Mathematisches Institut Universität Leipzig Wintersemester 2007/08

Maß- und Integrationstheorie: Übungsblatt 14

Abgabe in den Übungen vom 29. Januar bis 1. Februar 2008

AUFGABE 14.1 (4 Punkte) — Zeigen Sie, dass das d-fache Produkt der Borel- σ -Algebra \mathcal{B} auf \mathbb{R} gleich der Borel- σ -Algebra \mathcal{B}_d auf dem \mathbb{R}^d ist.

AUFGABE 14.2 (4 Punkte) — Zeigen Sie, dass die Menge der reellen Nullfolgen und die der reellen konvergenten Folgen beide in der Produkt- σ -Algebra $\mathcal{B}^{\otimes \mathbb{N}}$ liegen.

AUFGABE 14.3 (4 Punkte) —

1. Es seien λ das Lebesgue-Maß auf $([0,1],\mathcal{B}_{[0,1]})$ und $\{\delta_n\}_{n\in\mathbb{N}}\subset [0,1)$ eine wachsende Folge mit $\lim_{n\to\infty}\delta_n=1$. Für jedes $n\in\mathbb{N}$ sei $g_n\colon [0,1]\to\mathbb{R}$ stetig mit $\int_{[0,1]}g_n\,\mathrm{d}\lambda=1$ und $\mathrm{Supp}(g_n)\subset [\delta_n,\delta_{n+1}]$. Die Funktion $f\colon [0,1]^2\to\mathbb{R}$ sei definiert durch

$$f(x,y) = \sum_{n=1}^{\infty} (g_n(x) - g_{n+1}(x)) g_n(y), \quad x, y \in [0,1].$$

Zeigen Sie, dass gilt

$$\int_0^1 \int_0^1 f(x,y) \, \lambda(\mathrm{d}y) \, \lambda(\mathrm{d}x) = 1 \neq 0 = \int_0^1 \int_0^1 f(x,y) \, \lambda(\mathrm{d}x) \, \lambda(\mathrm{d}y).$$

2. Es sei μ das Zählmaß auf $([0,1],\mathcal{B}_{[0,1]})$, d.h. $\mu(A)=\#A$, falls A endlich, und $\mu(A)=\infty$ sonst. Ferner sei f die Indikatorfunktion auf $\Delta:=\{\,(x,y)\in[0,1]^2\mid x=y\,\}$. Zeigen Sie:

$$\int_0^1 \int_0^1 f(x, y) \, \mu(\mathrm{d}y) \, \lambda(\mathrm{d}x) = 1 \neq 0 = \int_0^1 \int_0^1 f(x, y) \, \lambda(\mathrm{d}x) \, \mu(\mathrm{d}y).$$

AUFGABE 14.4 (4 Punkte) — Seien $(\Omega, \mathcal{F}, \mu)$ ein σ -endlicher Maßraum, λ das Lebesgue-Maß auf $(\mathbb{R}, \mathcal{B})$ und $f \colon \Omega \to [0, \infty)$ eine nichtnegative messbare Funktion. Zeigen Sie:

$$\int_{\Omega} f \, \mathrm{d}\mu = \int_{(0,\infty)} \mu \, (f > t) \, \lambda(\mathrm{d}t).$$