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The Parabolic Anderson Model
We consider the Cauchy problem for the heat equation with random coefficients and
localised initial datum:

∂

∂t
u(t, z) = ∆du(t, z) + ξ(z)u(t, z), for (t, z) ∈ (0,∞) × Z

d, (1)

u(0, z) = 1l0(z), for z ∈ Z
d, (2)

where

ξ = (ξ(z) : z ∈ Z
d) i.i.d. random potential, [−∞,∞)-valued.

∆df(z) =
P

y∼z

ˆ

f(y) − f(z)
˜

discrete Laplacian

∆d + ξ Anderson Hamiltonian

Some Remarks:

The solution u(t, ·) is a random time-dependent shift-invariant field.

Its a.s. existence is guaranteed under a mild moment condition on the potential.

It has all moments finite if all positive exponential moments of ξ(0) are finite.
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Motivations and Goals
Interpretations / Motivations:

Random mass transport through a random field of sinks and sources.

Expected particle number in a branching random walk model in a field of random
branching and killing rates.

Background literature and surveys:
[MOLCHANOV 1994], [CARMONA/MOLCHANOV 1994], [SZNITMAN 1998], [GÄRTNER/K. 2005].

Main Goal:
Describe the large-t behavior of the solution u(t, ·).

In particular:
Where does the main bulk of the total mass stem from?

Total mass of the solution:

U(t) =
X

z∈Zd

u(t, z), for t > 0.

Wolfgang König, ECM Amsterdam, 17 July, 2008 – p.3/9



Intermittency

Much work is devoted to a thorough understanding of the effect of

Intermittency: Asymptotically as t → ∞, the main contribution to U(t) comes from few
small remote islands.

These islands are randomly located, t-dependent, not too far from the origin.

Both the solution u(t, ·) and the potential ξ(·) are exceptionally large in these islands.

The large-t behavior is determined by the largest eigenvalue of the Anderson
Hamiltonian ∆d + ξ (i.e., by the bottom of the spectrum of −∆d − ξ) in large
t-dependent boxes.

This in turn is determined by the extreme values of the potential ξ.

Hence, only the upper tails of ξ(0) matter.
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Finite Exponential Moments

Under the assumption

〈etξ(0)〉 < ∞ for any t > 0,

the asymptotic behavior of the PAM could be classified in four universality classes [vd
Hofstad/K./Mörters 2007], according to the asymptotics of the upper tails of ξ(0):

bounded from above: island size quickly diverges,

almost bounded: island size slowly diverges,

‘double-exponential’ tails: islands are discrete, size does not diverge,

thicker tails: islands are single-point.

The asymptotic shapes of the potential and of the solution in the islands are characterised by
four respective variational problems, respectively by their duals.

The two leading terms in the asymptotics of the total mass are deterministic.

The number of islands and their precise locations are unknown in general (only rough
bounds available).
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Heavy-Tailed Potentials

From now, we consider the Pareto-distribution:

Prob(ξ(0) > r) = r−α, r ∈ [1,∞), (parameter α ∈ (d,∞)).

Then the total mass U(t) has no moments.

It is known that large values of a sum of i.i.d. heavy tailed random variables are most easily
realised by having just one of the values extremely large (and the others of moderate size).

We will see that this principle is implicitly reflected in the behaviour of the parabolic Anderson
model.
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Asymptotics of the Total Mass

Weak Asmptotics of the Total Mass [VAN DER HOFSTAD/MÖRTERS/SIDOROVA 2008]. We have the weak
convergence

lim
t→∞

Prob
““ t

log t

”

−
d

α−d 1

t
log U(t) ≤ x

”

= exp
`

− µxd−α
´

,

where µ ∈ (0,∞) is some suitable, explicit constant.

Note that the leading term in the asymptotics of U(t) is random.

Some a.s. limsup and liminf results for log( 1
t

log U(t)) are also contained in [HMS08].

1
t

log U(t) has the same weak asymptotics as the maximum of td independent Pareto
(α − d)-distributed random variables. Apparantly, the potential’s random fluctuations

dominate the smoothing effect of ∆d.

[HMS08] also contains analogous results for stretched-exponential upper tails (Weibull
distribution).

Main tools of [HMS08]: extreme value theory, point process techniques, Borel-Cantelli
lemmas.
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Complete Localisation

The Pareto-distributed potential admits a strong intermittency effect on two points almost
surely ...

Two-Cities Theorem. [LACOIN/K./MÖRTERS/SIDOROVA 2007]. There are two processes (Z
(1)

t )t>0
and (Z

(2)

t )t>0 in Z
d such that

lim
t→∞

u(t, Z
(1)

t ) + u(t, Z
(2)

t )

U(t)
= 1 almost surely.

... and on just one point in probability:

One-point Localisation in Probability [LKMS 2007]. With Zt = Z
(1)

t , we have

lim
t→∞

u(t, Zt)

U(t)
= 1 in probability.

Furthermore, Zt(log t/t)α/(α−d) converges in distribution to some non-degenerate
random variable.
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Comments

Hence, there is precisely one intermittent island at large deterministic times, and this
island is single-point. Such a strong localisation could not be established for other
potentials yet.

In almost sure sense, the localisation on two sites, since the process (Zt)t>0 jumps.

The proof combines the Feynman-Kac formula and results and tools from [HMS08]

(extreme value theory, point process techniques, asymptotics for 1
t

log U(t)) and
[GKM07] (a spectral decomposition approach).

There is some hope to prove a related localisation for potentials with finite exponential
moments as well.
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