acceleration and Deceleration 11

Step 2. We compactify on a box BRan = [−Ran, Ran]d ∩ Zd for R > 0.
Consider the periodised probability measures

pRn (z) =
∑

k∈(2Ran+1)Zd
pn(z + k), z ∈ BRan .

In [GM98, Lemma 1.10], it was shown that Sπ,R(pRn ) ≤ S(pn) in the one-
dimensional case, where Sπ,R is the Dirichlet form with periodic bound-
ary condition. This holds as well in higher dimensions, besides we have
1

1−γ
∑
z∈BRan

pRn (z)γ ≤ 1
1−γ

∑
z∈Zd pn(z)γ by subadditivity. Therefore it will

be sufficient to prove that

lim inf
R→∞

lim inf
n→∞

a2n

{
Sπ,Ran

(
pRn
)

+
ρ

1− γ
a−2−d(1−γ)n

∑
z∈BRan

(
pRn (z)

)γ} ≥ χ̂γ(ρ).

(4.3)
Since Sπ,R(pRn ) ≤ S(pn), (4.2) implies

sup
n∈N

a2nS
π,R(pRn ) <∞. (4.4)

Step 3. Our goal is to construct potential minimisers for χ̂γ(ρ) that inter-

polate the values of the rescaled step functions hn(x) =
√
adnp

R
n (banxc) on

the lattice {x = z/an : z ∈ BRan}. In the present step, we define piecewise
linear interpolations gn ∈ H1(Q(n)

R ) with Q(n)

R = [−R,R + a−1n )d, which we
will slightly modify in Step 4 in order to obtain normalised H1(Rd)-functions.

We borrow a technique from finite elements theory, see e.g. [B07]. Consider
the triangulation

Q(n)

R =
⋃

z∈BRan

⋃
σ∈Sd

Tσ(z),

where Sd is the set of permutations of 1, . . . , d and Tσ(z) is the d-dimensional
tetrahedron defined as the convex hull of the points z, z+eσ(1), . . . , z+eσ(1)+

· · ·+eσ(d), where ei is the i-th unit vector in Rd. Note that the tetrahedra are
disjoint up to the boundary. On each tetrahedron Tσ(z), we define a function

gn,z,σ(x) = b(0)n,z,σ +

d∑
k=1

b(k)n,z,σ(anxσ(k) − zσ(k)), x = (x1, . . . , xd) ∈ Tσ(z),

where the coefficients are given by

b(0)n,z,σ =
√
adnp

R
n (z) = hn

( z
an

)
,

b(k)n,z,σ =
√
adnp

R
n (z + eσ(1) + · · ·+ eσ(k))−

√
adnp

R
n (z + eσ(1) + · · ·+ eσ(k−1))
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for k = 1, . . . , d, where pRn is continued periodically outside BRan . Then gn,z,σ
satisfies

gn,z,σ(z̃/an) = hn(z̃/an) for all z̃ ∈ Tσ(z) ∩ Zd.

The values of all functions gn,z,σ on the common borders of their respective
tetrahedra coincide; see [BK10, Proof of Lemma 2.1] for a detailed argument.
Hence, the function gn : Q(n)

R → R given by

gn(x) = gn,z,σ(x) if x ∈ Tσ(z)

is well-defined and continuous, and gn ∈ H1(Q(n)

R ).
A direct calculation for the gradient gives ∂xσ(k)gn(x) = anb

(k)
n,z,σ and thus∫

Q
(n)
R

|∇gn|2 = a2nS
π,R(pRn ). (4.5)

Note that by (4.4) this is bounded in n. Now consider the L2-norm of g.
Because of |anxσ(k) − zσ(k)| ≤ 1 and b(k)n,z,σ = a−1n ∂xσ(k)gn(x) we obtain

‖(gn − hn)1l
Q

(n)
R
‖22 ≤ a−2n

∫
Q

(n)
R

( d∑
i=1

∂

∂xi
gn(x)

)2
dx.

By Jensen’s inequality, (
∑d
i=1 ci)

2 ≤ d
∑d
i=1 c

2
i . Since ‖hn1l

Q
(n)
R
‖2 = 1, the

triangle inequality gives

|‖gn1l
Q

(n)
R
‖2 − 1|2 ≤ da−2n

∫
Q

(n)
R

|∇gn|2, (4.6)

which tends to zero as n→∞ by (4.5) and (4.4).
A similar calculation for the L2γ-norm results in

‖(gn − hn)1l
Q

(n)
R
‖2γ2γ ≤ dγa−2γn

∫
Q

(n)
R

|∇gn|2γ .

Because of pRn (z) ∈ [0, 1], we have |b(k)n,z,σ| ≤ a
d/2
n and therefore |∇gn|2 ≤

dad+2
n . For γ > 1, this yields

|∇gn(x)|2γ = dγa(d+2)γ
n

(
|∇gn(x)|2

dad+2
n

)γ
≤ dγ−1a2γn a−2−d(1−γ)n |∇gn(x)|2.

Now use triangle inequality to get

ad(γ−1)n

∑
z∈BRan

(
pRn (z)

)γ
= ‖hn1l

Q
(n)
R
‖2γ2γ ≤

(
‖gn1l

Q
(n)
R
‖2γ + cna

−2−d(1−γ)
2γ

n

)2γ
,

(4.7)
where cn = (d2γ−1

∫
Q

(n)
R
|∇gn|2)1/(2γ) is bounded in n.
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Step 4. In order to adapt our function gn to zero boundary conditions,
we introduce a cut off function ΨR(x) =

∏d
i=1 ψR(xi), x = (x1, . . . , xd) ∈ Rd,

where ψR = 1 on [−R+
√
R,R−

√
R], ψR = 0 on R\[−R,R] and it interpolates

linearly in-between. Then 0 ≤ ψR ≤ 1 and |ψ′R| ≤ 1/
√
R. Let us estimate

the relevant terms for the H1(Rd)-function gnΨR (which is zero outside QR =
[−R,R]d). As for the gradient,∫

Rd

( ∂

∂xi
(gnΨR)(x)

)2
dx ≤

∫
QR

( ∂

∂xi
gn(x)

)2
dx+

1

R

∫
QR

gn(x)2 dx

+
2√
R

√∫
QR

( ∂

∂xi
gn(x)

)2
dx

√∫
QR

gn(x)2 dx,

where we used the properties of ψR and the Cauchy–Schwarz-inequality. Since
all integrals are bounded (recall (4.5), (4.6) and (4.4)), we find a constant
c > 0 such that for all n and all R∫

Rd
|∇(gnΨR)(x)|2 dx ≤

∫
QR

|∇gn(x)|2 dx+
c√
R
. (4.8)

Our basic tool for estimating the L2- and L2γ-norm of gnΨR is a variation
of the shift lemma [DV75, Lemma 3.4]. Indeed, using the shift-invariance of
the variational problem because of periodic boundary conditions, the mass
of a nonnegative function on the boundary QR \ QR−√R can, after suitable
shifting, be estimated by its total mass on QR times the quotient of the
volumes. Applying this to g2n + g2γn , we may assume that∫

QR\QR−√R

(
g2n + g2γn

)
≤ d√

R

∫
QR

(
g2n + g2γn

)
.

Skipping the details, this leads to

‖gnΨR‖2γ2γ ≥
(

1− d√
R

)
‖gn1l

Q
(n)
R
‖2γ2γ −

c√
R

(4.9)

and, with use of (4.6),

|‖gnΨR‖22 − 1| ≤ c√
R

(4.10)

for a suitable constant, not depending on n or R, which we also denote c > 0.

Step 5. Now we put everything together to show (4.3). We use (4.5) and
(4.7) and note that 1 < γ < 1 + 2/d to get



14 Wolfgang König and Sylvia Schmidt

lim inf
n→∞

a2n

{
Sπ,Ran

(
pRn
)

+
ρ

1− γ
a−2−d(1−γ)n

∑
z∈BRan

(
pRn (z)

)γ}

≥ lim sup
n→∞

(∫
Q

(n)
R

|∇gn|2 −
ρ

γ − 1
‖gn1l

Q
(n)
R
‖2γ2γ
)
.

Next, we plug in (4.8) and (4.9) obtaining

lim inf
R→∞

lim inf
n→∞

a2n

{
Sπ,Ran

(
pRn
)

+
ρ

1− γ
a−2−d(1−γ)n

∑
z∈BRan

(
pRn (z)

)γ}

≥ lim sup
R→∞

lim sup
n→∞

(∫
Rd
|∇(gnΨR)|2 − ρ

γ − 1
‖gnΨR‖2γ2γ

)
.

With the help of (4.10), we can replace gnΨR by its normalised version
gnΨR/‖gnΨR‖2, which is a candidate for the infimum in χ̂γ(ρ). This yields
the assertion.

5 Proof for Phases 1–3 (Theorem 3.1)

The proof of (a) and (b) is analogous to the proof of [GM98, Theorem 1.2]
(see [S10] for details), therefore we only sketch the idea here and omit all
details, like compactification, cutting, or error terms.

Denote by `t(z) =
∫ t
0

1l{Xs=z} ds the local time of the random walk

path (Xs)s∈[0,t] with generator 2dκ(t)∆ in the point z ∈ Zd. Starting from
the Feynman–Kac formula (1.2), we apply the asymptotics (2.1) to the nor-
malised local times `t/t. Heuristically, this gives

〈U(t)〉e−H(t) ≈ E(t)

0

[
exp

(
KH(t)

∑
z∈Zd

ρĤ
(`t(z)

t

)
(1 + o(1))

)]
, t→∞.

Denote by P(t)

0 the probability measure related to E(t)

0 . Under P(t)

0 , the process
(`t/t)t satisfies a large deviation principle on scale tκ(t) with rate function
p 7→ −

(
∆
√
p,
√
p
)
. In part (a), the scale KH(t) is asymptotically smaller

than tκ(t), therefore the main contribution comes from the event that the
process (Xs)s∈[0,t] stays in the origin, which leads to formula (3.3). In part (b),
because of KH(t) � tκ(t), an application of Varadhan’s lemma gives (3.4).

The proof of (c) follows mainly the arguments of [HKM06] (who consider
only γ = 1), adapting them to the new scale tκ(t)/α2

t . The case γ < 1 was
treated in a similar way in [BK01], whereas the case γ > 1 did not appear
originally in Phase 3. For convenience, we give a universal derivation for all
values γ ∈ [0, 1 + 2/d).

By an adaption of [HKM06, Prop. 3.4], the rescaled and normalised local
times
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Lt(y) =
αdt
t
`t(bαtyc), y ∈ Rd, (5.1)

with αt defined by (2.3), satisfy under P(t)

0 ( · 1l{suppLt⊆QR}) a large deviation
principle in the weak topology induced by test integrals against continuous
functions, where we recall that QR = [−R,R]d. The scale of the principle
is tκ(t)/α2

t and the rate function is g2 7→
∫
Rd |∇g|

2 for g ∈ H1(Rd) with
supp g ⊆ QR and ‖g‖2 = 1.

For a lower bound, we start again with (1.2) and insert the indicator on
the event {suppLt ⊆ QR}, using the notation E(t)

0,R[ · ]. After transforming

〈U(t)〉 ≥ E(t)

0,R

[
exp

( ∑
z∈Zd

H(`t(z))
)]

= E(t)

0,R

[
exp

(
αdt

∫
QR

H
( t

αdt
Lt(y)

)
dy
)]

= e
αdtH( t

αdt
)
E(t)

0,R

[
exp

( tκ(t)

α2
t

∫
QR

H
(
t
αdt
Lt(y)

)
− Lt(y)H

(
t
αdt

)
KH

(
t
αdt

) dy
)]
,

(5.2)

we restrict the integral to the part where Lt(y) ≤M for some M > 1, noting
that the integrand on the set {Lt(y) > M} is nonnegative because of the
convexity of H. Then we apply the locally uniform asymptotics (2.1). Next,
to get rid of the indicator on {Lt(y) ≤M}, we introduce a Hölder parameter
η ∈ (0, 1) to separate the expectations over the whole integral and over the
difference set {Lt(y) > M}. The expectation over the rest term can be shown
to be negligible on the exponential scale tκ(t)/α2

t (see [S10, pp. 86f]; here we
use Lemma 2.2(a) and the assumption that γ < 2). Finally, we apply the large
deviation principle for Lt and Varadhan’s lemma; the lower semi-continuity
of g2 7→

∫
QR

Ĥ ◦ g2 was proved in [HKM06, Lemma 3.5] for γ = 1 and can
be shown similarly for all positive γ. Summarizing, we obtain for γ > 0

lim inf
t→∞

α2
t

tκ(t)
log
(
〈U(t)〉e−α

d
tH(tα−dt )

)
≥ lim inf

M→∞
lim inf
t→∞

α2
t

tκ(t)
logE(t)

0,R

[
exp

( tκ(t)

α2
t

∫
QR

ρĤ(Lt(y))1l{Lt(y)≤M} dy
)]

≥ lim inf
t→∞

α2
t

tκ(t)
logE(t)

0,R

[
exp

(
(1− η)

tκ(t)

α2
t

∫
QR

ρĤ(Lt(y)) dy
)]

≥ − inf
g∈H1(Rd)
supp g⊆QR
‖g‖2=1

{∫
QR

|∇g|2 − ρ(1− η)

∫
QR

Ĥ ◦ g2
}
.
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A standard argument shows that the compactified variational formula con-
verges to χc

γ(ρ) as R → ∞ and η ↓ 0. For the case γ = 0, we refer to [S10,
pp. 85f].

Now we prove the upper bound of (3.5). For technical reasons, we will not
work with the large deviation principle, but use a method derived in [BHK07].
First, we compactify with the help of an eigenvalue expansion described in
[BK01] and applied in [HKM06]. Replacing carefully t by tκ(t) in their proofs,
we find for R > 0

α2
t

tκ(t)
log〈U(t)〉 ≤ C

R2
+

α2
t

tκ(t)
log〈U4Rαt(t)〉+ o(1), t→∞, (5.3)

with some constant C > 0, where URαt(t) = E(t)

0,R[e
∫ t
0
ξ(Xs) ds]. Similarly

to (5.2), we can write

〈URαt(t)〉 = e
αdtH( t

αdt
)
E(t)

0,R

[
exp

( tκ(t)

α2
t

∑
z∈BRαt

H(`t(z))− t
αdt
`t(z)H

(
t
αdt

)
KH

(
t
αdt

) )]
,

where we recall that BR = [−R,R] ∩ Zd. We split the sum into the part
where `t(z) ≤ Mtα−dt and the rest where `t(z) > Mtα−dt for some M > 1,
separating the respective expectations with Hölder’s inequality. The rest term
can again be neglected on the exponential scale tκ(t)/α2

t , while an application
of (2.1) in the main term leads to

lim sup
t→∞

α2
t

tκ(t)
log
(
〈URαt(t)〉 e

−αdtH( t

αdt
)
)

≤ lim sup
t→∞

α2
t

tκ(t)
logE(t)

0,R

[
exp

(
ρ̃
tκ(t)

αd+2
t

∑
z∈BRαt

Ĥ
(αdt
t
`t(z)

)
1l{`t(z)≤M t

αdt
}

)]
,

(5.4)

where ρ̃ = ρ(1 + η) with the Hölder parameter η ∈ (0, 1). Next, we can omit
the indicator on the event {`t(z) ≤ Mtα−dt } noting that the function Ĥ is
nonnegative on [1,∞).

We now need the mentioned tool from [BHK07], namely an explicit descrip-
tion of the local times density, which provides an upper bound on exponential
functionals like in (5.4) in the form of a variational formula: Define

Gt(p) = α
−(d+2)
t

∑
z∈Zd

Ĥ(αdt p(z))

for p ∈ M1(Zd). Then, noting that our local times are related to a random
walk with generator 2dκ(t)∆, a respective adaption in the formulation of
[HKM06, Prop. 3.3] gives
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E(t)

0,R

[
exp

(
tκ(t)ρ̃ Gt

(`t
t

))]
≤ exp

(
tκ(t) sup

p∈M1(Zd)
supp p⊆BRαt

{
ρ̃ Gt(p) +

(
∆
√
p,
√
p
)})

(2dtκ(t))|BRαt ||BRαt |

≤ exp
(
− tκ(t)

α2
t

χt(ρ̃)
)

eo(tκ(t)/α
2
t ),

where we put

χt(ρ̃) = −α2
t sup
p∈M1(Zd)

{
ρ̃ Gt(p) +

(
∆
√
p,
√
p
)}
.

In the last step, we also used the properties of the scale function αt mentioned
in Lemma 2.4 and the assumption KH(t)� log t.

Now a direct calculation shows that

χt(ρ̃) =


α2
tχ

(DE)

( ρ̃
α2
t

)
+ ρ̃

d

2
logα2

t for γ = 1,

α2
tχ

(DB)
γ

( ρ̃

α
2+d(1−γ)
t

)
+ ρ̃

1− α−d(1−γ)t

1− γ
for γ 6= 1.

In both cases, we can apply Prop. 3.3 with κ = α
2+d(1−γ)
t → ∞ for t → ∞,

since γ < 1 + 2/d. Hence, χt(ρ̃) converges to χ(AB)(ρ̃) in the case γ = 1 and
to χ(B)

γ (ρ̃) in the case γ 6= 1, i.e. to χc
γ(ρ̃) in both cases. In summary, (5.4)

becomes

lim sup
t→∞

α2
t

tκ(t)
log
(
〈URαt(t)〉 e

−αdtH( t

αdt
)
)
≤ lim sup

t→∞
(−χt(ρ̃)) ≤ −χc

γ(ρ̃).

By a scaling argument, one can see that χc
γ(ρ̃) = χc

γ(ρ(1 + η)) converges to
χc
γ(ρ) for η ↓ 0. Together with (5.3), the assertion (3.5) is thus shown, which

finishes the proof of Theorem 3.1.

6 Proof for Phase 4 (Theorem 3.2)

Phase 4 is characterised by the fact that the space–time scale ratio is constant:
αt = t1/d, i.e. t/αdt = 1. We rescale both local times and potential,

Lt(y) = `t(bαtyc) and ξ̄t(y) = ξ(bαtyc), y ∈ Rd.

Note that because of κ(t) = κ∗t2/d(1 + o(1)), the definition of the rescaled
(and normalised) local times is asymptotically equivalent to (5.1), hence we
have again an LDP under P(t)

0 ( · 1l{suppLt⊆QR}) on scale tκ(t)/α2
t � t with
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rate function g2 7→
∫
Rd |∇g|

2 for g ∈ H1(Rd) satisfying supp g ⊆ QR and
‖g‖2 = 1.

We will frequently make use of arguments from [GKS07], in particular
their main result on large deviations for the scalar product

(
Lt, ξ̄t

)
. The time

parameter t in [GKS07] is replaced by tκ(t) and our scale function αt = t1/d

corresponds to the [GKS07]-scale at time tκ(t), multiplied by (κ∗)−1/(d+2).
Thus, [GKS07, Thm. 1.3] reads

lim
t→∞

1

t
logP(t)

0 × Prob
((
Lt, ξ̄t

)
> u

)
= −(κ∗)d/(d+2)χ

[GKS07]
H (u) (6.1)

for u > 0 such that u ∈ (supp ξ(0))◦, where Prob is the probability with
respect to the potential and

χ
[GKS07]
H (u) = inf

g∈H1(Rd)
‖g‖2=1

{∫
Rd
|∇g(y)|2 dy + sup

β>0

[
βu−

∫
Rd
H(βg2(y)) dy

]}
.

By rescaling and duality, it turns out that the variational problem χ
(RWRS)
H

that we wish to find in this proof is essentially the negative Legendre trans-

form of χ
[GKS07]
H :

sup
u>0

{
βu− χ[GKS07]

H (u)
}

= −β−2/dχ(RWRS)
H

(
β1+2/d

)
, β > 0. (6.2)

Let us come to the lower bound of (3.6). A transformation of the Feynman–
Kac formula (1.2) gives

〈U(t)〉 = 〈E(t)

0

[
exp

(
t
(
Lt, ξ̄t

))]
〉 =

∫
R
teut P(t)

0 × Prob
((
Lt, ξ̄t

)
> u

)
du.

With the help of (6.1), we can conclude for fixed u > 0 and ε > 0 that

〈U(t)〉 ≥ εte(u−ε)t P(t)

0 × Prob
((
Lt, ξ̄t

)
> u

)
= exp

(
t
[
u− ε− (κ∗)d/(d+2)χ

[GKS07]
H (u)

]
(1 + o(1))

)
as t→∞. Now let ε ↓ 0, take the supremum over all u > 0 and use (6.2) for
β = (κ∗)−d/(d+2) to finish the proof of the lower bound.

For the upper bound, we can first derive an analogue formula to (5.3) to
restrict the support of the local times on a compact box (see [S10, Prop. 4.4.3]
for details). Therefore, it suffices to consider URαt(t) = E(t)

0,R[exp(t(Lt, ξ̄t))]
for some large R > 0 instead of U(t). We will use a similar strategy as in
the proof of the upper bound in [GKS07, Thm. 1.3]: In order to be able to
apply the LDP for the local times, we need to smooth the scenery, which we
can only do after cutting it. For M > 0, introduce ξ̄(≤M)

t = (ξ̄t ∧M) ∨ (−M)
and ξ̄(>M)

t = (ξ̄t −M)+. Then ξ̄t ≤ ξ̄(≤M)

t + ξ̄(>M)

t . We want to work with the
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convolution ξ̄(≤M)

t ?jδ with jδ = δ−dj(·/δ), where j ≥ 0 is a smooth, rotational
invariant, L1-normalised function supported in Q1. For brevity, we will not
explain in detail how to deal with the remainder terms E(t)

0,R[exp(t(Lt, ξ̄
(>M)

t ))]

and E(t)

0,R[exp(t(Lt, ξ̄
(≤M)

t −ξ̄(≤M)

t ?jδ))] (which can be separated from the main
term by Hölder’s inequality). For the smoothing, one can apply [GKS07,
Lemma 3.5], while the cutting is technically involved and follows the proof
of [GK09, (2.12)] (here we need Lemma 2.2(b) and γ < 2). Let us in the
following take for granted that it is enough to show

lim sup
M→∞

lim sup
δ↓0

lim sup
t→∞

1

tκ∗
log〈E(t)

0,R

[
exp

(
t
(
Lt, ξ̄

(≤M)

t ? jδ
))]
〉

≤ −χ(RWRS)
H

( 1

κ∗

)
. (6.3)

Denote `(δ)t (z) =
∫
z+[0,1)d

Lt ? jδ(y/αt) dy, then by rotational invariance of j,

we have t(Lt, ξ̄
(≤M)

t ? jδ) =
∑
z∈Zd `

(δ)

t (z)ξ(≤M)(z), and ξ(≤M)(z) = (ξ ∧M) ∨
(−M) ≤ ξ(z) ∨ (−M). Furthermore,

〈E(t)

0,R

[
e
∑
z∈Zd `

(δ)
t (z)ξ(z)∨(−M)

]
〉 ≤ 〈E(t)

0,R

[
e
∑
z∈Zd `

(δ)
t (z)ξ(z)

]
1l{ξ(z)>−M}〉

+ 〈E(t)

0,R

[
e−M

∑
z∈Zd `

(δ)
t (z)

]
1l{ξ(z)≤−M}〉.

The second summand is negligible on exponential scale t for t → ∞ and
M → ∞ because of

∑
z∈Zd `

(δ)

t (z) = t. In the first summand, the definition
of H and Jensen’s inequality (for the probability measure 1l{z+[0,1)d} dy) yield

〈
exp

( ∑
z∈Zd

`(δ)t (z)ξ(z)
)〉
≤ exp

(
t

∫
Rd
H(Lt ? jδ(y)) dy

)
.

Now we are ready to apply Varadhan’s lemma to derive for any M > 0

lim sup
t→∞

1

tκ∗
log〈E(t)

0,R

[
et
∫
Rd H(Lt?jδ(y)) dy

]
1l{ξ(z)>−M}〉

≤ − inf
g∈H1(Rd)
supp g⊆QR
‖g‖2=1

{∫
Rd
|∇g|2 − 1

κ∗

∫
Rd
H
(
g2 ? jδ(y)

)
dy
}
.

Again Jensen’s inequality for the probability measure jδ and Fubini’s the-
orem show that we receive an upper bound when omitting the convolution
with jδ. Thus, we have arrived at a compactified version of our variational

problem χ
(RWRS)
H (1/κ∗), which we can estimate against the whole-space prob-

lem. This shows (6.3) and completes the proof of the theorem.
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