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Achieving Non-Zero Information Velocity in

Wireless Networks

Srikanth K. Iyer and Rahul Vaze

Abstract

In wireless networks, where each node transmits independently of other nodes in the network (the ALOHA

protocol), the expected delay experienced by a packet until it is successfully received at any other node is known

to be infinite for signal-to-interference-plus-noise-ratio (SINR) model with node locations distributed according to

a Poisson point process. Consequently, the information velocity, defined as the limit of the ratio of the distance to

the destination and the time taken for a packet to successfully reach the destination over multiple hops, is zero,

as the distance tends to infinity. A nearest neighbor distance based power control policy is proposed to show that

the expected delay required for a packet to be successfully received at the nearest neighbor can be made finite.

Moreover, the information velocity is also shown to be non-zero with the proposed power control policy. The

condition under which these results hold does not depend on the intensity of the underlying Poisson point process.

I. INTRODUCTION

Typically, nodes in a wireless network are separated by large distances and packets are routed from

source to their destination via many other nodes or over multiple hops. Therefore, to understand the

connectivity or information flow in a wireless network, a space-time SINR graph is considered. Such

a graph models the evolution of the spatial as well as the temporal connections in the network. The

Srikanth K. Iyer is with the Mathematics Department of the Indian Institute of Science, Bangalore, Research Supported in part by UGC

center for advanced studies, R. Vaze is with the Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India.

(e-mails: skiyer@math.iisc.ernet.in, vaze@tcs.tifr.res.in)

ar
X

iv
:1

50
1.

00
38

1v
1 

 [
cs

.I
T

] 
 2

 J
an

 2
01

5



2

space-time SINR graph is a directed and weighted multigraph that represents the most complete random

graph model for wireless networks [1]. The SINR (signal-to-interference-plus-noise-ratio) is a ratio of

the relative strength of the intended signal and the undesirable interference from simultaneously active

unintended nodes of the wireless network. The SINR between any two nodes evolves with time and

depends not only on the distance between the two nodes but also on the location of the other nodes in

the network. At any time, a directional connection is established from a node at x to another node at y

if the SINR from x to y is larger than a threshold. Such a connection represents the ability of node x to

deliver meaningful information to y.

Let Φ ⊂ R2 be a point process that specifies the location of the nodes of the network. For any t ∈ Z+,

let ΦT (t) ⊂ Φ be the set of nodes that are transmitting at time t and ΦR(t) = Φ \ ΦT (t) be the set of

nodes in receiving mode at time t. Formally, the SINR from a node x ∈ ΦT (t) to a node y ∈ ΦR(t) is

given by

SINRxy(t) :=
Px(t)ht(x, y)`(x, y)

γ
∑

z∈ΦT (t)\{x,y} Pz(t)ht(z, y)`(z, y) + N
, (1)

where `(., .) is the distance based signal attenuation or path-loss function, Px(t) is the transmitted power

from x at time t, γ is the interference suppression constant, ht(u, v), u, v ∈ Φ, are the space-time fading

coefficients that model the loss (or gain) from node u to v at time t due to signal propagation via a wireless

medium, and N is the variance of the so-called additive white Gaussian noise. By an abuse of notation,

we will often use `(|x− y|) for `(x, y), since the path loss is a function of the distance between x and y.

The term
∑

z∈ΦT (t)\{x,y} Pt(z)ht(z, y)`(z, y) in the denominator of (1) is referred to as the interference.

Note that we do not include the nodes at x, y in the interference term since transmission from node x is

the signal of interest and node y is in receiving mode. SINRxy(t) is set to be zero at time t if either node

x ∈ ΦR(t) or if node y ∈ ΦT (t). Define the indicator random variables

exy(t) :=


1 if SINRxy(t) > β,

0 otherwise,
, (2)

where β > 0 is arbitrary. The space-time SINR graph is defined to be the graph (Φ × Z+, E), where a
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directed edge exists from (x, t) to (y, t + 1) if exy(t) = 1. Given Φ, the location of the nodes is static,

and the time evolution of the graph is entirely due to changes in the fading variables ht(u, v) and the set

ΦT .

In this paper, we consider a space-time SINR graph in which the location of the nodes is modeled

as a homogeneous Poisson point process (PPP). Modeling location of nodes in a wireless networks as a

PPP is quite attractive from an analytical point of view and has paid rich dividends in terms of finding

exact expressions for several performance indicators such as maximum rate of transmission (capacity),

connection probability, etc. [2]–[5], that are hard to derive otherwise. A PPP node location model is

well suited for modeling both the ad hoc networks, where large number of nodes are located in a large

area without any coordination, as well as the modern paradigm of cellular networks [5], where multiple

different layers of base-stations (BSs) (macro, femto, pico) are overlaid on top of each other, and the

union of all BSs appears to be uniformly distributed.

Given Φ, the stochastic nature of the fading coefficients ht(·, ·) and the set ΦT (·) implies that the event

exy(t) is a random variable, and hence potentially, multiple transmissions are required for successfully

transmitting a packet from node x to y. Repeated transmissions entail delay in packet transmission, and

it is of interest to make the expected delay as small as possible. Another related quantity of interest is the

information velocity, that is defined as the limit of the ratio of the distance between the source and the

destination of any packet, to the total delay experienced by the packet to reach its destination successfully

over multi-hops, as distance goes to infinity.

Expected delay and the information velocity are closely connected to the various notions of capacities

in wireless networks, e.g., throughput capacity [2], transport capacity [2], delay-normalized transmission

capacity [6], [7] etc., since all of them are measures based on the successful rate of departure of packets

towards their destination. Finding the speed of information propagation is also related to first passage

percolation [8], [9], and dynamic epidemic processes [10]–[12], however, the analysis in the space-time

SINR graph gets complicated due to the presence of interference.
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In the seminal paper [2], it was shown that with PPP distributed node locations (albeit for a somewhat

simpler model), the per-node throughput (rate of transmission between any two randomly selected nodes)

or information velocity tends to zero as the size of the network grows. The most general analysis on

the expected delay and the information velocity has been carried out in [13] for a PPP-driven space-time

SINR network. It is shown that with an ALOHA protocol, where nodes transmit independently of all other

nodes with fixed power, the expected delay required for a packet to leave a given node and be successfully

received at any other node in the network is infinite. Remarkably, this result is shown to hold even in

the absence of interference and requires only the additive noise to be present. Moreover, the information

velocity is also shown to be zero. These result have tremendous ’negative’ impact on network design,

since it shows that essentially any packet cannot exit its source with finite expected delay.

Both the results from [13], viz., the infinite expected delay and zero information velocity, are attributed

to the fact that with PPP distributed node locations, a typical node can have large voids around itself, that

is, regions that contain no other nodes with high probability. In such a circumstance, a large number of

retransmission attempts will be required to overcome the effect of additive noise and support a minimum

SNR at any of the other receiving nodes. Consequently, the mean exit delay is infinite (when averaged

over the realizations of the PPP) and the information velocity tends to zero.

One solution prescribed in [13] to make the information velocity non-zero is to add another regular

square grid of nodes with a fixed density, in which case the nearest neighbor distance is bounded, and

the information velocity can be shown to be non-zero. From a practical point of view it is rather limiting

to assume the presence of such a regular grid.

Some work has been reported on finite expected delay together with a finite bound on the information

velocity [1], [14], [15], under restrictive assumptions such as assuming temporal independence with the

SINR model, i.e. interference is independent between any two nodes over time, no power constraint and

temporal interference independence, and no additive white Gaussian noise, respectively.

In this paper, we propose a power control mechanism to show that the information velocity can be
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made non-zero for the space-time SINR graph with PPP node locations without any additional restrictive

assumptions on the network. In [13], the information velocity is defined as the limit of the ratio of the

distance between two points x and y to the time it takes for the packet to go from x to y as the distance

tends to infinity. The packet simultaneously traverses multiple paths and the time taken is the first time

the packet is received at y. This makes the set-up somewhat complicated to work with and so the results

in [13] are proved for delays averaged over the fading variables. In order to overcome this problem, we

define the information velocity somewhat differently, the precise definition of which will appear later. We

track a tagged packet as it traverses the network via a conic forwarding strategy along a prescribed path.

The velocity of this tagged particle along the prescribed path is what we will refer to as the information

velocity. Briefly stated, conic forwarding works as follows. At each node, the R2 plane is partitioned into

multiple cones, and each node transmits the packet at the head of its queue to its nearest neighbor in the

cone that contains the packet’s destination until it is successfully received. We refer to such a cone as

the destination cone. This conic forwarding idea circumvents the problem of forming nearest neighbor

loops, since the packet always progresses towards its destination. This also allows us to exploit the various

independences that exist across space and time.

The aim of the power control strategy is to nullify the path-loss from a node towards its nearest neighbor

in the destination cone. In particular, since the path-loss between node x and its nearest neighbor n(x)

in the destination cone is `(|x− n(x)|), the transmitted power P is taken to be c`(|x− n(x)|)−1, where

c is a constant. To compensate for the non-homogeneity in power used at each node, we modulate the

transmission probability p, such that pP equals than the average power constraint at each node.

We wish to note that per se, power control and conic forwarding are not new concepts in wireless

communication. For instance, power control is used by most mobiles phones as part of current wireless

technology standards. However, its use and advantages in large wireless networks with randomly located

nodes has not been explored sufficiently.

Using conic forwarding strategy together with power control, we show that the expected delay to the
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nearest neighbor in the destination cone is finite provided βγ < 1. In addition, as the tagged packet

traverses the network from one node to another, we add additional nodes in the network. This increases

the interference but delivers a stationary sequence of delay times. This enables us to apply the ergodic

theorem and infer that the information velocity is strictly positive with probability one. For the special

case when the path loss has bounded support, we show that the information velocity is bounded below

by a strictly positive constant.

II. SYSTEM MODEL

Let Φ be a homogenous PPP with intensity λ in R2 modeling the location of the nodes of the network.

The time parameter is assumed to be discrete (slotted). Let {ht(x, y), x, y ∈ Φ, t = 0, 1, . . .} be a collection

of independent exponentially distributed random variables with parameter µ. ht(x, y) is the fading power

from node x to node y in the time slot t. The path loss between x, y ∈ Φ denoted by `(x, y) = `(|x− y|)

is given by

`(r) = r−α ∧ 1, r > 0,

where a ∧ b = min(a, b) and α > 2 is arbitrary.

We assume that each node can only operate in a half-duplex mode, that is, in the time slot t, a node x ∈ Φ

is on (transmitter) or off (receiver) following a Bernoulli random variable 1x(t), with P(1x(t) = 1) = px(t).

Let qx(t) = 1− px(t). The set of on (off) nodes in the time slot t is denoted by ΦT (t) (ΦR(t)).

Let C1, . . . , Cm be cones with angle 2φ < π
2

in R2 with vertex at the origin, satisfying ∪mi=1Ci = R2

and Ci ∩ Cj = ∅ for i 6= j, as shown in Fig. 1. Without loss of generality, suppose that C1 is symmetric

about the x-axis and opens to the right. Let x+Ci be translation of cone Ci by x. In the time slot t, for

a node x, let x + Cd(x, t) be the cone that contains the final destination of the packet that it wishes to

transmit. We call this cone as the destination cone. Denote the nearest neighbor of x in the destination

cone x+Cd(x, t) by nt(x). If the node at x is on in time slot t then it transmits with power Px(t). The key

idea in this paper is to employ a decentralized power control scheme, that is, the functions px(t), Px(t)
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Fig. 1. Definition of cones with angle 2φ.
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Fig. 2. Each node transmits to its nearest neighbor in the destination (shaded) cone.

depend locally on Φ. The particular forms that these functions take are given by

Px(t) = c`−1(x, nt(x)), px(t) = M(Px(t))
−1, (3)

where c = M(1 − ε)−1, 0 < ε < 1 is a constant, and M = Px(t)px(t) is the average power constraint.

Note that px(t) ≤ 1− ε, since `(·) ≤ 1. Thus, in each time slot, each node makes transmission attempts

with transmission power proportional to the distance to its nearest neighbor in the destination cone to

compensate for the path-loss to the nearest neighbor. The transmission probability is chosen so as to

satisfy an average power constraint.

In Fig. 2, we illustrate the transmission strategy, where each node transmits to its nearest neighbor
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in the destination cone (shaded cone) with line thickness proportional to the transmit power, farther the

nearest neighbor, larger the power. In prior work [13], with the ALOHA protocol, the functions P and p

were assumed to be constants that were independent of the system parameters.

Thus, the SINR from node x to node y in time slot t is given by

SINRxy(t) =
Px(t)ht(x, y)`(x, y)1x(t)(1− 1y(t))

γ
∑

z∈ΦT (t)\{x,y} Pz(t)ht(z, y)`(z, y) + N
, (4)

where 0 < γ < 1 is the processing gain of the system (interference suppression parameter) which

depends on the transmission/ detection strategy, for example, on the orthogonality between codes used

by different legitimate nodes during simultaneous transmissions. The transmission from node x to y is

deemed successful at time t, if SINRxy(t) > β, where β > 0 is a fixed threshold. Let exy(t) = 1 if

SINRxy(t) > β, and zero otherwise. The sum in the denominator of the right hand expression in the above

equation is referred to as the interference and α > 2 ensures that the interference term in the denominator

is finite almost surely. Since ht(x, y) is exponentially distributed, multiple transmissions may be required

for a packet to be successfully received at any node.

III. MAIN RESULTS AND PROOFS

Our first objective is to show that with the power control policy described above, the expected time for

a packet to be successfully received at the nearest neighbor in the destination cone is finite.

Definition 3.1: Let the minimum time (exit time) taken by any packet to be successfully transmitted

from node x to its nearest neighbor n(x) in the destination cone of the packet be

T (x) = min
{
t > 0 : ex,nt(x)(t) = 1

}
.

Theorem 3.2: [Finite expected exit time] Suppose βγ < 1. Then for all ε > 0 sufficiently small, the

space-time SINR graph with power control policy as described above satisfies E{T (x)} < ∞ for any

x ∈ Φ.

Remark 3.3: The parameter β controls per link data rate, larger the value of β, larger is the per link

data rate. The condition βγ < 1 indicates that to support larger per-link data rate, one has to invest in
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getting a better (lower) interference suppression parameter, e.g. by lowering the chip rate in a wireless

CDMA system. The condition βγ < 1 also indicates that there is no free lunch, if one wants larger data

rate and finite expected exit time, one has to have better interference suppression capability. An interesting

upshot of the proposed the power control policy is that the condition required for the theorem to hold is

independent of the intensity λ of the PPP.

Proof: Without loss of generality, suppose that the origin o ∈ Φ. We tag a particular packet to be

transmitted out of the node at o, and suppose that the destination cone of this packet when it is at o is Cd.

Denote the nearest neighbor of o in Cd by n(o). We have dropped the time subscript from n(o), since,

as long as the packet is not successfully transmitted out of o the destination cone remains the same. Let

SINRo,n(o)(t) =
Po(t)ht(o, n(o))`(o, n(o))1o(t)(1− 1n(o)(t))

γI(t) + N
, (5)

where

I(t) =
∑

z∈Φ\{o,n(o)}

1z(t)Pz(t)ht(z, n(o))`(z, n(o)). (6)

Let eo,n(o)(t) = 1 if SINRo,n(o)(t) > β, and 0 otherwise. Due to interference and the nature of the traffic

arriving at the nodes, the choice of the destination cones are not independent across time slots at the

same node as well as at different nodes. Hence to evaluate E{T (o)} we need to condition appropriately.

Let Gk be the sigma field generated by the point process Φ and the choice of cones made at all nodes of

Φ at times t = 1, 2, . . . , k. Note that as long as the packet is not successfully transmitted out of o, the

transmission probability po(t) does not change. Let F := ∩kj=2{po(j) = po(1)}. Now

P
[
T (o) > k

∣∣Φ] = E
{
P
[
edo,n(o)(t) = 0, ∀ t = 1, . . . , k

∣∣Gk]1F ∣∣∣Φ} .
Let A(t) be the event that the origin o ∈ ΦR(t), and B(t) be the event that o ∈ ΦT (t), n(o) ∈ ΦR(t)

but SINRo,n(o)(t) ≤ β. Writing the expression on the right above in terms of A(t), B(t), and using the

independence of the fading powers and the conditional independence of the transmission events, we get

P
[
T (o) > k

∣∣Φ] = E

{
k∏
t=1

P
[
A(t) ∪B(t)

∣∣Gk]1F ∣∣∣Φ} . (7)
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On the event F , we have P(A(t)|Gk) = 1− po(1) and

P(B(t)|Gk) = po(1)qn(o)(t)

(
1− E

{
exp

(
−µβ
c

(N + γI(t))

) ∣∣∣∣Gk}) , (8)

for t = 1, 2, . . . , k. (8) follows from (5) by using the fact that Po(t)`(o, n(o)) = c and taking expectation

with respect to ht(o, n(o)) ∼ exp(µ). This yields

P
[
A(t) ∪B(t)

∣∣Gk] ≤ 1− po(1) + po(1)qn(o)(t)
(

1− E
{
e−

µβ
c

(N+γI(t))
∣∣∣Gk})

= 1− po(1)pn(o)(1)− po(1)qn(o)(t)e
−µβN

c E
{
e−

µβγ
c
I(t)
∣∣∣Gk}

≤ 1− po(1) ε e−
µβN
c E

{
e−

µβγ
c
I(t)|Gk

}
, (9)

where we have used the fact that qy(t) ≥ ε. Let a = µβγ
c

. We now find a lower bound for the expectation

on the right hand side above that is independent of the choice of the cone. To this end observe that

E
{
e−

µβ
c
I(t)
∣∣∣Gk} =

∏
z∈Φ\{o,n(o)}

E
{
e−a1z(t)P

(i)
z (t)ht(z,n(o))`(z,n(o))

∣∣∣Gk} (10)

Suppose node z ∈ Φ\{o, n(o)} transmits using cone z + Ci in time slot t. This fixes the transmission

probability p(i)
z (t) and power P (i)

z (t) (where we have included the index i to make the dependence on the

cone explicit). Then

E
{
e−

µβγ
c

1z(t)P
(i)
z (t)ht(z,n(o))`(z,n(o))

∣∣∣Gk}
= (1− p(i)

z (t)) + p(i)
z (t)E

{
e−aP

(i)
z (t)ht(z,n(o))`(z,n(o))

∣∣∣Φ}
= (1− p(i)

z (t)) + p(i)
z (t)

c

c+ βγ`(z, n(o))P
(i)
z (t)

. (11)

Let C∗z = C∗z (Φ) be the cone for which the right hand expression in (11) is minimized. Let p∗z, P
∗
z denote

the corresponding transmission probability and power respectively. Denote by 1∗z an independent Bernoulli

random variable with P[1∗z = 1] = p∗z. The cone C∗z maximizes the interference contribution at n(o) due

to transmission at z. Define

I∗(t) = I∗(t,Φ) =
∑

z∈Φ\{o,n(o)}

1∗zP
∗
z ht(z, n(o))`(z, n(o)). (12)
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Substituting I∗(t) for I in (9) along with the observation that given Φ, I∗(t) d
= I∗(1) we get

P
[
A(t) ∪B(t)

∣∣Gk] ≤ 1− po(1) ε e−
µβN
c E

{
e−aI

∗(1)
∣∣∣Φ} . (13)

Substituting from (13) in (7), we get

P
[
T (o) > k

∣∣Φ] ≤ (1− J)k, (14)

where

J = po(1)εe−
µβN
c E

{
exp (−aI∗(1))

∣∣Φ} .
The expected delay can then be written as

E{T (o)} =
∑
k≥0

P[T (o) > k]

= E

{∑
k≥0

P
[
T (o) > k

∣∣Φ]}
≤ E{J−1}.

By the Cauchy-Schwartz inequality we get

E{T (o)} ≤ e
µβN
c

ε

(
E

{
1(

E
{
e−aI∗(1)

∣∣Φ})2

}
E
{
po(1)−2

}) 1
2

. (15)

From the definition of the transmission probability po(t), we get

E[po(1)−2] ≤ E
{( c

M

)2

(|n(o)|2α ∨ 1)

}
<∞, (16)

since the nearest neighbor distance in a cone has density

f(r) =
2λπr

m
e−

λπ
m
r2 , r > 0. (17)

It remains to show that

E

{
1(

E
{
e−aI∗(1)

∣∣Φ})2

}
<∞. (18)

E
{
e−aI

∗(1)
∣∣Φ} =

∏
z∈Φ\{o,n(o)}

E
{
e−a1

∗
zP
∗
z h1(z,n(o))`(z,n(o))

∣∣Φ} . (19)
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Taking expectations, first with respect to 1∗z and then with respect to h1(z, n(o)), we get

E
{
e−a1

∗
zP
∗
z h1(z,n(o))`(z,n(o))|Φ

}
= (1− p∗z) + p∗zE

{
e−aP

∗
z h1(z,n(o))`(z,n(o))

∣∣Φ}
= 1− p∗z

(
1− µ

µ+ aP ∗z `(z, n(o))

)
(a)
= 1− βγp∗zP

∗
z `(z, n(o))

c+ βγP ∗z `(z, n(o))
(b)

≥ 1− βγM`(z, n(o))

c
= 1− βγ(1− ε)`(z, n(o)),

where (a) follows by substituting µβγ
c

for a, and to obtain (b) we have used the fact that the average

power pzPz equals M and c = M(1− ε)−1. Let c1 = βγ(1− ε). Substituting the above bound in (19) we

get

E
{
e−aI

∗(1)
∣∣Φ} ≥ ∏

z∈Φ\{o,n(o)}

(1− c1`(z, n(o))) . (20)

Note that c1`(z, n(o)) < 1 since βγ < 1. Let B(x, r) denote a ball of radius r centered at x. Substituting

the bound obtained in (20) in (18), we get

E

{
1

(E {e−aI∗(1)|Φ})2

}
≤ E

 ∏
z∈(Φ\{o,n(o)})∪Φ0

e−2 log(1−c1`(|z|))

 , (21)

where the last inequality follows by shifting the origin to n(o) and including points from an independent

Poisson process Φ0 of intensity λ1{(o+Cd)∩B(o,|n(o)|)}, i.e., a PPP of intensity λ restricted to the set (o +

Cd) ∩B(o, |n(o)|). Clearly (Φ\{o, n(o)}) ∪Φ0 is a PPP of intensity λ with the origin at n(o). Hence by

an application of the Campbell’s theorem in (21) and the fact that `(|z|) ≤ 1 we get

E

{
1

(E {e−aI∗(1)|Φ})2

}
≤ exp

(
λ

∫
R2

(
e−2 log(1−c1`(|z|)) − 1

)
dz

)
≤ exp

(
2λc1

(1− c1)2

∫
R2

`(|z|)dz
)
<∞, (22)

since α > 2. This completes the proof of Theorem 3.2.

Next, we build upon Theorem 3.2, to show that the information velocity, that is, the rate at which packets

flow towards their destination, is positive under the proposed power control mechanism. Information

velocity is a key quantity in multi-hop routing. Larger the velocity, higher is the capacity of the network.

The negative results in [13] on the infinite expected delay and zero information velocity are proved for
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delays that are averaged over the fading variables. In order to work with the delay variables directly and

also to be able to use the ergodic theorem, we introduce several additional structures as we go along.

As a first step we track the movement of a tagged packet that starts at the origin X0 = o ∈ Φ and

traverses the network as follows. Let T0 be the time taken by this tagged packet starting at the origin to

successfully reach its nearest neighbor X1 = n(o) in the destination cone C1. The packet is transmitted

with power P1 = c`(|n(o))|)−1 and the probability that it is transmitted in a time slot is MP−1
1 . Going

forward, if the packet is at node Xi−1, i ≥ 2, let Ti−1 be the time taken for the packet to successfully reach

the nearest neighbor Xi of Xi−1 in the destination cone Xi−1 +C1. From the time the packet reaches Xi−1

to the time it is successfully delivered at Xi, it is transmitted with power Pi = c`(|Xi − Xi−1)|)−1 and

transmission probability MP−1
i . One can think of the destination of the packet being located at (∞, 0)

and thus the destination cone for this packet is always a translation of the cone C1. We ignore the queuing

and other delays at each node as is the standard practice. Note that the delays Ti, i ≥ 0, are not identically

distributed. For instance, the point process as seen from the origin and from n(o) do not have the same

distribution. In particular, {Ti, i ≥ 0} is not a stationary sequence.

Definition 3.4: The information velocity of space-time SINR network is defined as

v = lim inf
t→∞

d(t)

t
,

where d(t) is the distance of the tagged packet from the origin at time t.

The following is the main result of this paper.

Theorem 3.5: Under the conditions of Theorem 3.2 and the proposed power control strategy, the

information velocity v > 0, almost surely. If the path loss function has compact support, that is, for

some constant r0 > 0, `(r) = 0 for all r > r0, then there exists a constant v0 > 0 such that v ≥ v0 almost

surely.

Proof: In order to prove this result, we first dominate the delays {Ti, i ≥ 0}, by a stationary sequence

{T ′i , i ≥ 0}, and show that a positive speed can be obtained even with these enhanced delays. This will

be done by adding some additional points that will increase the interference and hence the delay. To this
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Fig. 3. Illustration of addition on infinite sequence of points/interferers to make T ′i stationary.

end, for all i ≥ 0, let Ri = |Xi+1 − Xi| and θi = arcsin((Xi+1,2 − Xi,2)/Ri), where Xi = (Xi1, Xi2).

Note that the cones {(Xi + C1) ∩ B(Xi, Ri), i ≥ 0} are non-overlapping since φ < π/4. Consequently,

{(Ri, θi), i ≥ 0} is a sequence of independent and identically distributed random vectors having the same

distribution as the random vector (R, θ), where R and θ are independent with density of R given by (17)

and θ is uniformly distributed on (−φ, φ).

To nullify the effect of moving to the nearest neighbor we progressively fill the voids with independent

Poisson points as the packet traverses the network. This however leaves an increasing sequence of special

points, the Xi’s. The following construction is intended to take care of this issue and deliver a stationary

sequence.

Let {(R−i, θ−i, i ≥ 1} be a sequence of independent random vectors with each vector having the

same distribution as (R, θ). Define Φ̃ = {X−i, i ≥ 1}, recursively starting from X−1 so as to satisfy

|X−i −X−i+1| = R−i and θ−i = arcsin((X−i+1,2 −X−i,2)/R−i). Observe that each X−i+1, i ≥ 1, lies in

the cone X−i + C1 as shown in Fig. 3, and {Φ ∩ ((X−i + C1) ∩ B(X−i, R−i)), i ≥ 1} is a sequence of

independent and identically distributed random variables.

Let T ′0 be the delay experienced by the tagged packet in going from X0 to X1 when the interference is

coming from the points of (Φ\{o, n(o)})∪Φ̃. For i ≥ 0, let Φi be an PPP of intensity λ1{(Xi+C1)∩B(Xi,Ri)}
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independent of everything else. For i ≥ 1, let T ′i be the delay experienced by the tagged particle in going

from Xi to Xi+1 when the interference is coming from the nodes in (Φ \ {Xi, Xi+1}) ∪ Φ̃ ∪i−1
j=0 Φj . Note

that for the actual delay Ti, that is, when the packet is at Xi and trying to reach Xi+1, the interference

contribution is coming from the nodes in Φ\{Xi, Xi+1}. To define T ′i , we have added additional interferers

at Φ̃∪i−1
j=0 Φj . We assume that virtual interferers placed at Φ̃∪i−1

j=0 Φj behave similar to nodes of Φ. Clearly

T
′
i ≥ Ti, and furthermore the sequence {T ′i , i ≥ 0} is a stationary sequence. To prove the later assertion

consider any finite dimensional vector of delays (T
′
i1
, T
′
i2
, . . . , T

′
ij

). The distribution of this vector is a

function of the distribution of the special points {Xi, i ≤ ij}, the point processes (Φ \ ∪i≤ijXi) and

∪ij−1
i=0 Φi, which by our construction is translation invariant.

Suppose we show that η = E[T
′
i ] <∞. Then by the Birkoff’s ergodic theorem [16], we have

lim
n→∞

1

n

n−1∑
k=0

T
′

k = T
′
,

almost surely, where T ′ is a random variable with mean η.

Let N(t) be the counting process associated with an arrival process with inter-arrival times given by

the sequence {T ′i , i ≥ 0}. Then the information velocity satisfies

v ≥ lim
t→∞

∑N(t)
k=1 Rk cos(θk)∑N(t)+1

k=1 T
′
k

=
E[R cos(θ)]

T ′
.

The result now follows since T ′ is finite almost surely.

It remains to show that E[T
′
0] < ∞. The proof of this assertion proceeds along the same lines as the

proof of Theorem 3.2 with I(t) in (6) replaced by I(t) + Ĩ(t), where

Ĩ(t) =
∑
z∈Φ̃

1z(t)Pz(t)ht(z, n(o))`(z, n(o)).

This would lead to a bound analogous to (15) with I∗(1) replaced by I∗(1) + Ĩ∗(1) and Φ replaced by

Φ∪ Φ̃, where Ĩ∗(1) is defined analogous to I(1). By the conditional independence of I∗(1) and Ĩ∗(1) we

get

E

 1(
E
{
e−a(I∗(1)+Ĩ∗(1))|Φ ∪ Φ̃

})2

 = E

 1(
E {e−aI(1)|Φ}E

{
e−aĨ(1)|Φ̃ ∪ {n(o)}

})2


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Another application of the Cauchy-Schwartz inequality implies that the result follows if we show that

E

{
1(

E
{
e−aI(1)

∣∣Φ})4

}
E

 1(
E
{
e−aĨ(1)

∣∣Φ̃ ∪ {n(o)}
})4

 <∞.

Proceeding as in (21)-(22), we get

E

{
1(

E
{
e−aI(1)

∣∣Φ})4

}
≤ exp

(
λ

(1− c1)4

∫
R2

(
1− (1− c1`(|z|))4

)
dz

)
<∞,

since α > 2. It remains to show that

E

 1(
E
{
e−aĨ(1)

∣∣Φ̃ ∪ {n(o)}
})4

 <∞. (23)

To compute the expression in (23) we proceed as we did in (19)-(20) and arrive at the following bound

similar to the one in (21).

E

 1(
E
{
e−aĨ(1)

∣∣Φ̃ ∪ {n(o)}
})4

 ≤ E

{
∞∏
i=1

e−4 log(1−c1`(X−i,n(o)))

}

≤ E

{
∞∏
i=1

e−4 log(1−c1`(
∑i
j=0R−j cos(θ−j)))

}
≤ E

{
e
∑∞
n=1 g(Sn+1)

}
, (24)

where Sn =
∑n−1

j=0 R−j cos(θ−j) and g(x) = −4 log(1 − c1`(x)), x > 0. Let ξ = E{R cos(θ)} and note

that ξ > 0. Let δ ∈ (0, ξ) be a constant that will be chosen later. Define χ(ν) = E{eνR cos(θ)}, ν ∈ R

and let ζ(δ) = inf{νδ − log(χ(ν)), ν > 0}. That χ(ν) <∞ for all ν follows from (17). By the Chernoff

bound, we have

P

[
Sn
n
< δ

]
≤ e−ζ(δ)n.

It follows by the Borel-Cantelli lemma that, almost surely, there exists a N = N(ω) < ∞ such that

Sn ≥ nδ for all n ≥ N(ω). Hence for some constant c2 > 0,

P [N ≥ m] = P [Sn < nδ for some n ≥ m],

≤
∞∑
n=m

e−ζ(δ)n ≤ c2e
−ζ(δ)m. (25)
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Using the fact that the function g is non-increasing, we get

E
{
e
∑∞
n=1 g(Sn)

}
= E

{
e
∑N
n=1 g(Sn)+

∑∞
n=N+1 g(Sn)

}
,

≤ e
∑∞
n=1 g(nδ)E

{
eg(0)N

}
.

∑∞
n=1 g(nδ) <∞ since α > 2 by the comparison test. Since R cos(θ) > 0, ζ(δ) ↑ ∞ as δ ↓ 0. So, we can

and do choose δ such that ζ(δ) > g(0). With this choice of δ, it follows from (25) that E
{
eg(0)N

}
<∞.

This proves (23).

If the path loss function has compact support then the sequence {T ′k}k≥0 is also ergodic [16], and

consequently T ′ ≡ η, and consequently v ≥ E{R cos(θ)}
η

, almost surely.

Remark 3.6: By the strong law of large numbers, Xn
n
→ (E{R cos(θ)}, 0), and thus the asymptotic

direction of motion of the tagged packet defined as limn→∞
Xn
|Xn| is indeed (1, 0).

Remark 3.7: The time taken for the tagged packet to perform n-hops or to reach Xn satisfies

lim sup
n→∞

∑n−1
i=0 Ti
n

≤ η.
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