Prof. Dr. Wolfgang König Dr. W. Quapp, S. Hofmann S. Hohloch, G. Noetzel

Wahrscheinlichkeitstheorie II: Übungsblatt 8

Abgabe in den Übungen vom 8. bis 14. Dezember 2005

AUFGABE 8.1 Seien I und J abzählbare Mengen und sei $f: I \times J \to I$ eine Abbildung. Sei weiter $(Y_n)_{n \in \mathbb{N}}$ eine Folge unabhängiger, identisch verteilter Zufallsvariablen mit Werten in J. Mit einem $x \in I$ definieren wir eine Folge von Zufallsvariablen $(X_n)_{n \in \mathbb{N}_0}$ durch $X_0 = x$ und $X_{n+1} = f(X_n, Y_{n+1})$ für $n \in \mathbb{N}$. Beweisen Sie, dass $(X_n)_{n \in \mathbb{N}_0}$ eine Markovkette ist, und bestimmen Sie die Übergangsmatrix.

4 Punkte

AUFGABE 8.2 Berechnen Sie zur Übergangsmatrix

$$P = \begin{pmatrix} 1-p & p \\ q & 1-q \end{pmatrix}, \qquad p, q \in (0,1),$$

die n-fache Potenz P^n für jedes $n \in \mathbb{N}$. Bestimmen Sie den Limes $\lim_{n\to\infty} P^n$, wenn dieser existiert. **Hinweis:** Diagonalisieren Sie P oder finden Sie geeignete rekursive Gleichungen.

4 Punkte

AUFGABE 8.3 Sei $(X_n)_{n\in\mathbb{N}}$ eine Folge unabhängiger, gleichförmig auf $\{-1,0,1\}$ verteilter Zufallsvariablen, und seien weiter $S_0=0$ sowie

$$S_n = \sum_{j=1}^n X_j$$
 und $M_n = \max_{j=0,\dots,n} S_j$ $(n \in \mathbb{N}).$

Entscheiden Sie, ob die Ketten $(M_n)_{n\in\mathbb{N}_0}$ bzw. $(S_n,M_n)_{n\in\mathbb{N}_0}$ Markovsch sind, und bestimmen Sie gegebenenfalls die Übergangsmatrix.

Hinweis: Benutzen Sie Aufgabe 8.1.

4 Punkte

AUFGABE 8.4 (DIFFUSIONSMODELL VON BERNOULLI-LAPLACE) In zwei Behältern A und B befinden sich s schwarze und w weiße Kugeln ($w \le s$), wobei s Kugeln in Behälter A liegen. Zu jedem Zeitpunkt $n \in \mathbb{N}$ wird aus beiden Behältern zufällig und unabhängig voneinander je eine Kugel gezogen und in den jeweils anderen Behälter gelegt. Die Zufallsvariable X_n beschreibe die Anzahl der weißen Kugeln in A nach dem Zeitpunkt n.

- (i) Ermitteln Sie die Übergangsmatrix der Markovkette $(X_n)_{n \in \mathbb{N}_0}$.
- (ii) Sei nun die Startverteilung

$$\nu(i) = \frac{\binom{s}{i}\binom{w}{w-i}}{\binom{s+w}{w}}, \qquad i = 0, 1, \dots, w,$$

gegeben. Bestimmen Sie für jedes $n \in \mathbb{N}$ die Verteilung von X_n .

4 Punkte