Mathematisches Institut Universität Leipzig Wintersemester 2005/06 Prof. Dr. Wolfgang König Dr. W. Quapp, S. Hofmann S. Hohloch, G. Noetzel

Wahrscheinlichkeitstheorie II: Übungsblatt 6

Abgabe in den Übungen vom 24. bis 29. November 2005

AUFGABE 6.1 (EXTREMWERTVERTEILUNG) Es seien X_1, X_2, \ldots unabhängige, zum Parameter Eins exponentiell verteilte Zufallsgrößen. Für $n \in \mathbb{N}$ betrachten wir $Y_n = \max\{X_1, \ldots, X_n\} - \log n$. Bestimmen Sie ein Wahrscheinlichkeitsmaß, gegen das Y_n für $n \to \infty$ in Verteilung konvergiert, durch Angabe seiner Verteilungsfunktion.

Hinweis: Die Grenzwertverteilung nennt man die Gumbel-Verteilung.

4 Punkte

AUFGABE 6.2 Es seien X, X_1, X_2, \ldots unabhängige nichtnegative Zufallsgrößen mit zugehörigen Laplace-Transformierten $L(t) = \mathbb{E}[\mathrm{e}^{-tX}]$ bzw. $L_n(t) = \mathbb{E}[\mathrm{e}^{-tX_n}]$ für $t \in [0, \infty)$.

- (i) Es gelte $X_n \Longrightarrow X$. Zeigen Sie, dass die Laplace-Transformierten L_n dann punktweise auf $[0,\infty)$ gegen L konvergieren.
- (ii) Es gelte $\lim_{n\to\infty} L_n(t) = L(t)$ für jedes $t\in [0,\infty)$. Zeigen Sie, dass dann die Folge der Verteilungen von X_n straff ist und dass jede Limesverteilung die Laplace-Transformierte L besitzt.

Bemerkung: Wir werden später sehen, dass jede nichtnegative Zufallsgröße durch ihre Laplace-Transformierte eindeutig bestimmt wird. In der Situation von (ii) folgt also aus der punktweisen Konvergenz der Laplace-Transformierten die schwache Konvergenz von X_n gegen X.

4 Punkte

AUFGABE 6.3 (VARIATIONSPROBLEM) Mit $\mathcal{M}_1(\mathbb{R})$ bezeichnen wir die Menge der Wahrscheinlichkeitsmaße auf \mathbb{R} . Es sei $\varphi \colon \mathbb{R} \to [0,\infty)$ eine stetige Funktion mit $\lim_{|x|\to\infty} \varphi(x) = \infty$. Zeigen Sie, dass das Variationsproblem

$$\inf_{\mathbb{P}\in\mathcal{M}_1(\mathbb{R})}\int\varphi\,d\mathbb{P}$$

mindestens einen Minimierer besitzt.

Hinweis: Wählen Sie eine minimierende Folge, benutzen Sie den Satz von Prohorov, um einen Häufungspunkt zu erhalten, und zeigen Sie, dass er ein Minimierer ist. Für jedes K>0 existiert ein R>0 mit $1\leq \varphi(x)/K$ für alle |x|>R.

AUFGABE 6.4 Zeigen Sie, dass die sogenannte *Dreiecksverteilung* auf \mathbb{R} mit Dichte $x \mapsto (1-|x|)^+$ die charakteristische Funktion $t \mapsto \frac{2}{t^2}(1-\cos(t))$ besitzt. **4 Punkte**

Hinweis: Auf Wunsch Herrn Schmüdgens wird eine Vorlesung getauscht: Am Montag, dem 28. November, wird von 15²⁰ Uhr bis 16⁵⁰Uhr im Theoretischen Hörsaal des Physikalischen Instituts (Linnéstr. 5) eine Vorlesung Wahrscheinlichkeitstheorie II gehalten, und am Mittwoch, dem 7. Dezember, wird von 13¹⁵ Uhr bis 14⁴⁵Uhr im 0-99 im Seminargebäude eine Vorlesung Funktionalanalysis gehalten.