
Mean-field Interaction of Brownian Occupation Measures.
II: A rigorous construction of the Pekar process

ERWIN BOLTHAUSEN
University of Zurich

WOLFGANG KOENIG
WIAS Berlin and TU Berlin

AND

CHIRANJIB MUKHERJEE*
Courant Institute of Mathematical Sciences New York and WIAS Berlin

Abstract

We consider mean-field interactions corresponding to Gibbs measures on inter-
acting Brownian paths in three dimensions. The interaction is self-attractive and
is given by a singular Coulomb potential. The logarithmic asymptotics of the
partition function for this model were identified in the 1980s by Donsker and
Varadhan [6] in terms of the Pekar variational formula, which coincides with
the behavior of the partition function of the polaron problem under strong cou-
pling. Based on this, in 1986 Spohn ([13]) made a heuristic observation that
the strong coupling behavior of the polaron path measure, on certain time scales,
should resemble a process, named as the Pekar process, whose distribution could
somehow be guessed from the limiting asymptotic behavior of the mean-field
measures under interest, whose rigorous analysis remained open. The present
paper is devoted to a precise analysis of these mean-field path measures and con-
vergence of the normalized occupation measures towards an explicit mixture of
the maximizers of the Pekar variational problem. This leads to a rigorous con-
struction of the aforementioned Pekar process and hence, is a contribution to the
understanding of the “mean-field approximation” of the polaron problem on the
level of path measures.

The method of our proof is based on the compact large deviation theory devel-
oped in [10], its extension to the uniform strong metric for the singular Coulomb
interaction carried out in [8], as well as an idea inspired by a partial path ex-
change argument appearing in [1].

c© 2000 Wiley Periodicals, Inc.

1 Motivation and introduction

1.1 Motivation. Questions on path measures pertaining to self-attractive random
motions, or Gibbs measures on interacting random paths, are often motivated by

Communications on Pure and Applied Mathematics, Vol. 000, 0001–0032 (2000)
c© 2000 Wiley Periodicals, Inc.
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the important rôle they play in quantum statistical mechanics. A problem simi-
lar in spirit to these considerations is connected with the polaron problem. The
physical question arises from the description of the slow movement of a charged
particle, e.g. an electron, in a crystal whose lattice sites are polarized by this mo-
tion, influencing the behavior of the electron and determining its effective behavior.
For the physical relevance of this model, we refer to the lectures by Feynman [7].
The mathematical layout of this problem was also founded by Feynman. Indeed,
he introduced a path integral formulation of this problem and pointed out that the
aforementioned effective behavior can be studied via studying a certain path mea-
sure. This measure is written in terms of a three dimensional Brownian motion
acting under a self-attractive Coulomb interaction:

P̂λ ,t(dω) =
1

Zλ ,t
exp
{

λ

∫ t

0

∫ t

0
dσds

e−λ |σ−s|

|ωσ −ωs|

}
P(dω),

where λ > 0 is a parameter, P refers to the three dimensional Wiener measure and
Zλ ,t is the normalization constant or partition function. One calls α = 1/

√
λ the

coupling parameter. The physically relevant regime is the strong coupling limit as
α → ∞, i.e., λ → 0.

We remark that the above interaction is self-attractive, as the asymptotic be-
havior of the path measure is essentially determined by those paths which make
|ωσ −ωs| small, when |σ − s| is also small. In other words, these paths tend to
clump together on short time scales.

The asymptotic behavior of the partition function Zλ ,t in the limit t → ∞, fol-
lowed by λ → 0, was rigorously studied by Donsker and Varadhan ([6]). The
intuition says that, for small λ , the interaction should get more and more smeared
out and should approach the mean-field interaction

1
t

∫ t

0

∫ t

0
dσds

1∣∣ωσ −ωs
∣∣ .

Donsker and Varadhan proved this intuition on the level of the logarithmic large
t-asymptotics for the partition function leading to an explicit variational formula.
More precisely, they showed that that the large-t asymptotics of Zλ ,t coincides in
the limit λ → 0 with the large-t asymptotics of the mean field partition function

(1.1) Zt = E
[

exp
{

1
t

∫ t

0

∫ t

0
dσds

1∣∣Wσ −Ws
∣∣
}]

,
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where (Ws)s∈[0,∞) denotes a three-dimensional standard Brownian motion. In other
words, they proved Pekar’s conjecture ([11]) and derived the following identifica-
tion of the free energy variational formula:

(1.2)

lim
λ→0

lim
t→∞

1
t

logZλ ,t = lim
t→∞

1
t

logZt

= sup
ψ∈H1(R3)
‖ψ‖2=1

{∫
R3

∫
R3

dxdy
ψ2(x)ψ2(y)
|x− y|

− 1
2

∥∥∇ψ
∥∥2

2

}
,

with H1(R3) denoting the usual Sobolev space of square integrable functions with
square integrable gradient. The variational formula in (1.2) was analyzed by Lieb
([9]) with the result that there is a rotationally symmetric maximizer ψ0, which is
unique modulo spatial shifts.

Given (1.2), it is natural to guess that the polaron path measure should somehow
be related to the mean-field path measure, given by

(1.3) P̂t(dω) =
1
Zt

exp
{

1
t

∫ t

0

∫ t

0
dσds

1∣∣ωσ −ωs
∣∣
}
P(dω).

However, even a clear formulation of such a relation is by far not obvious. Spohn
([13]) presented a heuristic analysis of the effective behavior of the polaron mea-
sure P̂λ ,t for λ ∼ 0, whose rigorous asymptotic analysis remains open. The heuris-
tic discussion in [13] is based on the idea that, for the strong coupling regime
(i.e, λ → 0), on time scales of order λ−1, the polaron measure P̂λ ,t should resem-
ble a process, named as the Pekar process, whose empirical distribution can be
guessed from the limiting asymptotic behavior of P̂t ◦L−1

t , the distributions of the
normalized Brownian occupation measures Lt =

1
t

∫ t
0 dsδWs , under the mean-field

transformations P̂t , whose rigorous analysis was also left open.

This paper is devoted to a precise analysis of the limiting behavior of the dis-
tributions of mean-field path measures P̂t ◦L−1

t and a rigorous construction of the
law of the aforementioned Pekar process. Hence, it is a contribution to the under-
standing of the mean-field approximation of the polaron problem on the level of
path measures.

1.2 The model and the problem.
We turn to a precise formulation and the mathematical layout of the problem.
We start with the Wiener measure P on Ω = C([0,∞),R3) corresponding to a 3-
dimensional Brownian motion W = (Wt)t≥0 starting from the origin. Let

(1.4) Lt =
1
t

∫ t

0
dsδWs

be the normalized occupation measure of W until time t. This is a random element
of M1(R3), the space of probability measures on R3. Then the mean-field path
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measure P̂t defined in (1.3) can be written as

P̂t(A) =
1
Zt

E
[
1lA exp

{
tH(Lt)

}]
, A⊂Ω,

where Zt is the normalizing constant defined in (1.1) and

(1.5) H(µ) =
∫
R3

∫
R3

µ(dx)µ(dy)
|x− y|

, µ ∈M1(R3),

denotes the Coulomb potential energy functional of µ , or the Hamiltonian. It is
the goal of the present paper to analyze and identify the limiting distribution of Lt

under P̂t .

We recall that the partition function Zt = E
[

exp
{

tH(Lt)
}]

, which is finite in
R3, was analyzed by Donsker and Varadhan [6] resulting in the variational formula
(1.2). For future reference, let us write
(1.6)

ρ = sup
µ∈M1(R3)

{
H(µ)− I(µ)

}
= sup

ψ∈H1(R3)
‖ψ‖2=1

{∫
R3

∫
R3

dxdy
ψ2(x)ψ2(y)
|x− y|

− 1
2

∥∥∇ψ
∥∥2

2

}
,

where we introduced the functional

(1.7) I(µ) =
1
2
‖∇ψ‖2

2

if µ has a density ψ2 with ψ ∈ H1(R3), and I(µ) = ∞ otherwise. Note that this is
the rate function for the classical weak large deviation theory for the distribution
of Lt under P, developed by Donsker and Varadhan ([2]- [5]). We remark that both
H and I are shift-invariant functionals, i.e., H(µ) = H(µ ?δx) and I(µ) = I(µ ?δx)
for any x ∈ R3.

We also recall ([9]) that the variational formula (1.6) possesses a smooth, ro-
tationally symmetric and centered maximizer ψ0, which is unique modulo spatial
translations. In other words, if m denotes the set of maximizing densities, then

(1.8) m=
{

µ0 ?δx : x ∈ R3},
where µ0 is the probability measure with density ψ2

0 . We will often write µx =
µ0 ?δx and write ψ2

x for its density.

Note that given (1.2) and (1.8), we expect the distribution of Lt under the trans-
formed measure P̂t to concentrate around m and, even more, to converge towards
a mixture of spatial shifts of µ0, thanks to the uniqueness statement (1.8) for the
free energy variational problem (1.6). Such a precise analysis was carried out by
Bolthausen and Schmock [1] for a spatially discrete version of P̂t , i.e., for the
continuous-time simple random walk on Zd instead of Brownian motion and a
bounded interaction potential V : Zd → [0,∞) with finite support instead of the
singular Coulomb potential x 7→ 1/|x|. A first key step in [1] was to show that, un-
der the transformed measure, the probability of the local times falling outside any



RIGOROUS CONSTRUCTION OF THE PEKAR PROCESS 5

neighborhood of the maximizers decays exponentially. For its proof, the lack of a
strong large deviation principle ([2]-[5]) for the local times was handled by an ex-
tended version of a standard periodization procedure by folding the random walk
into some large torus. Combined with this, an explicit tightness property of the
distributions of the local times led to an identification of the limiting distribution.

However, in the continuous setting with a singular Coulomb interaction, the
aforementioned periodization technique or any standard compactification proce-
dure does not work well to circumvent the lack of a strong large deviation principle.
An investigation of P̂t ◦L−1

t , the distribution of Lt under P̂t , remained open until a
recent result [10] rigorously justified the above heuristics, leading to the statement

(1.9) limsup
t→∞

1
t

log P̂t
{

Lt /∈U(m)
}
< 0,

where U(m) is any neighborhood of m in the weak topology induced by the Pro-
horov metric, the metric that is induced by all the integrals against continuous
bounded test functions. (1.9) implies that the distribution of Lt under P̂t is asymp-
totically concentrated around m. Since a one-dimensional picture of m reflects
an infinite line, its neighborhood resembles an infinite tube. Therefore, assertions
similar to (1.9) are referred to as tube properties.

It is worth pointing out that although (1.9) requires only the weak topology in
the statement, its proof is crucially based on a robust theory of compactification X̃
of the quotient space

M̃1(Rd) ↪→ X̃

of orbits µ̃ = {µ ?δx : x ∈ R3} of probability measures µ on Rd under translations
and a full large deviation principle for the distributions of L̃t ∈ M̃1(Rd) embedded
in the compactification. In particular, this is based on a topology induced by a
different metric in the compactfication X̃ . However, the statement (1.9) simply
drops out from this abstract set up, thanks to the shift invariance of the Hamiltonian
H(µ) as well as the rate function I(µ).

Note that, even after proving (1.9), since m and hence any neighborhood of this
shift-invariant set is non-compact, the occupation measures L−1

t under P̂t could
still fluctuate wildly in the infinite tube. The crucial result of the present article
says that this can happen only with small P̂t-probability and that the distributions
P̂t ◦L−1

t converge weakly to an explicit mixture of the elements in m. The process
corresponding to this mixture is the aforementioned Pekar process.

2 Main results

We turn to the statements of our main results.
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2.1 Convergence of P̂t ◦L−1
t and identification of the limit.

Recall that ψ0 is the unique radially symmetric and centered maximizer of the
Pekar variational problem (1.6) and that µx denotes the probability measure with
density ψ2

x = ψ2
0 ?δx. Here is the main result of the present paper.

Theorem 2.1. Let Q̂t denote the distribution of Lt under P̂t . Then,

(2.1) lim
t→∞

Q̂t =

∫
R3 dx ψ0(x)δµx∫
R3 dx ψ0(x)

,

weakly as probability measures on M1(R3).

In words, the distribution of the occupation measures under P̂t converges to
a random spatial shift of the maximizer ψ2

0 , and the distribution of this shift is
ψ0(x)dx, properly normalized. The proof of Theorem 2.1 can be found in Sec-
tion 4. For a heuristic sketch, we refer to Section 2.4. We also remark that,
following exactly the same line of arguments appearing in the proof of Theo-
rem 2.1, one can derive the asymptotic behavior of the distribution P̂t ◦W−1

t
of the end point of the path Wt under P̂t . The limiting distribution is equal to
(ψ0 ?ψ0)(x)dx

/∫
R3 dy(ψ0 ?ψ0)(y).

Discussion on the construction of the Pekar process. Let us now briefly com-
ment on the limiting behavior of P̂t itself, which drops out from the main steps
for the proof of Theorem 2.1.This limiting assertion is directly related to the inter-
pretation of the aforementioned Pekar process, Let us first remark on the heuristic
definition of the Pekar process set forth by Spohn in [13]. For any µ ∈M1(R3),
let (

Λµ
)
(x) =

(
µ ?

1
| · |

)
(x) =

∫
R3

µ(dy)
|x− y|

be the smooth Coulomb functional of µ . Then via the Feynman-Kac formula cor-
responding to the semigroup of 1

2 ∆+Λψ2
0 , one can construct the measures

(2.2)
1

Z(ψ0)
t

exp
{∫ t

0
ds(Λψ

2
0 )(Ws)

}
dP.

These probability measures then should converge, as t → ∞, towards a measure
which governs the law of a stationary diffusion process (X (Pek)

s )s∈[0,∞), driven by the
stochastic differential equation (SDE)

dX (Pek)
t = dWt +

(
∇ψ0

ψ0

)
(Wt)dt.

Since ψ0 is centered, the drift in the above SDE points towards the origin and
suppresses large fluctuations of the diffusion. Furthermore, the diffusion process is
ergodic with invariant measure ψ2

0 .

In the light of the above discussion, our main result has an interesting conse-
quence on a rigorous level: the proof of Theorem 2.1 reveals what the precise
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limit of the measures P̂t itself should be. Indeed, this is a spatially inhomogeneous
mixture of Markovian path measures with generators

1
2

∆+
∇ψx

ψx
·∇, x ∈ R3,

with the spatial mixture being taken w.r.t. the measure ψ0(x)dx/
∫

dyψ0(y). This
assertion actually carries the flavor of the classical Gibbs conditioning principle.
Given the salient features constituting the proof of Theorem 2.1 (see Section 2.4
for a heuristic sketch), a complete proof of this assertion therefore follows a routine
method. To avoid repetition, we refrain from spelling out the details and content
ourselves only with its statement, which clearly underlines the rigorous interpre-
tation of the law of the Pekar process as the aforementioned spatial mixture of
Markovian path measures and justifies the heuristic discussion in [13].

2.2 Earlier results: Tube properties under P̂t .
We collect here some crucial results from [10] and [8] that will be used in the
sequel.

As mentioned before, a fundamental first step is to prove that, under P̂t , the
occupation measures Lt concentrate with high probability in any neighborhood of
m. This has been rigorously justified in Theorem 5.1 in [10]:

Theorem 2.2 (Tube property under the weak topology). For any neighborhood
U(m) of m in the weak topology in M1(R3),

limsup
t→∞

1
t

log P̂t{Lt /∈U(m)}< 0.

In [8], this tube property in the weak topology has been strengthened in a
“functional form” in the strong topology under the uniform metric. Note that
H(µ) =

〈
µ,Λµ

〉
=
∫
(Λµ)(x)µ(dx), where we recall the Coulomb functional

Λ(µ) of µ . We remark that the Coulomb energy of the Brownian occupation mea-
sure,

(2.3) Λt(x) =
(
ΛLt
)
(x) =

∫
R3

Lt(dy)
|x− y|

=
1
t

∫ t

0

ds
|Ws− x|

,

is almost surely finite in R3.

Let us write Λ(ψ2)(x) =
∫

dy ψ2(y)
|x−y| for functions ψ2, and recall that ψ2

w =ψ2
0 ?δw

denotes the shift of the maximizer ψ2
0 of the second variational formula (1.6) by

w ∈ R3. The following theorem was coined as the tube property for Λt in the
uniform metric (see Theorem 1.1, [8]).

Theorem 2.3 (Tube property under the uniform metric). For any ε > 0,

(2.4) limsup
t→∞

1
t

log P̂t

{
inf

w∈R3

∥∥Λt −Λψ
2
w

∥∥
∞
> ε

}
< 0.
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As a consequence of Theorem 2.3, the Hamiltonian H(Lt) = 〈Lt ,ΛLt〉 converges
in distribution towards the common Coulomb energy of any member of m:

Corollary 2.4. Under P̂t , the distributions of H(Lt) converge weakly to the Dirac
measure at

H(ψ2
0 ) =

∫ ∫
R3×R3

ψ2
0 (x)ψ

2
0 (y)

|x− y|
dxdy.

Finally, we state an interesting fact concerning the exponential decay of the prob-
ability of deviations of the uniform norm of Λt from zero. This fact followed from
the exponential regularity estimates for Λt in the uniform norm derived in [8], see
Theorem 1.3 and Corollary 1.4 in [8]. The following proposition will be used often
in the sequel.

Proposition 2.5. For any a > 0,

limsup
t→∞

1
t

logP
{
‖Λt‖∞ > a

}
< 0.

2.3 Tightness of the distributions of Lt under P̂t .
We now turn to the second main ingredient that constitutes the proof of Theorem
2.1.

We emphasize that the localization properties stated in Section 2.2 still allows
the measures Lt to a priori float around freely in the infinite tubular neighborhood
of m. The next main step is to justify that this can happen only with small P̂t
probability, and this is our second main result.

Theorem 2.6 (Tightness). For any η > 0, there exists k(η)> 0 such that, for any
neighborhood U of the set {µx : x ∈ R3, |x| ≤ k(η)},

limsup
t→∞

P̂t{Lt /∈U}< η .

We will actually prove a slightly weaker version of Theorem 2.6. Combined
with Theorem 1.9, this result will clearly imply Theorem 2.6.

Theorem 2.7. There exists ε0 > 0 such that for all ε ≤ ε0 and for all η > 0, there
exist k(ε,η)> 0 and u(ε,η)> 0 so that

P̂t

{ ⋃
|x|≥k(ε,η)

{
Lt ∈Uε(µx)

}}
< η ,

for all t ≥ u(ε,η).

Section 3 is devoted to the proof of Theorem 2.7. The final step to prove Theo-
rem 2.1 is then to justify the weak convergence of the measures Q̂t to the limiting
measure appearing on (2.1). This follows from Theorem 1.9 and Theorem 2.6.
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Section 4 constitutes the proof of Theorem 2.1. Let us now heuristically sketch
the central idea behind the proof of Theorem 2.7, which contains the heart of the
argument for Theorem 2.1.

2.4 Heuristic proof of Theorem 2.7 and Theorem 2.1: Partial path exchange.
We now heuristically justify that, under P̂t , Lt can not build up its mass over a
long time close to some µx if x is far away from the starting point of the path. To
estimate this event, we study the ratio

(2.5)
P̂t(Lt ≈ µx)

P̂t(Lt ≈ µ0)
=

E
{

exp{tH(Lt)}1l{Lt≈µx}
}

E
{

exp
{

tH(Lt)
}

1l{Lt≈µ0}
} ,

and show that this is small as t → ∞. For this, we emulate an approach similar to
[1], which resembles the Peierls argument in the Ising model.

It is conceivable that for the event {Lt ≈ µx} to happen, the path, starting from
the origin, reaches a neighborhood of x relatively quickly, say by time t0, and con-
centrates in that neighborhood for the remaining time time t− t0. This leads to a
splitting of the occupation measure

Lt =
t0
t

Lt0 +
t− t0

t
Lt0,t

before and after time t0. Although we will choose t0 � t, note that the time t0
should also get large as |x| gets large. Note that the above splitting of Lt also leads
to the splitting of the Hamiltonian:

(2.6) tH(Lt) =
t2
0
t

H(Lt0)+2
t0(t− t0)

t

〈
Lt0 ,Λt0,t

〉
+

(t− t0)2

t
H(Lt0,t),

where Λt0,t(x) =
∫
R3

Lt0 ,t(dy)
|x−y| is the Coulomb functional of Lt0,t . Since t0 � t, the

first term on the right-hand side should be negligible.

Let us turn to the second term, which makes a difference in the ratio (2.5) with
the occurrences of Lt ≈ µx, respectively Lt ≈ µ0, and makes the ratio (2.5) small
as follows. Note that with high probability, on {Lt ≈ µx}, we expect that Lt0,t ≈
µx in the weak topology. Hence, by Theorem 2.3, Λt0,t ≈ Λ(µx) with high P̂t-
probability in the uniform strong topology. Consequently, the second term (in
the numerator in (2.5)) can essentially be replaced by 2t0

〈
Lt0 ,Λ(µx)

〉
. But Λ(µx),

being concentrated around x, has only vanishing interaction with Lt0 as |x| is large.
On the contrary, in the denominator in (2.5) (i.e., on the event {Lt0 ≈ µ0}), by the
same reasoning we have Λt0,t ≈Λ(µ0), which has a non-trivial interaction with Lt0 .
Hence, the difference made by the second term appearing in the numerator and the
denominator in (2.5) can be quantified as −Ct0 with some C > 0 that depends only
on ψ0, and t0 is large if |x| is large.

The third term on the right hand side of (2.6) involves only the path on the
time interval [t0, t] when it hangs around x (for the numerator) respectively around
0 (for the denominator). To compare these two scenarios, we just shift the path
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in the numerator (when it is close to x) after time t0 by the amount of −x. The
crucial upshot is, due to the shift-invariance of the Hamiltonian H(Lt0,t), which is
being exploited heavily, this path exchange argument does not cost anything to the
main bulk of the path in the long time interval [t0, t]. If we call the occupation
measure of the shifted path L(shift)

t , the only feature that essentially distinguishes
H(Lt) from H(L(shift)

t ) is that the former has essentially no contribution from the
interaction between the path on [0, t0] with the path on [t0, t], where the latter has.
For our purposes, we need to quantify this interaction, for which we switch from
our original measure P to the ergodic Markov process with generator

1
2

∆+

(
∇ψ0

ψ0

)
.∇

starting from 0 with invariant measure µ0 and density ψ2
0 . Then the Girsanov

transformation and the ergodic theorem imply that, for t0 large,

(2.7) E
{

et0H(Lt0⊗µ0)1l{Wt0 ∈ dy}
}
≈ eρt0ψ0(0)ψ0(y),

where ρ is the variational formula defined in (1.6). Summarizing the contributions
in the splitting (2.6), it turns out that, on the event {Lt ≈ x},

H(L(shift)
t )≈ H(Lt)+Ct0.

Substituting this in (2.5), we obtain

E
{

exp{tH(Lt)}1l{Lt≈µx}

}
≤e−Ct0 E

{
exp{tH(Lt)}1l{Lt≈µ0}

}
.

Recall that t0 is large, since |x| is large. Hence, the ratio (2.5) gets small uniformly
in large t. This implies that under P̂t , Lt must have its main weight close to the
starting point. This ends our survey on the proof of the tightness in Theorem 2.7.

The additional argument for the proof of Theorem 2.1 involves combining (2.7)
with a similar statement with the rôles of x and 0 interchanged. Combining it with
the aforementioned tightness argument then leads to the conclusion

lim
t→∞

P̂t(Lt ≈ µx)

P̂t(Lt ≈ µ0)
=

ψx(0)
ψ0(0)

=
ψ0(−x)
ψ0(0)

The above statement then implies that,

lim
t→∞

P̂t(Lt ≈ µx) =
ψ0(−x)∫

R3 dyψ0(y)
=

ψ0(x)∫
R3 dyψ0(y)

.

Combined with the tube property stated in Theorem 2.2, Theorem 2.1 then follows.
Justifying the above heuristic idea will be the content of the rest of the article.
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3 Tightness: Proof of Theorem 2.6

In this section we will prove Theorem 2.7. Theorem 3.1 contains the main argu-
ment.

Let Br(x) denote the ball of radius r > 0 around x ∈ R3 and

τr(x) = inf{s > 0:
∣∣Ws− x

∣∣≤ r}

be the first hitting time of Br(x). We also denote by ξr(x) the time the Brownian
path spends in B1

(
Wτr(x)

)
after time τr(x), before exiting this ball for the first time.

Given any ε > 0, we choose a radius rε > 0 so that

(3.1) rε/2≥ 1/ε, µ0(Brε/2(0)
c)≤ ε, ψ

2
0 (·)≤ ε on Brε/2(0)

c.

We will denote by d the Prohorov metric on the set of probability measures on
R3. This metric induces the weak topology, which is governed by test integrals
against continuous and bounded functions. For any two probability measures µ,ν
on R3, we will also denote by ‖µ − ν‖TV the total-variation distance between µ

and ν .

Theorem 3.1. If ε > 0 is chosen small enough, there exists M(ε)> 0 such that for
min{|x|, t,u}> M(ε) and any θ ∈ (0,1],

(3.2) P̂t

{
Lt ∈Uε(µx),ξrε

(x)> θ ,τrε
> u
}
≤ C

θ
e−u/C

for some universal constant C > 0. Here Uε(µ) denotes the ε-neighborhood of µ

in the Prohorov metric.

Proof. We will prove this theorem in several steps. To abbreviate notation, we will
write

τ = τrε
(x), ξ = ξrε

(x), B1 = B1(Wτ).

Along the way, we will introduce positive constants c1,c2,c3, . . . , which do not
depend on t nor on ε nor on randomness, whose values will not alter after being
introduced. However, there will be a universal constant C whose value may and
will change from appearance to appearance. Throughout the proof, we will denote
by

(3.3) At(x,θ ,u) = At(x,ε,θ ,u) =
{

Lt ∈Uε(µx),ξrε
(x)> θ ,τrε

> u
}

STEP 1: In this step we will prove

Lemma 3.2. For some constant c1 > 0,

P̂t
{

At(x,θ ,u)
}
≤ 1

θ Zt

∫ c1εt+1

u
dt0 E

{
etH(Lt) 1l{

Lt∈Uε (µx),Wt0∈B1, τ>t0−θ

}}.
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Proof. Let us first note that, on the event
{

Lt ∈Uε(µx)
}

, for some constant c1 > 0,

τ ≤ c1εt < t.

Indeed, let us choose M(ε)> rε . Since we are interested in the region |x|> M(ε),
we have 0 /∈ Brε

(x). Furthermore, since |x| > rε and Lt ∈ Uε(µx), the time the
Brownian motion spends outside Brε

(x) is less than a proportion of εt. Hence, on
the event {Lt ∈Uε(µx)}, τ ≤ c1εt ≤ t, for some constant c1 > 0.

Now, let us estimate

(3.4)

E
{

etH(Lt) 1l{
Lt∈Uε (µx), ξ>θ , τ>u

}}
≤ E

{
etH(Lt) 1l{

Lt∈Uε (µx), ξ>θ , c1εt≥τ>u
}}

≤ 1
θ

∫ c1εt+θ

u
dt0 E

{
etH(Lt) 1l{

Lt∈Uε (µx), ξ>θ , t0≥τ>t0−θ

}}
≤ 1

θ

∫ c1εt+1

u
dt0 E

{
etH(Lt) 1l{

Lt∈Uε (µx),Wt0∈B1, τ>t0−θ

}}.
In the last step we have argued that on the event {ξ > θ , t0−θ < τ ≤ t0}, the path
is the on the ball B1 of radius 1 around Wτ . Furthermore, we chose ε > 0 small
enough so that c1εt + 1 ≤ t for all sufficiently large t, such that t0 < t inside the
integrand. Also, we will assume that t is so large that t0 ≤ c1εt +1≤Cεt for some
C. This proves Lemma 3.2. �

STEP 2: In this step we will make some replacements in the event appearing
in the last display in (3.4) and decompose the expectation inside the integrand
accordingly. The precise statement concerning this decomposition can be found in
Lemma 3.3.

For our purposes, let us fix t0 ∈ [u,c1εt +1] and write the convex combination

(3.5) Lt =
t0
t

Lt0 +
(t− t0)

t
Lt0,t

with
Lt0,t =

1
t− t0

∫ t

t0
δWsds

denoting the normalized occupation measure of the Brownian path in the time in-
terval [t0, t]. Since,

‖Lt −Lt0,t‖TV ≤ 2t0/t,
we clearly have d

(
Lt ,Lt−t0

)
≤ c2ε for some constant c2 and all sufficiently small

ε . On the event {Lt ∈Uε(µx)}, we have Lt−t0 ∈Uc2ε(µx). Moreover, let us also
denote by

Λt0,t(y) =
∫ Lt0,t(dz)
|z− y|

the Coulomb functional of Lt0,t .
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Now we are ready to make the replacements in the event appearing in the last
display in (3.4). Then, for some constant c3 > 0 to be chosen later,

(3.6)

E
{

etH(Lt) 1l{
Lt∈Uε (µx),Wt0∈B1, τ>t0−θ

}}
≤ E

{
etH(Lt) 1l{

Lt0 ,t∈Uc2ε (µx),Wt0∈B1, τ>t0−θ , ‖Λt0 ,t−Λψ2
x ‖∞≤c3

√
ε

}}
+E
{

etH(Lt) 1l{
Lt∈Uε (µx), ‖Λt0 ,t−Λψ2

x ‖∞>c3
√

ε

}}.
The second term on the right hand side above can be rewritten as, for some constant
c4 < c3,

(3.7)

E
{

etH(Lt) 1l{
Lt∈Uε (µx), ‖Λt0 ,t−Λψ2

x ‖∞>c3
√

ε

}}
= E

{
etH(Lt) 1l{

Lt∈Uε (µx), ‖Λt−Λψ2
x ‖∞>c4

√
ε

}}
+E
{

etH(Lt) 1l{
‖Λt0 ,t−Λψ2

x ‖∞>c3
√

ε, ‖Λt−Λψ2
x ‖∞≤c4

√
ε

}}
Let us estimate the second term on the right hand side above. Note that

‖Λt −Λt0,t‖∞ =
t0
t
‖Λt0−Λt0,t‖∞ ≤Cε‖Λt0−Λt0,t‖∞ ≤Cε

(
‖Λt0‖∞ +‖Λt0,t‖∞

)
.

On the prescribed events on the second term on the right hand side of (3.7),

‖Λt −Λt0,t‖∞ ≥ ‖Λt0,t −Λψ
2
x ‖∞−‖Λt −Λψ

2
x ‖∞ ≥ (c3− c4)

√
ε.

Hence, we have the estimate

(3.8)
E
{

etH(Lt) 1l{
‖Λt0 ,t−Λψ2

x ‖∞>c3
√

ε, ‖Λt−Λψ2
x ‖∞≤c4

√
ε

}}
≤ E

{
etH(Lt) 1l{

‖Λt0‖∞≥aε

}}+E
{

etH(Lt) 1l{
‖Λt0 ,t‖∞≥bε

}}
where aε = aε−1/2, bε = bε−1/2 for some a,b > 0. Summarizing, we have proved

Lemma 3.3. For some suitably chosen constants c2,c3,c4 > 0,

(3.9)

E
{

etH(Lt) 1l{
Lt∈Uε (µx),Wt0∈B1, τ>t0−θ

}}
≤ E

{
etH(Lt) 1l{

Lt0 ,t∈Uc2ε (µx),Wt0∈B1, τ>t0−θ , ‖Λt0 ,t−Λψ2
x ‖∞≤c3

√
ε

}}
+E
{

etH(Lt) 1l{
Lt∈Uε (µx), ‖Λt−Λψ2

x ‖∞>c4
√

ε

}}
+E
{

etH(Lt) 1l{
‖Λt0‖∞≥aε

}}+E
{

etH(Lt) 1l{
‖Λt0 ,t‖∞≥bε

}}
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where aε = aε−1/2, bε = bε−1/2 for some a,b > 0.

�

STEP 3: Estimating the last two remainder terms on right hand side of (3.9) will
be the task of the next step and we will prove the following important lemma.

Lemma 3.4. For any a,b > 0 large enough,

(3.10)

limsup
t→∞

sup
t0≤t

1
t0

log P̂t

{
‖Λt0‖∞ > a

}
< 0,

limsup
t→∞

sup
t0≤t

1
t− t0

log P̂t

{
‖Λt0,t‖∞ > b

}
< 0.

Proof. Let us prove the first statement in (3.10) and denote by At0 = {‖Λt0‖∞ > a},
and note that, for any σ > 0, H(Lσ ) = 〈Λσ ,Lσ 〉 ≤ ‖Λσ‖∞. We recall the convex
decomposition (3.5). Then the Hamiltonian H(Lt) also decomposes accordingly
and can be estimated as

(3.11)
tH(Lt) =

t2
0
t

〈
Λt0 ,Lt0

〉
+2

t0(t− t0)
t

〈
Λt0 ,Lt0,t

〉
+

(t− t0)2

t
H(Lt0,t)

≤ t0‖Λt0‖∞ +2t0‖Λt0‖∞ +
(t− t0)2

t
H(Lt0,t)

since t0 ≤ t. Then, by the Markov property at time t0,

E
{

etH(Lt) 1lAt0

}
≤ E

{(
eCt0‖Λt0 ||∞ 1lAt0

)
e

(t−t0)
2

t H(Lt0 ,t)

}
= E

[{
eCt0‖Λt0 ||∞ 1lAt0

}
EWt0

{
e

(t−t0)
2

t H(Lt−t0 )

}]
= E

{
eCt0‖Λt0 ||∞ 1lAt0

}
E
{

e
(t−t0)

2

t H(Lt−t0 )

}
.

In the last identity above we used the shift-invariance of H. On the other hand,
by the above decomposition of tH(Lt), we have a lower bound for the partition
function,

Zt = E
{

etH(Lt)
}
≥ E

{
e

(t−t0)
2

t H(Lt0 ,t)
}
= E

{
e

(t−t0)
2

t H(Lt−t0 )
}
.

Then, for t0 ≤ t,

P̂t
{

At0
}
≤ E

{
eCt0‖Λt0‖∞ 1lAt0

}
≤ E

{
e2Ct0‖Λt0‖∞

}1/2P(At0)
1/2.

By Proposition 2.5, for any a > 0,

limsup
t0→∞

1
2t0

logP{At0}= limsup
t0→∞

1
2t0

logP
{
‖Λt0‖∞ > a

}
< 0.
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The proof of Corollary 1.4 in [8] reveals that the above negative exponential rate
can be made as large as needed if we chose a > 0 large enough. Hence, the first
assertion in (3.10) is proved, once we justify, for any C > 0,

(3.12) limsup
t0→∞

1
2t0

logE
{

eCt0‖Λt0‖∞

}
< ∞.

This assertion will follow from the regularity properties of the random function
x 7→ Λ1(x), derived in in [8]. Indeed, note that, by successive conditioning, the
Markov property and the shift-invariance of ‖Λ1‖∞, it is enough to justify that
some exponential moment of ‖Λ1‖∞ is finite. Note that, we can write, for any
δ > 0,

(3.13) ‖Λ1‖∞ ≤ sup
x1,x2∈R3 : |x1−x2|≤δ

∣∣Λ1(x1)−Λ1(x2)
∣∣+ sup

x∈δZ3

∫ 1

0

ds
|Ws− x|

.

Let us now handle the first summand. In Lemma 2.2 in [8] we proved that, for any
η ∈ (1

3 ,
1
2), if

M =
∫ ∫

|x1−x2|≤1
dx1dx2

[
exp
{

β

(
|Λ1(x1)−Λ1(x2)|
|x1− x2|a

)ρ}
−1
]
,

where ρ = 1
1−η

> 1 and a = 1−2η > 0, then, for some β > 0,

(3.14) E(M)< ∞.

Using the Garsia-Rodemich-Rumsey estimate, we also proved that (see the proof
of Proposition 1.3 in [8]), for some fixed constant γ > 0,

sup
|x1−x2|≤δ

∣∣Λ1(x1)−Λ1(x2)
∣∣≤ 1−2η

β 1/ρ

∫
δ

0
log
(

1+
M

γu6

)1/ρ

u−2εdu.

Now if we choose δ small enough, then the right hand side above is smaller than

1−2η

β 1/ρ
C(δ ) log

(
M∨1

)1/ρ

for some constant C(δ ) which goes to 0 as δ → 0. Hence, for any C > 0, by (3.14),
we have

E
{

eC sup|x1−x2 |≤δ

∣∣Λ1(x1)−Λ1(x2)
∣∣}

< ∞.

Let us turn to the second term on the right hand side of (3.13). Since we are
interested in the behavior of the path in the time horizon [0,1], it is enough to
estimate the supremum in a bounded box. We will show that, for any fixed δ > 0
and any C > 0,

(3.15) E
[

sup
x∈δZ3
|x≤2

exp
{

C
∫ 1

0

ds
|Ws− x|

}]
≤ (2/δ )3E

[
exp
{

C
∫ 1

0

ds
|Ws|

}]
< ∞.
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For any η > 0, we can write 1/|x| = Vη(x)+Yη(x) for Vη(x) = 1/(|x|2 +η2)1/2.
Since, for any fixed η > 0, Vη is a bounded function, the above claim holds with
Vη(Ws) replacing 1/|Ws|. Hence, (by Cauchy-Schwarz inequality, for instance),
it suffices to check the above statement with the difference Yη(Ws), which can be
written as

Yη(x) =
1
|x|
− 1√

η2 + |x|2
=

√
η2 + |x|2−|x|
|x|
√

ε2 + |x|2
=

η2

|x|+
√

η2 + |x|2
1√

η2 + |x|2
1
|x|

= η
−1

φ

(
x
η

)
,

with

φ(x) =
1
|x|

1√
1+ |x|2

1

|x|+
√

1+ |x|2
.

One can bound φ(x) by b

|x|
3
2

, since it behaves like 1
|x| near 0 and like 1

|x|3 near ∞. In

particular

Yη(x)≤
b
√

η

|x| 32
.

Hence, for (3.15), it suffices to show, for η > 0 small enough and any C > 0,

(3.16) E
[

exp
{

Cb
√

η

∫ 1

0

ds
|Ws|3/2

}]
< ∞.

For this, we appeal to Portenko’s lemma (see [12]), which states that, if for a
Markov process {P(x)} and for a function Ṽ ≥ 0

sup
x∈R3

E(x)

{∫ 1

0
Ṽ (Ws)ds

}
≤ γ < 1

then

sup
x∈R3

E(x)

{
exp
{∫ 1

0
Ṽ (Ws)ds

}}
≤ γ

1− γ
< ∞.

Hence, to prove (3.16), we need to verify that

sup
x∈R3

E(x)

{∫ 1

0

dσ

|Wσ |
3
2

}
= sup

x∈R3

∫ 1

0
dσ

∫
R3

dy
1

|y| 32
1

(2πσ)
3
2

exp
{
− (y− x)2

2σ

}
< ∞.

One can see that

sup
x∈R3

∫
R3

dy
1

|y| 32
1

(2πσ)
3
2

exp
{
− (y− x)2

2σ

}
is attained at x = 0 because we can rewrite the integral by Parseval’s identity as

c
∫
R3

exp
{
− σ |ξ |2

2
+ i〈x,ξ 〉

}
1

|ξ | 32
dξ ,
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where c > 0 is a constant. When x = 0, the integral reduces to
∫ 1

0 σ−3/4 dσ , which
is finite. This finishes the proof of the first assertion in (3.10). The second assertion
follows essentially the same arguments, if we upper estimate by Markov property,

E
{

etH(Lt) 1l{‖Λt0 ,t‖∞>bε−1/2}

}
≤ E

{
e

t20
t H(Lt0 )

}
E
{

eC(t−t0)‖Λt−t0‖∞1l{‖Λt−t0‖∞>bε−1/2}

}
and lower estimate

Zt = E
{

etH(Lt)
}
≥ E

{
e

t20
t H(Lt0 )

}
.

Lemma 3.4 is proved. �

STEP 4: In this step we will estimate the second term on the right hand side
in (3.9). We will show that this term is also negligible as t → ∞ by proving the
following

Lemma 3.5. Uniformly in x on compacts (in particular, for the x chosen in the
statement of Theorem 3.1) and for small enough ε > 0,

(3.17) limsup
t→∞

1
t

log P̂t

{
Lt ∈Uε(µx), ‖Λt −Λψ

2
x ‖∞ > c4

√
ε

}
< 0.

Proof. By Theorem 2.3, it is enough to justify,

(3.18)
limsup

t→∞

1
t

log P̂t

{
Lt ∈Uε(µx), ‖Λt −Λψ

2
x ‖∞ > c4

√
ε,

inf
y∈R3
‖Λt −Λψ

2
y ‖∞ ≤ c4

√
ε

}
< 0.

Suppose y ∈ R3 be such that |y− x| ≤
√

ε . Since ψ2
0 is a smooth function vanish-

ing at infinity (see [9]) and the Coulomb function x 7→ 1/|x| lies in L1
loc(R3), the

function Λψ2
0 = ψ2

0 ? 1/| · | is smooth and hence a Lipschitz function. Hence, for
some c5, we have∣∣Λψ

2
x (x)−Λψ

2
y (x)

∣∣= ∣∣Λψ
2
0 (0)−Λψ

2
0 (y− x)

∣∣≤ c5
√

ε.

Then, if we chose c4 > c5, on the event, ‖Λt −Λψ2
x ‖∞ > c4

√
ε , for |y− x| ≤ ε ,

(3.19) ‖Λt −Λψ
2
y ‖∞ ≥ (c4− c5)

√
ε.

On the other hand, since ψ2
0 is concentrated at 0, a simple argument using polar

coordinates and triangle inequality shows that, if |y− x| ≥
√

ε ,∣∣Λψ
2
x (x)−Λψ

2
y (x)

∣∣= ∣∣Λψ
2
0 (0)−Λψ

2
0 (y− x)

∣∣≥ c6
√

ε.
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Hence, for |y− x| ≥ ε and for any η > 0,

‖Λt −Λψ
2
y ‖∞ = sup

w∈R3

∣∣Λt(w)−Λψ
2
y (w)

∣∣
≥
∣∣Λψ

2
x (x)−Λψ

2
y (x)

∣∣− ∣∣∣∣∫Bη (x)

Lt(dz)−ψ2
x (z)dz

|z− x|
+
∫

Bη (x)c

Lt(dz)−ψ2
x (z)dz

|z− x|

∣∣∣∣
≥ c6
√

ε−
[∫

Bη (x)

Lt(dz)
|z− x|

+
∫

Bη (x)

ψ2
x (z)dz
|z− x|

+
1
η

〈
η

| ·−x|
∧1,Lt −ψ

2
x

〉]
≥ c6
√

ε−
[∫

Bη (0)

Lt(dz)
|z|

+
∫

Bη (0)

ψ2
0 (z)dz
|z− x|

+
1
η

d
(
Lt ,ψ

2
x
)]

≥ c6
√

ε−
[∫

Bη (0)

Lt(dz)
|z|

+η
2 +

ε

η

]
,

since Lt ∈Uε(ψ
2
x ). Let us chose η =

√
ε . Then above estimate and (3.21) imply

that, for (3.18), it is enough to derive, for some constant c7 > 0 and ε small enough,

limsup
t→∞

1
t

log P̂t

{∫
B√ε (0)

Lt(dz)
|z|

> c7
√

ε

}
< 0.

But the above fact follows from [8] (see the proof of Eq.(3.6), p.15, [8]). Hence,
(3.18) and Lemma 3.5 is proved. �

STEP 5: Proof of Theorem 3.1.
In this step we will prove Theorem 3.1. Recall the requirement (3.1), the event

At(x,θ ,u) from (3.3) and that τ = τrε
(x) denotes the first hitting time of the ball

Brε
(x), and ξ = ξrε

(x) stands for the time the path spends in the ball B1(Wτ), after
time τ and before exiting B1(Wτ) for the first time. Note that we need to show, that
for ε > 0 small enough, there exists M(ε) > 0 such that for min{|x|, t,u} > M(ε)
and any θ ∈ (0,1],

(3.20) P̂t
{

At(x,u,θ)
}
≤ C

θ
e−u/C

for some universal constant C > 0.

We note that in order to prove the above estimate, thanks to Lemma 3.2, Lemma
3.3, Lemma 3.4 and Lemma 3.5, it is enough to estimate the first term on the right
hand side of (3.6). Note that we can rewrite this term as

(3.21)

E
{

etH(Lt) 1l{
Lt0 ,t∈Wc2ε (µx),Wt0∈B1, τ>t0−θ , ‖Λt0 ,t−Λψ2

x ‖∞≤c3
√

ε

}}
≤ E

{
etH(Lt) 1l{

Wt0∈B1, τ>t0−θ , ‖Λt0 ,t−Λψ2
x ‖∞≤c3

√
ε,‖Λt0‖∞≤c8ε−1/2

}}
+E
{

etH(Lt)1l{‖Λt0‖∞ > c8ε
−1/2}

}
.
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Again the argument of Step 3 implies that, for t chosen large enough, the second
summand above is exponentially small in t0 if ε > 0 is chosen small enough and
t0 is chosen large enough, see (3.10). Hence, we turn to the first summand on the
right hand side in (3.21) and show that, for some constant c9 > 0,

(3.22)
P̂t

{
Lt0,t ∈Wc2ε(µx), Wt0 ∈ B1, τ > t0−θ , ‖Λt0,t −Λψ

2
x ‖∞ ≤ c3

√
ε

}
≤ eC

√
εt0 e−c9t0 .

Combined with this estimate, as remarked before, Lemma 3.2-Lemma 3.5 imply
that,

P̂t
{

At(x,u,θ)
}
= P̂t

{
Lt ∈Uε(µx),ξ > θ ,τ > u

}
≤ 1

θ

∫ c1εt+1

u
dt0 eC

√
εt0 e−c9t0

≤ C
θ

e−u/C,

as desired in Theorem 3.1.

It remains to prove (3.22). Let us rewrite the decomposition of the Hamiltonian
as

(3.23) tH(Lt) =
t2
0
t

〈
Λt0 ,Lt0

〉
+2

t0(t− t0)
t

〈
Λt0 ,Lt0,t

〉
+

(t− t0)2

t
H(Lt0,t).

We will handle the three contributions on the right-hand side separately. The first
term is relatively easy to handle. Recall that we assumed that t0 ≤ Cεt. Hence
t2
0
t ≤Cεt0. Hence,

(3.24)
t2
0
t

H(Lt0)≤Cεt0H(Lt0) =Cεt0
〈
Λt0 ,Lt0

〉
≤Cεt0‖Λt0‖∞

≤C
√

εt0,

on the event {‖Λt0‖∞ ≤ c8ε−1/2} under interest.

The second term is estimated on the prescribed event
{
‖Λt0,t−Λψ2

x ‖∞≤ c3ε,τ >

t0−θ
}

as follows:

(3.25)

2
t0(t− t0)

t

〈
Λt0,t ,Lt0

〉
≤ t0C

√
ε + t0

〈
Λψ

2
x ,Lt0

〉
≤ t0C

√
ε + t0

〈
Λψ

2
x ,Lt0−θ

〉
+
〈
Λψ

2
x ,
∥∥Lt0−Lt0−θ

∥∥
TV

〉
≤ t0C

√
ε + t0

〈
Λψ

2
x ,Lt0−θ

〉
.

In the last line we used the fact that∥∥Lt0−Lt0−θ

∥∥
TV ≤

2θ

t0
<

2
u
≤C
√

ε.



20 BOLTHAUSEN, KÖNIG AND MUKHERJEE

Let us now estimate 〈Λψ2
x ,Lt0−θ 〉 on the event {τ > t0−θ}, for which we want

to use the fact that ψ2
x puts most of its mass around Brε/2(x), while on the event

under interest, the Brownian path until time t0−θ has not yet touched Brε
(x), recall

the requirement (3.1). Then,

(3.26)

〈
Λψ

2
x ,Lt0−θ

〉
1l{τ>t0−θ}

=
∫

Brε /2(x)
Lt0−θ (dz)

∫
Brε /2(x)c

ψ2
x (y)Lt0−θ

|y− z|
dy

+
∫

Brε /2(x)c
Lt0−θ (dz)

∫
Brε /2(x)c∩B1(z)

ψ2
x (y)
|y− z|

dy

+
∫

Brε /2(x)c
Lt0−θ (dz)

∫
Brε /2(x)c∩B1(z)c

ψ2
x (y)
|y− z|

dy

≤ 2
rε

+ ε

∫
Lt0−θ (dz)

∫
B1(0)

dy
|y|

+ ε

∫
Lt0−θ (dz)

≤Cε,

where we used that |y− z| ≥ rε/2 in the first integral, while ψ2
x (·)≤ ε on Brε/2(x)c

for the second and third integral and that |y− z| ≥ 1 in the third integral. Further-
more, recall that 2/rε ≤ ε . If we combine (3.25), (3.27) and (3.23), we have an
estimate for the first term on the right hand side of (3.21):

(3.27)
E
{

etH(Lt).1l{
Wt0∈B1, τ>t0−θ , ‖Λt0,t−Λψ2

x ‖∞≤c3
√

ε,‖Λt0‖∞≤c8ε−1/2
}}

≤ eC
√

εt0 E
{

e
(t−t0)

2

t H(Lt0 ,t) 1l
‖Λt0 ,t−Λψ2

x ‖∞≤c3
√

ε Wt0∈B1

}}.
Let us denote by Ft0,t the canonical σ -field generated by (Ws)s∈[t0,t]. We need

the following estimate to conclude the proof of (3.22).

Lemma 3.6. On the event {‖Λt0,t −Λψ2
x ‖∞ ≤ c3

√
ε,Wt0 ∈ B1}, we have

(3.28) Ex

[
etH(Lt)

∣∣Ft0,t

]
≥ exp

{
c9t0 +

(t− t0)2

t
H(Lt0,t)

}
.

We defer the proof of Lemma 3.6 until Step 6 and finish the proof of Theorem
3.1 based on the above estimate. Note that,

Zt = Ex

{
Ex
(
etH(Lt)

∣∣Ft0,t
)}

≥
∫

B1

Ex

{
Ex
{

etH(Lt)
∣∣Ft0,t

}
1l
{
‖Λt0,t −Λψ

2
x ‖∞ ≤ c3

√
ε,Wt0 ∈ dy

}}
≥
∫

B1

pt0(x,y)
pt0(y,0)

E0

{
Ex
{

etH(Lt)
∣∣Ft0,t

}
; 1l
{
‖Λt0,t −Λψ

2
x ‖∞ ≤ c3

√
ε,Wt0 ∈ dy

}}
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Note that, if M(ε) is chosen large enough, then for y ∈ B1 = B1(Wτ), t ≥ u > M(ε)
and |x|> M(ε), we have pt0(x,y)≥ pt0(y,0). Then,

Zt ≥
∫

B1

E0

{
Ex
{

etH(Lt)
∣∣Ft0,t

}
1l
{
‖Λt0,t −Λψ

2
x ‖∞ ≤ cε,Wt0 ∈ dy

}}
= ec9t0E0

{
exp
{
(t− t0)2

t
H(Lt0,t)

}
1l
{
‖Λt0,t −Λψ

2
x ‖∞ ≤ cε,Wt0 ∈ B1

}}
This finishes the proof of Theorem 3.1, assuming Lemma 3.6.

STEP 6: In this step we will prove Lemma 3.6.

Proof of Lemma 3.6: Let us again recall the splitting introduced in (3.23). Then,
on the event ‖Λt0,t −Λψ2

x ‖∞ ≤C
√

ε , we have a lower bound

(3.29)

tH(Lt)≥
(t− t0)2

t
H(Lt0,t)+2t0

(t− t0)
t

〈
Λt0,t ,Lt0

〉
≥ (t− t0)2

t
H(Lt0,t)+2t0

(t− t0)
t

[〈
Λψ

2
x ,Lt0

〉
−
〈
Lt0 ,Λt0,t −Λψ

2
x
〉]

≥ (t− t0)2

t
H(Lt0,t)+2t0

(t− t0)
t

[〈
Λψ

2
x ,Lt0

〉
−
∥∥Λt0,t −Λψ

2
x

∥∥
∞

]
≥ (t− t0)2

t
H(Lt0,t)+2t0

[〈
Λψ

2
x ,Lt0

〉
−C
√

ε

]
−2

t2
0
t

[
‖Λψ

2
x ‖∞ +C

√
ε

]
≥ (t− t0)2

t
H(Lt0,t)+2t0

[〈
Λψ

2
x ,Lt0

〉
−C
√

ε

]
−C̃εt0.

Hence, we infer, on {‖Λt0,t −Λψ2
x ‖∞ ≤ c

√
ε,Wt0 ∈ B1},

(3.30)
Ex

[
etH(Lt)

∣∣Ft0,t

]
≥ e−C

√
εt0 exp

{
(t− t0)2

t
H(Lt0,t)

}
Ex

{
exp
{

2t0H(Lt0⊗µx)
}∣∣Wt0 ∈ B1

}
.

Now we only need to handle the expectation on the right hand side.

We consider a diffusion with generator

L(ψx) =
1
2

∆+

(
∇ψx

ψx

)
·∇

corresponding to an ergodic Markov process P(ψx)
x starting from x with invariant

density ψ2
x (·). From the underlying expectation Ex on the right hand side of (3.30),



22 BOLTHAUSEN, KÖNIG AND MUKHERJEE

we want to switch to the corresponding expectation E(ψx)
x . By the Cameron-Martin-

Girsanov formula ([14]),

(3.31)

dPx

dP(ψx)
x

(
ω
)∣∣∣∣

Ft0

= exp
[
−
∫ t0

0

∇ψx(ωs)

ψx(ωs)
dWs +

1
2

∫ t0

0

∣∣∣∣∇ψx(ωs)

ψx(ωs)

∣∣∣∣2 ds
]

= exp
[

logψx(ω0)− logψx(ωt0)+
1
2

∫ t0

0

∆ψx(ωs)

ψx(ωs)
ds
]

=
ψx(x)

ψx(ωt0)
exp
[

1
2

∫ t0

0

∆ψx(ωs)

ψx(ωs)
ds
]
.

Let us recall the variational formula (1.6):

ρ = sup
ψ∈H1(R3)
‖ψ‖2=1

{∫ ∫
R3×R3

ψ2(x)ψ2(y)
|x− y|

dxdy − 1
2

∫
R3

dx|∇ψ(x)|2
}

A simple perturbation argument shows that the maximizing function ψ0 ∈ H1(R3)
satisfies the Euler-Lagrange equation

(3.32)
(

∆+4
∫
R3

ψ2
0 (y)
|x− y|

dy
)

ψ0(x) = λψ0(x).

We multiply (3.32) on both sides by ψ0(x), integrate over R3 and recall that∫
R3 ψ2

0 = 1, to see that

λ = 4
∫ ∫

R3×R3

ψ2
0 (x)ψ

2
0 (y)

|x− y|
−‖∇ψ0‖2

2 ≥ 2ρ > 0.

Now we divide (3.32) by ψ0(x), plug in x =W (s) and integrate on the time interval
[0, t0] to get

∫ t0

0

∆ψ0(Ws)

ψ0(Ws)
ds+4

∫ t0

0

∫
R3

ψ2
0 (y)dy
|Ws− y|

=
∫ t0

0

∆ψ0(Ws)

ψ0(Ws)
ds+4t0H(Lt0⊗µ0)

= λ t0.

Repeating the same argument for ψ2
x = ψ2

0 ?δx we get

(3.33) 2t0H(Lt0⊗µx) =
λ t0
2
− 1

2

∫ t0

0

∆ψx(Ws)

ψx(Ws)
ds.
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We now perform a change of measure in the expectation of the right hand side of
(3.30), and combine the above identity with (3.31) to get

Ex

{
exp
{

2t0H(Lt0⊗µx)
}∣∣Wt0 ∈ B1

}
≥
∫

B1

Ex

[
exp
{

2t0H(Lt0⊗µx)
}

1l
{

Wt0 ∈ dy
}]

= eλ t0/2
∫

B1

E (ψx)
x

[
ψx(x)
ψx(y)

1l
{

Wt0 ∈ dy
}]

= eλ t0/2
∫

B1

ψ0(0)
ψ0(y− x)

P(ψx)
x
{

Wt0 ∈ dy
}
.

Recall that P(ψx)
x is ergodic with invariant measure µx(dy) = ψ2

x (y)dy = ψ2
0 (y−

x)dy. Hence, by the ergodic theorem,

(3.34)
liminf

t0→∞
e−λ t0/2Ex

{
exp
{

2t0H(Lt0⊗µx)
}∣∣Wt0 ∈ B1

}
≥
∫

B1

ψ0(0)
ψ0(y− x)

ψ
2
0 (y− x)dy = ψ0(0)

∫
B1

ψ0(y− x)dy.

We choose, σ0(ε) such that, for t0 ≥ σ0(ε),

Ex

{
exp
{

t0H(Lt0⊗µx)
}∣∣Wt0 ∈ B1

}
≥ eλ t0/3.

Since we are interested in the regime |x| > M(ε), we need to pick M(ε) ≥ σ0(ε).
We combine this estimate with (3.30) to prove (3.28). Theorem 3.1 is proved. �

To finish the proof of Theorem 2.7, we need two more technical estimates.

Recall that for any r > 0, τ = τr(x) denotes the first hitting time of the ball Br(x)
and ξ = ξr(x) denotes the time the Brownian path spends in B1

(
Wτr(x)

)
after time

τr(x), before exiting this ball for the first time. It is well known that, for any θ > 0,

(3.35) P
{

ξ ≤ θ

}
≤C exp

{
− 1

Cθ

}
for some C > 0.

Lemma 3.7. Uniformly in t > 0,r > 0,x ∈ R3,

lim
θ→0

P̂t

{
ξr(x)≤ θ , τr(x)≤ t

}
= 0.

Proof. We now split at two time horizons τ and τ +ξ :

(3.36) Lt =
τ

t
Lτ +

ξ

t
Lτ,τ+ξ +

t− τ−ξ

t
Lτ+ξ ,t .

This also leads to a similar decomposition of Λt .
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We also write

L′t =
τ

t
Lτ +

t− τ−ξ

t
Lτ+ξ ,t ,

Λ
′
t =

τ

t
Λτ +

t− τ−ξ

t
Λτ+ξ ,t

and

L′′t =
τ

t
Lτ +

t− τ−ξ

t
Lτ+ξ ,t+ξ

Λ
′′
t =

τ

t
Λτ +

t− τ−ξ

t
Λτ+ξ ,t+ξ .

This leads to one crucial upshot. Consider the process {Ys}0≤s≤t , defined on
{τ < t} by

Ys =

{
Ws for s < t
Ws+ξ for s ∈ [τ, t] ,

which jumps at time τ from Wτ to the boundary of B1 (Wτ). On {τ < t} consider
also Zs =Wτ+s−Wτ for s≤ ξ . This is a process starting at 0 observed until the first
time it hits the boundary of B1 (0). We consider {Zs}s≤ξ

process modulo rotations,
i.e. we write

Ξ :=
[
(Wτ+s−Wτ)0≤s≤ξ

]
where [·] denotes the equivalence class under the action of rotational group on the
whole path in R3. Since, the distribution of a Brownian motion on the boundary of
a ball (when started at the centre of the ball) is the uniform harmonic measure on
the sphere, the process {Ys} and (ξ ,Ξ) are independent under P.

The splitting of the Hamiltonian according to (3.36) is:

tH (Lt) = t
〈
L′t ,Λ

′
t
〉
+ξ

〈
Lτ,τ+ξ ,Λ

′
t
〉
+ξ

〈
Λτ,τ+ξ ,L

′
t
〉
.

We fix some constant a > 0. Then on the events
{
‖Λ′t‖∞

≤ a
}

,
{∥∥Λτ,τ+ξ

∥∥
∞
≤ a
}

and
{

ξ ≤ θ ≤ 1
}

, we have

(3.37) tH (Lt)≤ t
〈
L′t ,Λ

′
t
〉
+2a≤ t

〈
L′′t ,Λ

′′
t
〉
+2a.

Note that ‖Λ′t‖∞
> a implies ‖Λt‖∞

> a. Therefore,

(3.38)

P̂t

{
ξ ≤ θ , τ +ξ ≤ t

}
≤ P̂t

{
ξ ≤ θ , τ +ξ ≤ t,

∥∥Λ
′
t

∥∥
∞
≤ a,

∥∥Λτ,τ+ξ

∥∥
∞
≤ a
}

+ P̂t

{
‖Λt‖∞

> a
}
+ P̂t

{∥∥Λτ,τ+ξ

∥∥
∞
> a, ξ ≤ 1

}
.



RIGOROUS CONSTRUCTION OF THE PEKAR PROCESS 25

We can estimate the first probability on the right hand side above, since by (3.37),

(3.39)
E
{

exp [tH (Lt)] 1l
{

ξ ≤ θ , τ +ξ ≤ t,
∥∥Λ
′
t

∥∥
∞
≤ a,

∥∥Λτ,τ+ξ

∥∥
∞
≤ a
}}

≤ e2a E
{

exp
[
t
〈
L′′t ,Λ

′′
t
〉]

1l{ξ ≤ θ}
}
.

Furthermore, since the Hamiltonian t 〈L′′t ,Λ′′t 〉 is independent of ξ under P, we
have,

(3.40)

E
{

exp
[
t
〈
L′′t ,Λ

′′
t
〉]

1l{ξ ≤ θ}
}

= P
(
ξ ≤ θ

)
E
{

exp
[
t〈L′′t ,Λ′′t

〉]}

= P
(
ξ ≤ θ

) E
{

exp
[
t〈L′′t ,Λ′′t

〉]
1l{ξ ≤ 1}

]
P
(
ξ ≤ 1

)
≤

P
(
ξ ≤ θ

)
P
(
ξ ≤ 1

) E
{

exp
[
t
〈
Lt+1,Λt+1

〉]}
.

Also, since,

t 〈Lt+1,Λt+1〉 ≤ 2‖Λ1‖∞
+‖Λ1,t+1‖∞

+ t 〈L1,t+1,Λ1.t+1〉 ,

we have the estimate,

E
{

exp [t 〈Lt+1,Λt+1〉]
}
≤ E

{
e2‖Λ1‖∞

}
E
{

e‖Λt‖∞etH(Lt)

}
.

Summarizing (3.38)-(3.40), we have,

P̂t

{
ξ ≤ θ , τ +ξ ≤ t

}
≤ P(ξ ≤ θ)

P(ξ ≤ 1)
E
{

e2‖Λ1‖∞

}
e2a Êt

{
e‖Λt‖∞

}
+P̂t

{
‖Λt‖∞

> a
}
+ P̂t

{∥∥Λτ,τ+ξ

∥∥
∞
> a, ξ ≤ 1

}
.

By (3.35), we then have,

lim
θ→0

sup
t,x

P̂t

{
ξ ≤ θ , τ +ξ ≤ t

}
≤ sup

t
P̂t

{
‖Λt‖∞

> a
}
+ sup

t,x
P̂t

{∥∥Λτ,τ+ξ

∥∥
∞
> a, ξ ≤ 1

}
.

Since by Corollary 2.5, supt P̂t
{
‖Λt‖∞

> a
}
→ 0 for a→∞, we only have to prove

that

lim
a→∞

sup
t,x

P̂t

{∥∥Λτ,τ+ξ

∥∥
∞
> a, ξ ≤ 1

}
= 0.
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This can again be proved in the same way exploiting that
∥∥Λτ,τ+ξ

∥∥
∞

is a function
of the equivalence class Ξ and invoking the above independence argument. We
drop the details to avoid repetition. �

Lemma 3.8. For every η > 0 there exists r0 = r0(η) ∈ N such that,

(3.41) sup
t≥1

∑
r≥r0

P̂t

{
τr(0)≤

√
r
}
≤ η .

Proof. For any r > 0, we again use the splitting of the Hamiltonian as before and
use the estimates obtained in Lemma 3.7 to get,∣∣H(Lt)−H(L√r,t+

√
r)
∣∣≤ C

t
√

r‖Λ√r‖∞.

Then,

E
{

etH(Lt) 1l{τr ≤
√

r}
}
≤ E

{
eC
√

r‖Λ√r‖∞1l{τr(0)≤
√

r}
}
E
{

etH(L√r,t+
√

r)

}
= E

{
e2C
√

r‖Λ√r‖∞

}1/2

P
{

τr(0)≤
√

r
}1/2

E
{

etH(Lt)

}
.

The first expectation grows like exp{C
√

r} by (3.12) and the probability P
{

τr(0)≤√
r
}

decays like exp{−Cr3/2}. This proves the lemma. �

Finally we are ready to prove Theorem 2.7.

Proof of Theorem 2.7: Given any η > 0, by Lemma 3.7, we choose θ(η) > 0
so that

(3.42) P̂t

{
ξr(x)≤ θ(η)

}
≤ η/3.

for any t,r,x. From lemma 3.8 we choose r0(η/3) so that

(3.43) P̂t

{
τr(0)≤

√
r for somer ≥ r0(η)

}
≤ η/3.

For any given ε > 0, we pick u(ε,η)> 0 so that u(ε,η)≥max
{

M(ε),r0(η/3)2
}

such that

(3.44)
C

θ(η)
exp
{
−u(ε,η)/C

}
≤ η/3,

where C is the constant coming from Theorem 3.1 and this does not depend on ε

or η . Now, let us choose the radius rε as required in (3.1). Then, for

(3.45) |x| ≥ k(ε,η) := max
{

M(ε)+ rε ,u(ε,η)2
}
,
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on the complement of the event in (3.43), we have τrε
(x) ≥ τ2

u(ε,η)(0). Hence,
according to Theorem 3.1, we have

(3.46) P̂t

{
Lt ∈Uε(µx), ξrε

(x)> θ(η), τrε
(x)> u(ε,η)

}
≤ η/3.

Let us combine (3.42), (3.43) (3.46) and stare at the requirement (3.45). We have
proved Theorem 2.7. �

4 Identification of the limiting distribution: Proof of theorem 2.1

In this section we will finish the proof of Theorem 2.1. Recall that the goal is
to show that the distribution of Lt under P̂t converges towards δµY , where Y is an
R3-valued random variable with probability density ψ0/

∫
ψ0, where we recall that

µy is the probability measure on R3 with density ψ2
y (·) = ψ2

0 (y+ ·), and ψ0 is the
maximizer in (1.2). Recall that d(·, ·) denotes the metric on the set of probability
measures on R3 that induces the weak topology. Introduce, for any probability
measure µ on R3, the set of locations of best coincidence with a shift of µ0:

(4.1) A(µ) =
{

y ∈ R3 : d(µ,µy) = inf
x∈R3

d(µ,µx)
}
.

Furthermore, let Y (µ) be the lexicographically smallest site in A(µ) (which be-
longs to A(µ), since x 7→ µx is continuous and therefore A(µ) closed). We need a
certain continuity property of the map µ 7→Y (µ), see the following lemma. Recall
that we write Uη(m) for the η-neighborhood of the orbit m= {µ0 ?δx : x ∈ R3} in
the metric d.

Lemma 4.1. For any δ > 0, there is an η > 0 such that |Y (µ)−Y (µ̃)|< δ for any
probability measures µ, µ̃ ∈Uη/2(m) satisfying d(µ, µ̃)< η .

Proof. Given a δ > 0, we pick η > 0 so small that, for any y, ỹ ∈ R3, we have
|y− ỹ|< δ/3 as soon as d(µy,µỹ)< 2η .

Now we show that diam(A(µ)) < δ/3 for any µ ∈Uη(m). Indeed, given such
a µ , and given two sites y, ỹ ∈ A(µ), we have d(µ,µy)< η and d(µ,µỹ)< η . The
triangle inequality implies that d(µy,µỹ) < 2η , and the choice of η implies that
|y− ỹ|< δ/3. Hence, diam(A(µ))< δ/3.

Now we prove the assertion of the lemma, still with the same η . Let µ, µ̃ ∈
Uη/2(m) be given satisfying d(µ, µ̃) < η . We pick some y ∈ A(µ) and ỹ ∈ A(µ̃),
then we have d(µ,µy) < η/2 and d(µ̃,µỹ) < η/2. This implies, via the trian-
gle inequality, that d(µy,µỹ) ≤ d(µy,µ)+d(µ, µ̃)+d(µ̃,µỹ) < η/2+η +η/2 =
2η . According to our choice of η , this implies that |y− ỹ| < δ/3. Since both
diam(A(µ)) and diam(A(µ̃)) are smaller than δ/3, again the triangle inequality
implies that |Y (µ)−Y (µ̃)|< δ . �
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By Theorem 2.2, we know already that limt→∞ P̂t(Lt /∈Uη(m)) = 0 for any η >
0. Therefore, for proving Theorem 2.1, it suffices to prove that the distribution of
Y (Lt) under P̂t weakly converges towards the measure with density ψ0/

∫
ψ0.

Now we fix a bounded measurable set I ⊂ R3 with Lebesgue-negligible bound-
ary. Thanks to Theorem 2.6, Theorem 2.1 will then follow from

(4.2) lim
t→∞

P̂t
(
Y (Lt) ∈ I

)
=

∫
I ψ0(x)dx∫
R3 ψ0(x)dx

.

We will need one more technical fact:

(4.3) lim
`→∞

limsup
t→∞

sup
t0≤t

P̂t
{∣∣Wt0

∣∣≥ `
}
= 0.

The proof of this follows the same line of argument as in the proof of Theorem 2.6
and we omit the details to avoid repetition. Hence, by (3.10), for any sufficiently
large a > 0, any η > 0, any t0 > 0 and any ` > 0, if t is large,

(4.4)

P̂t
(
Y (Lt) ∈ I

)
=

1
Zt
E
[
etH(Lt)1l{Y (Lt) ∈ I}1l{Lt ∈Uη/4(m)}

1l{‖Λt0‖∞ ≤ a}1l{|Wt0 | ≤ `}
]

+F1(t, t0, `)+F2(t, t0,a)+F3(t,η),

where F1,F2 and F3 are some functions that satisfy
lim`→∞ limsupt→∞ supt0≤t F1(t, t0, `) = limsupt0→∞ limsupt→∞ supt0≤t F2(t, t0,a) =
limt→∞ F3(t,η) = 0, for a large enough. We abbreviate F̀ ,a,η(t0, t) =
F1(t, t0, `)+F2(t, t0,a)+F3(t,η).

Now we introduce two threshold parameters ε,δ > 0 and pick a small η , de-
pending on ε and δ , to be determined later, but at least as small as described in
Lemma 4.1.

Let us again invoke the convex decomposition Lt =
t0
t Lt0 +

(t−t0)
t Lt0,t . We require

that t is at least so large that d(Lt ,Lt0,t)< η/8, in particular

Lt0,t ∈Uη/8(m) =⇒ Lt ∈Uη/4(m) =⇒ Lt0,t ∈Uη/2(m)

and therefore, according to Lemma 4.1, on the event {Lt ∈Uη/4(m)},

Y (Lt0,t) ∈ I−δ =⇒ Y (Lt) ∈ I =⇒ Y (Lt0,t) ∈ Iδ ,

where I−δ = {x ∈ I : dist(x, Ic)> δ} is the δ -interior of I and Iδ =
⋃

x∈I(x−δ ,x+
δ )3 is the δ -neighbourhood of I. From now on, we proceed only with the proof of
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the upper bound ‘≤’in (4.2). We pick up from (4.4) and proceed as follows.

(4.5)

P̂t
(
Y (Lt) ∈ I

)
≤ 1

Zt
E
[
etH(Lt)1l{|Wt0 | ≤ `}1l{‖Λt0‖∞ ≤ a}

1l{Y (Lt0,t) ∈ Iδ}1l{Lt0,t ∈Uε(m)}
]
+ F̀ ,a,η(t0, t).

Since we can and will additionally require that η/2 < ε , we already replaced Uη/2
by Uε .

As in earlier sections, the convex decomposition of Lt leads to the splitting

(4.6) tH(Lt) =
t2
0
t

H(Lt0)+2
t0(t− t0)

t

〈
Lt0 ,Λt0,t

〉
+

(t− t0)2

t
H(Lt0,t),

which we will substitute on the right-hand side of (4.5). We will again estimate
the first two summands on the right hand side of (4.6). Note that the first term lies
between 0 and at2

0/t on the event {‖Λt0‖∞ ≤ a}, since H(Lt0)≤ ‖Λt0‖∞.

Now we want to argue that, with high probability as t→ ∞, we can replace Λt0,t
in (4.6) by Λ(µy) by making an error no more than O(

√
ε) in the exponent on the

right-hand side of (4.5). Indeed, we will condition on Y (Lt0,t) (substituting it by y)
and integrate over Y (Lt0,t)∈ Iδ . Note that, on the event {Y (Lt0,t) = y}, we have that
{Lt0,t ∈Uε(m)} = {Lt0,t ∈Uε(µy)} by definition of Y (·). Furthermore, we recall
(3.17), which implies that for some C > 0,

limsup
t→∞

1
t

log sup
y∈Iδ

P̂t

{
Lt ∈Uε(µy), ‖Λ(Lt)−Λ(µy)‖∞ >C

√
ε

}
< 0.

On the event {‖Λ(Lt)−Λ(µy)‖∞≤C
√

ε}, we use (3.8) and (3.10), to see that, with
high probability, Λt0,t differs from Λ(µy) by no more than O(

√
ε). This gives that,

uniformly in y ∈ Iδ ,

1
Zt
E
[
e2 t0(t−t0)

t 〈Lt0 ,Λt0 ,t〉1l{|Wt0 | ≤ `}e
(t−t0)

2

t H(Lt0 ,t)1l{Lt0,t ∈Uε(µy)}
]

≤ eO(
√

εt0) 1
Zt
E
[
e2 t0(t−t0)

t 〈Lt0 ,Λ(µy)〉1l{|Wt0 | ≤ `}e
(t−t0)

2

t H(Lt0 ,t)1l{Lt0,t ∈Uε(µy)}
]

+o(1),

as t → ∞. Substituting y by Y (Lt0,t) and integrating over Y (Lt0,t) ∈ Iδ , we obtain
that

(4.7)

P̂t
(
Y (Lt) ∈ I

)
≤ 1

Zt
eO(t2

0/t)eO(
√

εt0)
∫

Iδ

E
[
e2 t0(t−t0)

t 〈Lt0 ,Λ(µy)〉1l{|Wt0 | ≤ `}

e
(t−t0)

2

t H(Lt0 ,t)1l{Y (Lt0,t) ∈ dy}1l{Lt0,t ∈Uε(m)}
]
+ F̀ ,a,η ,ε(t0, t).
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where we absorbed the additional error term (which vanishes as t → ∞) in the
notation F̀ ,a,η ,ε(t0, t).

Integrating over Wt0 and using the Markov property, we obtain

(4.8)

P̂t
(
Y (Lt) ∈ I

)
≤ 1

Zt
eO(t2

0/t)eO(t0
√

ε)
∫

Iδ

∫
B`

E
[
e2t0〈Lt0 ,Λ(µy)〉1l{Wt0 ∈ dx}

]
Ex

[
e

(t−t0)
2

t H(Lt−t0 )1l{Y (Lt−t0) ∈ dy}1l{Lt−t0 ∈Uε(m)}
]

+ F̀ ,a,η ,ε(t0, t).

Recall the measure tilting argument (3.31) with the function ψ2
y and the ergodic

theorem for the measure P(ψy)

0 with invariant density ψ2
y , which gives that

(4.9)
E
[
e2t0〈Lt0 ,Λ(µy)〉1l{Wt0 ∈ dx}

]
=

ψy(0)
ψy(x)

eλ t0/2P(ψy)

0 (Wt0 ∈ dx)

= ψy(0)ψy(x)eλ t0/2dx (1+o(1)),

as t0→∞, uniformly in x∈ B` and y∈ Iδ . We now choose t0 so large that the above
1+o(1) is below eδ , where we recall that δ was a given threshold parameter. This
gives

(4.10)

P̂t
(
Y (Lt) ∈ I

)
≤ 1

Zt
eO(t2

0/t)eO(t0
√

ε)eδ eλ t0/2
∫

Iδ

ψ0(y)
∫

B`

dxψ0(y− x)

Ex

[
e

(t−t0)
2

t H(Lt−t0 )1l{Y (Lt−t0) ∈ dy}1l{Lt−t0 ∈Uε(m)}
]

+ F̀ ,a,η ,ε(t0, t)

≤ 1
Zt

eO(t2
0/t)eO(t0

√
ε)eδ eλ t0/2

E0

[∫
R3

dxψ0(Y (Lt−t0)+ x)1l{Y (Lt−t0)+ x ∈ Iδ}

e
(t−t0)

2

t H(Lt−t0 )ψ0(Y (Lt−t0))1l{Lt−t0 ∈Uε(m)}
]
+ F̀ ,a,η ,ε(t0, t)

≤ eO(t2
0/t)eO(t0

√
ε)eδ

∫
Iδ

dxψ0(x)

E0

[
e

(t−t0)
2

t H(Lt−t0 )ψ0(Y (Lt−t0))1l{Lt−t0 ∈Uε(m)}
]

e−λ t0/2 Zt
+ F̀ ,a,η ,ε(t0, t),

where we used Fubini’s theorem and the fact that the distribution of Y (Lt−t0) under
Px is identical to the distribution of Y (Lt−t0)+x under P0 (note the shift-invariance
of Uε(m) and H(Lt−t0)). In the third step, we shifted the x-integration by Y (Lt−t0).
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The proof of the corresponding lower bound with I−δ (recall that I−δ = {x ∈
I : dist(x, Ic) > δ} denotes the δ -interior of the open bounded set I) replacing Iδ

on the right hand side of (4.10) is analogous modulo slight changes. In fact, to
carry out the lower bound corresponding to the second step in (4.10), we note that
the shift of the x-integration by y ∈ I−δ leads to an x-integration over a superset of
the diam(I−δ )-interior of B`, which contains B`′ for some large `′. But `′ can be
picked so large that the error when replacing B`′ afterwards by R3 is absorbed in
the F̀ ,a,η ,ε(t0, t) term.

Hence, for any arbitrary open bounded set I′ we have that 1≥ P̂t(Y (Lt) ∈ I′) is
bounded from below by the right hand side of (4.10) with Iδ replaced by I′−δ

. This
gives a lower bound for e−λ t0/2 Zt , and combining this with the upper bound (4.10),
we obtain, by letting first t→ ∞, followed by ε → 0, and then t0→ ∞ and `→ ∞

limsup
t→∞

P̂t(Y (Lt) ∈ I)≤
∫

Iδ
ψ0(x)dx∫

I′−δ

ψ0(x)dx
.

As I′ and δ are arbitrary, we get

limsup
t→∞

P̂t(Y (Lt) ∈ I)≤
∫

I ψ0(x)dx∫
R3 ψ0(x)dx

.

This concludes the proof of the upper bound of the claim in (4.2).

In order to prove the corresponding lower bound for (4.2),we argue essentially
in the same way, except that in order to prove the upper bound for Zt , we have to
use the already proved tightness of Y (Lt) which implies that for arbitrary δ we can
find a bounded set I′ ⊂R3 with P̂t(Y (Lt) ∈ I′)≥ 1−δ for all t large enough. This
ends the proof of Theorem 2.1.
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