Mathematisches Institut Universität Leipzig Wintersemester 2008/09

Wahrscheinlichkeitstheorie II: Übungsblatt 19

Abgabe in der Übung vom 26. und 27. November 2008

AUFGABE 19.1 (DISKRETE FOURIER-INVERSIONSFORMEL) (3 Punkte) — Sei $\mathbb{P} \in \mathcal{M}_1(\mathbb{Z}^d)$ mit charakteristischer Funktion φ . Zeigen Sie, dass für jedes $z \in \mathbb{Z}^d$ gilt:

$$\mathbb{P}(\{z\}) = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi)^d} e^{-i\langle t,z\rangle} \varphi(t) dt.$$

AUFGABE 19.2 (4 Punkte) —

Definition. Eine Funktion $f: \mathbb{R}^d \to \mathbb{C}$ heißt *nichtnegativ definit*, falls für jedes $n \in \mathbb{N}$ und alle $t_1, \ldots, t_n \in \mathbb{R}^d$ die Matrix $(f(t_i - t_j))_{i,j=1,\ldots,n}$ nichtnegativ definit ist.

Zeigen Sie, dass die charakteristische Funktion eines jeden Wahrscheinlichkeitsmaßes auf \mathbb{R}^d nichtnegativ definit ist.

Bemerkung. Der *Satz von Bochner* besagt, dass die folgende Umkehrung gilt: Jede stetige nichtnegativ definite Funktion $f: \mathbb{R}^d \to \mathbb{C}$ mit f(0) = 1 ist die charakteristische Funktion eines Wahrscheinlichkeitsmaßes auf \mathbb{R}^d

AUFGABE 19.3 (SATZ VON FRÉCHET-SHOHAT) (4 Punkte) — Sei X eine Zufallsgröße, so dass $(\frac{1}{k}\mathbb{E}[|X|^k]^{1/k})_{k\in\mathbb{N}}$ beschränkt ist, und sei $(X_n)_{n\in\mathbb{N}}$ eine Folge von Zufallsgrößen, so dass für jedes $k\in\mathbb{N}$ gilt: $\lim_{n\to\infty}\mathbb{E}[X_n^k]=\mathbb{E}[X^k]$. Zeigen Sie, dass X_n schwach gegen X konvergiert.

Hinweis. Zeigen Sie die Straffheit von $(X_n)_{n\in\mathbb{N}}$, und identifizieren Sie die Momente aller möglichen Häufungspunkte. Weitere Tipps in der Übung.

AUFGABE 19.4 (5 Punkte) — Für $n \in \mathbb{N}$ sei N_n eine zum Parameter n Poisson-verteilte Zufallsgröße, und wir setzen $X_n = (N_n - n)/\sqrt{n}$.

- (i) Zeigen Sie, dass X_n schwach gegen die Standardnormalverteilung konvergiert.
- (ii) Folgern Sie aus der Aussage in (i), dass gilt:

$$\lim_{n \to \infty} e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!} = \frac{1}{2}.$$

(iii) Folgern Sie die Stirling-Asymptotik $n! \sim (\frac{n}{e})^n \sqrt{2\pi n}$ aus der Aussage in (i).

Hinweise. In (i) dürfen Sie benutzen, dass schwache Konvergenz vorliegt, wenn die Momenten erzeugende Funktionen konvergieren. In (iii) betrachte man den Negativteil von X_n und zeige u. A. ihre gleichgradige Integrierbarkeit.