Mathematisches Institut Universität Leipzig Sommersemester 2007

Analysis A: Übungsblatt 20

Abgabe in den Übungen vom 15. bis 18. Mai 2007

AUFGABE 20.1 (2 Punkte) — Ermitteln Sie das Taylorpolynom vierter Ordnung der Funktion $x \mapsto \sqrt{1+x}$ mit Entwicklungspunkt Null.

AUFGABE 20.2 (3 Punkte) — Berechnen Sie log 2 bis auf drei Stellen nach dem Komma genau.

AUFGABE 20.3 (3 Punkte) — Es sei $I \subset \mathbb{R}$ ein offenes Intervall und $x_0 \in I$. Ferner seien $f, \varphi \colon I \to \mathbb{R}$ zwei n Mal stetig differenzierbare Funktionen mit $\varphi(x_0) = 0$. Es existiere ein Polynom p vom Grade $\leq n$ mit $f(x) = p(x) + (x - x_0)^n \varphi(x)$ für alle $x \in I$. Zeigen Sie, dass dann p das n-te Taylorpolynom von f an der Stelle x_0 ist.

AUFGABE 20.4 (3+2 Punkte) —

- (i) Es seien f und g zwei Potenzreihen um Null mit jeweils positivem Konvergenzradius und f(0) = 0. Zeigen Sie, dass dann auch $g \circ f$ eine Potenzreihe um Null mit positivem Konvergenzradius ist.
- (ii) Es sei f eine Potenzreihe um Null mit positivem Konvergenzradius und $f(0) \neq 0$. Zeigen Sie, dass dann auch 1/f eine Potenzreihe um Null mit positivem Konvergenzradius ist.

Hinweis: Benutzen Sie bei (i) das Cauchy-Produkt von Reihen (siehe Aufgabe 7.4) sowie den Großen Umordnungssatz (siehe Satz 3.26 im Skript). Benutzen Sie bei (ii) die geometrische Reihe.

AUFGABE 20.5 (3 Punkte) — Die Funktion $f(z) = \frac{z}{e^z - 1}$ (mit stetiger Fortsetzung in z = 0) kann nach Aufgabe 20.4(ii) in eine Potenzreihe der Form

$$f(z) = \frac{z}{e^z - 1} = \sum_{k=0}^{\infty} \frac{B_k}{k!} z^k$$

entwickelt werden, wobei die Bernoulli-Zahlen $B_0, B_1, \dots \in \mathbb{C}$ auf diese Weise definiert werden. Berechnen Sie explizit B_0, B_1, \dots, B_8 , zeigen Sie, dass $B_{2k+1} = 0$ für jedes $k \in \mathbb{N}^*$ gilt, und geben Sie für jedes $k \in \mathbb{N}^*$ eine Rekursionsformel für B_k als eine Funktion von B_0, B_1, \dots, B_{k-1} .