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Paper dictionary

Our goal is to explain

KB Keeler�Blaszczyszyn 2014 �about the connection between
the SINR process in wireless networks and the
two-parameter Poisson�Dirichlet process.
For this, we refer to two other papers:

BKK Blaszczyszyn�Karray�Keeler 2013 �about the in�nite
Poisson model for wireless networks, a propagation
invariance result (Lemma 1.), and introducing the SINR
process.

PY Pitman�Yor 1997 �about the properties of the
two-parameter Poisson�Dirichlet process.

We will use these abbreviations for the three main papers we
quote �see the exact citations in the end.
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Summary
A reasonable way to model wireless networks and to describe
propagation is to assume that the locations of the base stations
form a homogeneous Poisson point process on R2.

In this content, among certain assumptions to the distributions
of the power values, the propagation (loss) process becomes
another �inhomogeneous� Poisson point process
→ Lemma 1. of BKK.
In this content, the SINR, STINR processes can be de�ned.
The paper KB establishes the relation between the SINR
process of wireless networks and the two-parameter
Poisson�Dirichlet process.
⇒ new properties of the SINR/STINR processes that had not
been known before, applying results from the paper PY, e.g.:

the ratios of consecutive STINR values have beta
distributions,

the factorial moment density of the STINR process has
been computed.
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Sketch of the talk

1 The SINR process
In�nite Poisson model. Lemma 1 of BKK

2 The two-parameter Poisson�Dirichlet process
De�nition from size-biased permutations
Relation to stable (α) subordinators
STIR process is PD( 2

β , 0)

3 Consequences
Ratios of consecutive STINR values have beta distributions
Factorial moment measures
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In�nite Poisson model of BKK for wireless networks

Geographic locations of the base stations → homogeneous
Poisson point process Φ = {Xi}i∈N with intensity λ on R2,

the 'typical user' is in the origin (wlog, due to stationarity
of {Xi}).

l(Xi) is the distance loss function between Xi and the
origin, with l(x) = (K|x|)β for K,β > 0.

Adding fading/shadowing to the model, the propagation

loss is de�ned as LXi = l(Xi)
SXi

, where {Sx}x∈R2 are i.i.d.

positive random variables.

The power received at the origin from the base station Xi

with starting power PXi is pXi =
PXi
LXi

=
PXiSXi
l(Xi)

.

In BKK: constant power PXi = P > 0 (no power control)
⇒ equivalent model: power included in the associated
shadowing variables: S̃Xi = PXiSXi , emitted power
P̃Xi = 1. (Such a model also exists if PXi are i.i.d.).
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Propagation loss process. Lemma 1 of BKK.

Now let Θ = {Y } = {Yi}i∈N := {LXi}i∈N = { l(Xi)SXi )
}i∈N be the

process of propagation losses experienced in the origin w.r.t. the
stations of Φ, as a point process in R+.
The distribution of Θ determines all characteristics of the
typical user that can be expressed in the terms of propagation
losses. This motivates Lemma 1. of BKK.

Lemma (Lemma 1.)

Assume in�nite Poisson model with distance-loss l(x) = (K|x|)β

and generic shadowing variable S satisfying E(S
2
β ) <∞.

Then the process of propagation losses Θ is a non-homogeneous

Poisson point process on R+ with intensity measure

Λ([0, T ]) = E(Θ([0, t])) = at
2
β ,

where a = λπE(S
2
β )

K2 .
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Proof of Lemma 1. (Part I.)
Lemma (Lemma 1.)

Assume in�nite Poisson model with distance-loss l(x) = (K|x|)β and

generic shadowing variable S satisfying E(S
2
β ) <∞. Then the process of

propagation losses Θ is a non-homogeneous Poisson point process on R+

with intensity measure Λ([0, t]) = E(Θ([0, t])) = at
2
β , where a = λπE(S

2
β )

K2 .

Proof.

The point process Θ is a transformation of the point process of
base stations Φ by the probability transition kernel

p(x,A) = P
(
l(x)

S
∈ A

)
, x ∈ R2, A ∈ B(R+).

The Displacement Theorem (see Baccelli-Blaszczyszyn 2009)
implies that the point process Θ is Poisson in R+ with intensity
measure

Λ([0, t)) = λ

∫
R2

P
(
l(x)

S
∈ [0, t)

)
dx.

ü
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Proof of Lemma 1. (Part II.)

Proof.

Doing the computations, we get

Λ([0, t)) = λ

∫
R2

P
(
l(x)

S
∈ [0, t)

)
dx

= λ

∫
R2×R+

1{ l(x)
s
<t}Ps(ds)dx

=︸︷︷︸
Fubini

λ

∫
R2×R+

1{ l(x)
s
<t}dxPs(ds)

=︸︷︷︸
l(x)=(K|x|)β

λ

∫
R2×R+

1|x|< (ts)
1
β

K


dxPs(ds)

= λ

∫
R+

π(st)
2
β

K2
Ps(ds)

=
λπE

[
S

2
β

]
K2

t
2
β , (1)

which was the claim.
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Consequences of Lemma 1.

Due to Lemma 1., the distribution of the propagation loss
process Θ is invariant w.r.t. the distribution of the
shadowing/fading random variable S having the same given

value of the moment E
[
S

2
β

]
.

In particular: the in�nite Poisson network with arbitrary
shadowing variable S is perceived at the origin in the same
manner as an equivalent in�nite Poisson with constant

shadowing sconst = E
[
S

2
β

]β
2
.

Constant shadowing is equivalent to the model with no
shadowing (only distance loss, S ≡ 1) and the constant K
replaced by K̃ = K√

E
[
S

2
β

] .
Application of Lemma 1: the usual models for wireless networks
(e.g. log-normal shadowing, Rayleigh fading) satisfy

E
[
S

2
β

]
<∞.
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De�nitions of SIR, SINR, STIR, STINR processes

SINR process Ψ on R+: Signal to (interference plus noise) ratio.
STINR process Ψ′ on (0, 1]: Signal to (total received power plus
noise) ratio.

Ψ = {Z} :=

{
Y −1

W + (I − Y −1)
: Y ∈ Θ

}
,

Ψ′ =
{
Z ′
}

=

{
Y −1

W + I
: Y ∈ Θ

}
,

where W ≥ 0 is the noise power (constant in our model),

Yi = l(Xi)
SXi

are the points of propagation loss process and

I =
∑
Y ∈θ

Y −1 is the power received from the whole network.

Information on Ψ′ ⇔ information on Ψ, by Z = Z′

1−Z′ and

Z ′ = Z
1+Z . (Working with Ψ′ is algebraically simpler.)

STIR: STINR without noise, SIR: SINR without noise (W = 0).
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Size-biased permutations

In this section, we follow PY, the fundamental paper on the
two-parameter Poisson�Dirichlet distribution, published in 1997.
General setting: we consider probability distributions (Vn) with
the properties:

(Vn) = (V1, V2, . . .), V1 > V2 > . . . > 0,

∞∑
n=1

Vi = 1. (2)

For (Vn) as in (2), Ṽ1 is called a size-biased pick from (Vn) if

P(Ṽ1 = Vn|V1, V2, . . .) = Vn, ∀n ∈ N. (3)

Then, we call (Ṽn) a size-biased permutation of (Vn) if Ṽ1 is a
size-biased pick from (Vn), and for each n = 1, 2, . . ., j = 1, 2, . . .
the following is true:

P(Ṽn+1 = Vj |Ṽ1, Ṽ2, . . . , Ṽn, V1, V2, . . .) =
Vj1{∀1≤i≤n Vj 6=Ṽi}

1−
n∑
i=1

Ṽi

.
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1−
n∑
i=1

Ṽi
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1−
n∑
i=1

Ṽi
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Invariance with respect to size-biased permutation

Let us consider the so-called stick-breaking model or residual
allocation model (Ṽn) for some sequence of independent
real-valued random variables (Un):

Ṽ1 := U1, Ṽn := (1− U1) · · · (1− Un−1)Un (n ≥ 2). (4)

Note that (Ṽn) is a distribution.

When is the distribution of (Ṽn) invariant w.r.t. size-biased
permutation (ISBP), i.e., when does it hold that (Ṽn) equals its
SBP in distribution?
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SBP in distribution?



The SINR process The two-parameter Poisson�Dirichlet process Consequences

Reminder on the Beta distributions

Recall that for a, b > 0 the Beta(a, b) distribution has density
Γ(a+b)

Γ(a)Γ(b)x
a−1(1− x)b−11[0,1](x).

If a = k ∈ N, b = (n+ 1)− k with k ≤ n ∈ N, the Beta(a, b)
distribution with density

n!

(k − 1)!(n− k)!
xk−1(1− x)n−k1(0,1)(x)

0

| | | |

x−∆x

| |

x+ ∆x

| | | |
1n elements in total

k − 1 elements 1 element n− k elements

is the distribution of the kth smallest element of the order
statistics of an i.i.d. sample of size n from the uniform
distribution on (0, 1).
I.e., let Y1, Y2, . . . , Yn ∼ U(0, 1) be i.i.d. Let Xk be the kth smallest one of

Y1, . . . , Yn, then 0 < X1 < . . . < Xn < 1. Then Xk ∼Beta(k, (n+ 1− k)).
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De�nition of the PD(α, θ) distribution
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Ṽ1 := U1, Ṽn := (1− U1) · · · (1− Un−1)Un (n ≥ 2). (5)
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De�nition of the PD(α, θ) distribution

Let us consider the so-called stick-breaking model or residual
allocation model (Ṽn) for some sequence of independent
real-valued random variables (Un):

Ṽ1 := U1, Ṽn := (1− U1) · · · (1− Un−1)Un (n ≥ 2). (5)

Note that (Ṽn) is a distribution.
When is the distribution of (Ṽn) invariant w.r.t. size-biased
permutation (ISBP), i.e., when does it hold that (Ṽn) equals its
SBP in distribution?

Proposition (Pitman 1996)

For independent (Un), in the stick-breaking model (5), (Ṽn) is

ISBP if and only if Un has Beta(1− α, θ + nα) distribution ∀n,
where 0 ≤ α < 1 and θ > −α.

In this case, the distribution of (Ṽn) is called two-parameter
Poisson�Dirichlet distribution with parameter (α, θ), denoted as
PD(α, θ).
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De�nition of the PD(α, θ) process

Equivalent de�nition of the PD(α, θ) distribution in PY:

De�nition

For 0 ≤ α < 1, θ > −α and (Un) with Un ∼Beta(1− α, θ + nα)
independent, consider the (Ṽn) stick-breaking model as in (5),
and let V1 ≥ V2 ≥ . . . be the decreasing order statistics of (Ṽn).
Then we call the distribution of (Vn) Poisson�Dirichlet

distribution with parameters (α, θ), abbreviated as PD(α, θ).

In this case, (Un), (Vn) and (Ṽn) have the same joint
distribution (as a consequence of the ISBP property), and (Ṽi)
is a size-biased permutation of (Vi). See PY, Section 1.1.
We associate a point process ξ =

∑
i δVi to (Vn) on (0,∞), this

is the PD(α, θ) point process. See: Handa 2009.
E.g. ξ([t,∞)) = 0 means that V1 < t. Thus, (Vn) equals in
distribution with the point process ξ.
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Then we call the distribution of (Vn) Poisson�Dirichlet

distribution with parameters (α, θ), abbreviated as PD(α, θ).

In this case, (Un), (Vn) and (Ṽn) have the same joint
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Subordinators without drift components

Subordinators → description of the relation between the PD
and the STIR process.

A subordinator (τs)s≥0 is an almost surely increasing process
with stationary independent increments and cadlag
(right-continuous, left limits) paths. W.l.o.g., τ0 = 0.
Assume now: the subordinator has no drift component (i.e., it
has only jumps. The jumps are positive, they may accumulate).
The jumps of the subordinator: (τs − τs−)s≥0 form a Poisson
point process on (0,∞), let sΛ(dx) be its intensity measure.
Denote the jumps of the subordinator on (0, s) in decreasing
order by V1(τs) ≥ V2(τs) ≥ . . . Clearly, τs =

∑∞
i=1 Vi(τs).

Recall: Laplace functional of a Poisson p.p. Φ with intensity Λ(dx):

LΦ(f) = E
[
e−

∫
R f(x)dΦ(x)

]
= exp

(
−
∫
R

(1− e−f(x))Λ(dx)

)
Thus, the Laplace transform of the subordinator can be given as:

E[exp(−λτs)] = exp

−s ∞∫
0

exp(−λx)Λ(dx)

 .

(Ito 1942)
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Illustration of the subordinator and the Poisson point
process of its jumps

0

• ◦

•

V2

•

◦

•

V1

◦

• ◦
V3

| | |
s

• ◦

• ◦

• ◦

•

-

-

-

-

-

-

-

1

2

3

4

V3

V2 + V3

V1 + V2 + V3

Poisson of jumps

τs(ω)

Locations of jumps → Poisson process of jumps (τs − τs−).
Sum of these locations up to time s equals τs.
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Stable (α) subordinators. Relation to the PD process

Let 0 < α < 1. Then we call (τs) a stable (α) subordinator if
Λ = Λα, where Λα with Λα(x,∞) = Cx−α (x > 0), thus
Λα(dx) = Dx−α−1. Then we have that

E[exp(−λτs)] = exp(−sKλα),

where K = CΓ(1− α).
A crucial observation (in PY, referring to several other papers)
is the following.

Proposition (PY, Proposition 6.)

If (τs) is a stable (α) subordinator for some 0 < α < 1, then

∀s > 0,
(
V1(τs)
τs

, V2(τs)
τs

, . . .
)
has PD(α, 0) distribution.

Also for every �xed t > 0,
(
V1(t)
t , V2(t)

t , . . .
)
has PD(α, 0)

distribution.

This relates the STIR process to the PD process.
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Subordinator representation with α:= 2
β

Now turn back to the STINR process.
By Lemma 1 of BKK, the signals from all the base stations, or,
equivalently, the inverse values Y −1

i of the propagation process

Θ = { l(Xi)

SXi)
}i∈N

form an inhomogeneous Poisson process with intensity measure

2a
β t
−1−2/βdt. (Here a = λπE(S

2
β )

K2 , as in Lemma 1.)

(This simply follows by writing ΛΘ−1(( 1
t ,∞]) = ΛΘ([0, t)) and then

di�erentiating the cumulative distribution function.)

Hence, if we set s = 1, α = 2
β and C = a, then the jumps that

the stable (α) subordinator (τs) makes in (0, s) can be identi�ed
with these signal values Y −1

i . Thus, τ1 represents the total
received power I in our Poisson model, with Laplace transform

E[exp(−λτ1)] = E[exp(−λI)] = exp[−aΓ(1− 2/β)λ2/β].
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STIR is PD( 2
β , 0).

(Main observation of KB.)

Thus, the subordinator representation of the Poisson�Dirichlet
process relates the PD(α, 0) process to our STIR process {Z ′i}
(STINR without noise, W=0) as follows.
If {Y(i)} denote the increasing order statistics of {Y }, and {Z ′(i)}
denote the decreasing order statistics of {Z ′}, then we have:

Proposition

Assume W = 0.
Then the sequence of elements of the STIR process {Z ′(i)} equals
{Vi} in distribution for α = 2

β , θ = 0. I.e, the STIR process Ψ′ is

a PD( 2
β , 0) point process.

This is now clear by τ1 = I =
∞∑
n=1

Y −1
(n) =

∞∑
n=1

Vn(τ1) and(
Z ′(i)

)
=

(
Y −1

(i) /

( ∞∑
n=1

Y −1
(n)

))
, which has, by PY, PD( 2

β , 0) distr.
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Illustration: the randomized access policy

The fact that {Ṽi}(
d
= {Z ′(i)}) form a size-biased permutation of

{Vi}, can be also interpreted regarding the STIR process →
randomized access policy.

1. The typical user chooses a base station randomly, picking a
station i with a bias proportional to Y −1

i (signal strenght).
Then its STIR, w.r.t. chosen station, has the distribution of
Ṽ1, i.e., Beta(1− 2

β ,
2
β ). /See soon why this is true!/

2. Second user in the same position chooses according to the
same rule, but excluding the station already chosen by the
�rst user. Then the joint distribution of the STIR's
experienced by these two users is equal to the distribution
of the random pair (Ṽ1, Ṽ2).

. . . and so on, the model can be extended to arbitrarily many
users.

This and the corresponding evaluation of the STIR values is of
potential interest for managing user hotspots.
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3 Consequences
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Plan: prove results for the PD process (proofs obtained from
PY) → apply the results directly to the S(T)I(N)R process (as
in KB).
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Ratios of consecutive STINR values

First goal: the ratios of consecutive STINR values
Z′(i+1)

Z′
(i)

have beta

distributions. For this, we refer to PY and �rst prove the following:

Proposition (PY, Proposition 10.)

Suppose (Vn) has PD(α, 0) distribution for some 0 < α < 1.

(i) The limit L := limn→∞ nV αn exists both a.s. and in Lp, ∀p ≥ 1.

(ii) For Σ =
(
L
C

)− 1
α , δn = VnΣ, we have that Σ has the same

stable(α) distribution as τ1 ((τs) is a stable (α) subordinator),
the δn are the ranked points of a Poisson point process with
intensity measure Λα(x,∞) = Cx−α for x > 0, and (Vn) can be
represented as Vn = δn

Σ , where Σ =
∑
k δk,

(iii) Let Xn := Λα(δn,∞) = Cδ−αn = LV −αn .
Then the X1 < X2 < . . . are the points of a homogeneous Poi(1)
point process on (0,∞), i.e., Xi = ε1 + . . .+ εi, ∀i ≥ 1, where
(εi) are independent Exponential(1) random variables, and (Vn)

can be represented in the terms of (Xn) as Vn = (Xn)−
1
α∑

m
X
− 1
α

m

.
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Proof of Proposition 10. Part I.

Proof.

It is enough to prove the assertions (i)�(iii) for any particular
sequence (Vn) with PD(α, 0) distribution.

Hence

Let Vn = Vn(τ1)
τ1

for a stable (α) subordinator. First, let us
prove the assertions (i)�(iii) modi�ed, with the de�nitions of Σ, L, δn
replaced by L := Cτ−α1 ,Σ = τ1, δn := Vn(τ1). (6)

Then the modi�ed form of (ii):

Σ
d
= τ1, δn are the ranked points of a Poisson process with intensity

Λα(x,∞) = Cx−α for x > 0, and Vn = δn
Σ , where Σ =

∑
k δk,

follows since Vn(τ1) are the ranked points of an inhomogeneous
Poisson process with intensity Λα(dx) on (0,∞). The modi�ed form
of (iii):

Xn := Λα(δn,∞) = Cδ−αn = LV −αn are ranked points of a homoge-

neous Poisson process, and Vn =
(

(Xn)−
1
α

)
/

(∑
m
X
− 1
α

m

)
follows by reducing the inhomogeneous Poisson process Λα(dy) on
(0,∞) to a homogeneous one dx on (0,∞) via a change of variables.

Indeed: E[]{Y −αi ≤ s}] = E[]{Yi ≥ s−1/α}] =
∞∫

s−1/α

Cαt−α−1dt = s.

Risks sometimes have to be taken.
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Poisson process with intensity Λα(dx) on (0,∞).

The modi�ed form
of (iii):

Xn := Λα(δn,∞) = Cδ−αn = LV −αn are ranked points of a homoge-

neous Poisson process, and Vn =
(

(Xn)−
1
α

)
/

(∑
m
X
− 1
α

m

)
follows by reducing the inhomogeneous Poisson process Λα(dy) on
(0,∞) to a homogeneous one dx on (0,∞) via a change of variables.

Indeed: E[]{Y −αi ≤ s}] = E[]{Yi ≥ s−1/α}] =
∞∫

s−1/α

Cαt−α−1dt = s.

Risks sometimes have to be taken.
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Proof of Proposition 10. Part II.

Proof.

Then, since Xn = ε1 + . . .+ εn with εi ∼ Exp(1) i.i.d.,
Xn
n −→

n→∞
1 a.s. by the strong law of large numbers, we see that

a.s. convergence in the modi�ed version of (i) holds:

nV α
n −→n→∞ L, P-a.s.,

(argument from Kingman 1975).

Now consider again the random variables de�ned in (6):

L := Cτ−a1 ,Σ = τ1, δn := Vn(τ1).

They can be recovered from L via the original form of the

de�nitions of (ii): Σ =
(
L
C

)− 1
α , δn = VnΣ. This implies that

(i)�(iii) hold for any sequence (Vn) with PD(α, 0) distribution
. . . except that nV α

n −→n→∞ L in Lp, which comes after two slides.

Hülye, aki elolvassa
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Ratios of consecutive values of the PD(α, 0) distribution
Using Prop. 10, it is easy to prove that the ratios of consecutive
values of the PD(α, 0) distribution have beta distributions.

Proposition (PY, Proposition 8.)

Suppose that (Vn) has PD(α, 0) distribution for some 0 < α < 1.
Let Rn := Vn+1

Vn
.

Then the Rn are mutually independent, and Rn has Beta(nα, 1)
distribution, i.e. P(Rn ≤ r) = rnα (0 ≤ r ≤ 1).

Proof.

With the notation of Proposition 10, we have:

L = lim
n→∞

nV α
n (P-a.s. and in Lp), Σ =

(
L
C

)− 1
α , δn = VnΣ. Thus

Rn =
Vn+1

Vn
=
δn+1

δn
=

(
Xn

Xn+1

) 1
α

.

Change of variables ⇒ the proposition holds because the ratios
of consecutive values Xn/Xn+1 of a homogeneous Poi(1) process
on [0,∞) are independent and Beta(n, 1) distributed.
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A useful corollary

Since (Vn) can be recovered from (Rn):

V1 =
1

1 +R1 +R1R2 +R1R2R3 + . . .
, Vn+1 = V1R1 . . . Rn for n ≥ 1,

the next corollary is immediate from proposition 8 of PY:

Corollary

Suppose (Rn) is a sequence of independent random variables

with Rn ∼ Beta (nα, 1) for all n ≥ 1 and for some 0 < α < 1.
Then (Vn) de�ned as above has PD(α, 0) distribution.
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Proof of Proposition 10. Part III. Convergence in Lp.

Now we prove the Lp-convergence in Proposition 10. (i).

This proof takes part in the talk optionally.

For X1 < X2 < . . ., the points of a homogeneous Poisson
process with parameter 1 on [0,∞), we have:

E [f(Xm+1, Xm+2, . . .)] =
1

m!
E [Xm

1 f(X1, X2, . . .)]

for any m ∈ N+ and f non-negative and measurable function.
First: this claim holds for any m with f = f(Xm+1) because
Xm+1 has density xm

m! e
−x, while X1 has density e−x (on [0,∞)).

Then, using the independence and stationarity of the increments
of the Poisson(1) process, denoting the cumulative distribution
function of the random variable Z by FZ , we have:

FXm+1,Xm+2(x, y) = FXm+1,Xm+2−Xm+1(x, y − x)

= FXm+1(x)FXm+2−Xm+1(y−x) = FX1(x)
xm

m!
FX2−X1(y−x) =

xm

m!
FX1,X2(x, y).

Generalize this proof ⇒ the claim holds, also for f with
in�nitely many arguments.

E [f(Rm+1, Rm+2, . . .)] = 1
m!E [Xm

1 f(R1, R2, . . .)], where
X1 = lim

n→∞
n(R1 . . . Rn)α a.s.

E [f(Rm+1, . . . , Rm+n)] =

(
n+m

m

)
E(R1R2 · · ·Rn)mαf(R1, . . . , Rn).

Thus, E [Xm
1 |R1, . . . , Rn] = (n+m)!

n! (R1 . . . Rn)mα.
As a corollary of Prop. 8., the random vector (R1, . . . , Rn) is
independent of the random sequence (Xn+1, Xn+2, . . .), ∀n ≥ 1.
Then, X1/(R1 . . . Rn)α = Xn+1.
Xn+1 ∼Gamma(n+ 1) and it is independent of σ(R1, . . . , Rn).
(This holds by Proposition 10. (iii) Xn+1 is the (n+ 1)th smallest point of

a homogeneous Poisson(1) process.)
Thus, with m = 1: E [X1|σ(R1, . . . , Rn)] = (n+ 1)Xn+1.
Hence (nXn)n=1,2,... is an L

p-bounded martingale for all p ≥ 1.
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Proof of Proposition 10. Part III. Convergence in Lp.
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Vn+1
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δn
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Xn

Xn+1

) 1
α
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n(R1 . . . Rn)α a.s.
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Then, X1/(R1 . . . Rn)α = Xn+1.
Xn+1 ∼Gamma(n+ 1) and it is independent of σ(R1, . . . , Rn).
(This holds by Proposition 10. (iii) Xn+1 is the (n+ 1)th smallest point of

a homogeneous Poisson(1) process.)
Thus, with m = 1: E [X1|σ(R1, . . . , Rn)] = (n+ 1)Xn+1.
Hence (nXn)n=1,2,... is an L

p-bounded martingale for all p ≥ 1.
By Doob's martingale convergence theorem,
lim
n→∞

n(R1 . . . Rn)α = X1 in Lp, ∀p ≥ 1.

Proof of the Lp convergence in Prop.10.(i) is analogous.
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Ratios of consecutive elements from the STINR process 1.

Now, we apply the previous propositions of PY for the PD(α, 0)
process � with α = 2

β � to the STIR process.
Recall: Y(i) are the increasing order statistics of the propagation
process {Y }, Z ′(i) are the decreasing order statistics of the

STINR process {Z ′}. For any n ≥ 1,
Z′

(i+1)

Z′
(i)

=
Y(i)

Y(i+1)
holds.

Proposition (KB, Proposition 5.)

For the STINR process Ψ′ (W ≥ 0), the random variables

Ri :=
Z′

(i+1)

Z′
(i)

=
Y(i)

Y(i+1)
have, respectively, Beta(2i

β , 1) distributions,

furthermore Ri are mutually independent.

Proof.

Proposition 8. of PY implies the claim in the case W = 0 (the
STIR process is PD( 2

β , 0)). Since Ri is a ratio of Y(i) values, this
result is invariant under the noise term W .
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Ratios of consecutive elements from the STINR process 2.

Proposition (KB, Proposition 9.)

For the STINR process Ψ′ (W ≥ 0), we have

W
I = (

∞∑
i=1

Z ′(i))
−1

− 1 and W + I = (Lα )
−β
2 , where the limit

L := lim
i→∞

i(Z ′(i))
2
β both exists almost surely and in Lp, ∀p ≥ 1.

Here the �rst claim is trivial. Proposition 10 (part (i)) of
PY yields the latter claim for STIR process, and noise
invariance in the previous proposition implies that the claim is
also true for the STINR process.
Application: received power and noise values can be recovered
from SINR measurements!
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Factorial moment measures

1 The SINR process
In�nite Poisson model. Lemma 1 of BKK

2 The two-parameter Poisson�Dirichlet process
De�nition from size-biased permutations
Relation to stable (α) subordinators
STIR process is PD( 2

β , 0)

3 Consequences
Ratios of consecutive STINR values have beta distributions
Factorial moment measures
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Factorial moment measures

For any point process ξ = {Ui} taking values in R, the nth
factorial measure (a.k.a. nth correlation measure) of ξ, is a
σ-�nite measure µn such that for any non-negative measurable
functions f on R, if this measure exists (see Handa 2009):

E

 ∑
i1,...,in
distinct

f(Xi1 , . . . , Xin)

 =

∫
Rn
f(x1, . . . , xn)µn(dx1 . . . dxn).

For the STINR process {Z ′}, n ≥ 1, we de�ne equivalently the
nth factorial moment measure

M ′(n)(t′1, . . . , t
′
n) = M ′(n)((t′1, 1]× . . .× (t′n, 1]) as follows:

M
′(n)(t′1, . . . , t

′
n) = E

 ∑
(Z′1,...,Z

′
n)∈(Ψ′)×n

distinct

n∏
j=1

1{Z′j>t′j}

 .

The equivalent measure for the SINR process Ψ = {Z} is
de�ned analogously, but on (t1,∞]× . . .× (tn,∞].
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The factorial moment measure of the STINR process I.

The factorial measure moments of both the SINR and the
STINR processes require two integrals. For n ≥ 1, x, xi ≥ 0 we
de�ne the following two integrals:

In,β(x) =

2n
∞∫
0

u2n−1e
−u2−uβxΓ(1− 2

β
)−β/2

du

βn−1(C′(β))n(n− 1)!
, with C′(β) = Γ(1+

2

β
)Γ(1− 2

β
),

In,β(x1, . . . , xn) =

1 +
n∑
j=1

xj

n

∫
[0,1]n−1

n−1∏
i=1

v
i( 2
β

+1)−1

i (1− vi)
2
β

n∏
i=1

(xi + ηi)
dv1 . . .dvn−1,

where η1 = v1 . . . vn−1, η2 = (1− v1)v2 . . . vn−1,

η3 = (1− v2)v3 . . . vn−1, . . . , ηn = 1− vn−1.

Closed forms of the integrals In,β(x) and In,β(x1, . . . , xn) are in
general not known, but for n ≤ 20 the integrals are numerically
tractable.
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The factorial moment measure of the STINR process II.

Proposition

For t′i ∈ [0, 1], the factorial moment measure of order n ≥ 1 of

the STINR process Ψ′ can be written as

M ′(n)(t′1, . . . , t
′
n) =

(
n∏
i=1

∧
t
− 2
β

i

)
In,β(Wa−

β
2 )In,β(

∧
t1, . . . ,

∧
tn)1∆n(t′1, . . . , t

′
n).

Here ∆n = {(x1, . . . , xn) ∈ Rn| x1, . . . , xn ≥ 0,
∑n

i=1 xi = 1} is

the closed unit simplex in Rn and
∧
ti =

∧
ti(t
′
1, . . . , t

′
n) =

t′i
n∑
j=1

t′j

.

Moreover, for ti ∈ (0,∞) the SINR process Ψ has the factorial

moment measure M (n)(t1, . . . , tn) = M ′(n)(t′1, . . . , t
′
n), where

t′i = ti
1+ti

, ti =
t′i

1−t′i
.

Proof: using coordinate changes and the memoryless property of the

exponential distribution, see Blaszczyszyn�Keeler, 2014.

Observe factorization of the noise contribution!
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Factorial moment measures of the STINR process III.

It is easy to prove that for n ≥ 1, In,β(0) = 2n−1

βn−1(C′(β))n
.

Consequently, if M
′(n)
0 and M

(n)
0 are resp. the factorial moment

measures of the STIR and SIR processes, i.e., M ′(n) and M (n)

with W = 0, then

M ′(n)(·) =
In,β(Wa−β/2)

In,β(0)
M
′(n)
0 (·), Mn(·) =

In,β(Wa−β/2)

In,β(0)
M

(n)
0 (·).

Problem: how to di�erentiate this measure? What is the
factorial moment density (a.k.a. correlation function) of the
STIR process?
Solution (in KB:) instead of di�erentiation, use the
Poisson�Dirichlet description of the STIR process!



The SINR process The two-parameter Poisson�Dirichlet process Consequences

Factorial moment measures of the STINR process III.

It is easy to prove that for n ≥ 1, In,β(0) = 2n−1

βn−1(C′(β))n
.

Consequently, if M
′(n)
0 and M

(n)
0 are resp. the factorial moment

measures of the STIR and SIR processes, i.e., M ′(n) and M (n)

with W = 0, then

M ′(n)(·) =
In,β(Wa−β/2)

In,β(0)
M
′(n)
0 (·), Mn(·) =

In,β(Wa−β/2)

In,β(0)
M

(n)
0 (·).

Problem: how to di�erentiate this measure? What is the
factorial moment density (a.k.a. correlation function) of the
STIR process?
Solution (in KB:) instead of di�erentiation, use the
Poisson�Dirichlet description of the STIR process!



The SINR process The two-parameter Poisson�Dirichlet process Consequences

Factorial moment measures of the STINR process III.

It is easy to prove that for n ≥ 1, In,β(0) = 2n−1

βn−1(C′(β))n
.

Consequently, if M
′(n)
0 and M

(n)
0 are resp. the factorial moment

measures of the STIR and SIR processes, i.e., M ′(n) and M (n)

with W = 0, then

M ′(n)(·) =
In,β(Wa−β/2)

In,β(0)
M
′(n)
0 (·), Mn(·) =

In,β(Wa−β/2)

In,β(0)
M

(n)
0 (·).

Problem: how to di�erentiate this measure? What is the
factorial moment density (a.k.a. correlation function) of the
STIR process?

Solution (in KB:) instead of di�erentiation, use the
Poisson�Dirichlet description of the STIR process!



The SINR process The two-parameter Poisson�Dirichlet process Consequences

Factorial moment measures of the STINR process III.

It is easy to prove that for n ≥ 1, In,β(0) = 2n−1

βn−1(C′(β))n
.

Consequently, if M
′(n)
0 and M

(n)
0 are resp. the factorial moment

measures of the STIR and SIR processes, i.e., M ′(n) and M (n)

with W = 0, then

M ′(n)(·) =
In,β(Wa−β/2)

In,β(0)
M
′(n)
0 (·), Mn(·) =

In,β(Wa−β/2)

In,β(0)
M

(n)
0 (·).

Problem: how to di�erentiate this measure? What is the
factorial moment density (a.k.a. correlation function) of the
STIR process?
Solution (in KB:) instead of di�erentiation, use the
Poisson�Dirichlet description of the STIR process!



The SINR process The two-parameter Poisson�Dirichlet process Consequences

Factorial moment measures of the STINR process III.

It is easy to prove that for n ≥ 1, In,β(0) = 2n−1

βn−1(C′(β))n
.

Consequently, if M
′(n)
0 and M

(n)
0 are resp. the factorial moment

measures of the STIR and SIR processes, i.e., M ′(n) and M (n)

with W = 0, then

M ′(n)(·) =
In,β(Wa−β/2)

In,β(0)
M
′(n)
0 (·), Mn(·) =

In,β(Wa−β/2)

In,β(0)
M

(n)
0 (·).

Problem: how to di�erentiate this measure? What is the
factorial moment density (a.k.a. correlation function) of the
STIR process?
Solution (in KB:) instead of di�erentiation, use the
Poisson�Dirichlet description of the STIR process!



The SINR process The two-parameter Poisson�Dirichlet process Consequences

The factorial moment measure of the PD process I.

Reverted setting of the PD distribution (see PY):
For 0 ≤ α < 1 and θ > −α, if Ṽ1 is a size-biased pick (largest
element of the size-biased permutation) from (Vn), where (Vn)
has PD(α, θ) distribution, then Ṽ1 ∼ Beta(1− α, θ + α).
As a consequence of the ISBP property, it becomes easy to
calculate the factorial moment measures of the PD process!
For the �rst moment measure MPD(dt) we have:

∫ 1

0
f(Vi)MPD(dt) := E

[ ∞∑
i=1

f(Vi)

]
= E

[ ∞∑
i=1

Vi
f(Vi)

Vi

]

=
ISBP

E

[ ∞∑
i=1

f(Vi)

Vi
P
(
Ṽ1 = Vi

)]
= E

[
f(Ṽ1)

Ṽ1

]

=
Γ(θ + 1)

Γ(θ + α)Γ(1− α)

∫ 1

0
f(u)

(1− u)α+θ−1

uα+1
du. (7)

I.e., MPD(dt) = 1
tFṼi(dt), where Ṽi ∼ Beta(1− α, θ + α).
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The factorial moment measure of the PD process II.

By induction, we can compute the density of the factorial
moment measures of the PD(α, θ) processes. If α = 2

β , θ = 0:

Proposition

The nth factorial moment density (a.k.a. the nth correlation

function) of the PD( 2
β , 0) process Ψ′ (W ≥ 0) is given by

µ(n)(t′1, . . . , t
′
n) := (−1)n

∂nM ′(n)(t′1, . . . , t
′
n)

∂t′1 . . . ∂t
′
n

= cn, 2
β
,0

(
n∏
i=1

t
′−( 2

β
+1)

i

)1−
n∑
j=1

t′j

 2n
β
−1

for (t′1, . . . , t
′
n) ∈ ∆n and zero elsewhere.

Using the beta distributions of the independent {Un} for the
stick-breaking model, see Handa 2009.
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Factorial moment density of the STINR process

Using that the STIR process is PD( 2
β , 0) and the noise

factorization in the factorial moment measures of the STINR
process, we get:

Proposition (KB, Proposition 10.)

The nth factorial moment density of the STINR process Ψ′

(W ≥ 0) is given by

µ(n)(t′1, . . . , t
′
n) := (−1)n

∂nM ′(n)(t′1, . . . , t
′
n)

∂t′1 . . . ∂t
′
n

= cn, 2
β
,0

In,β(Wa−β/2)

In,β(0)

(
n∏
i=1

t
′−( 2

β
+1)

i

)1−
n∑
j=1

t′j

 2n
β
−1

for (t′1, . . . , t
′
n) ∈ ∆n and zero elsewhere.
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Using the factorial moment measures of the STINR

The expectation of a general function of the STINR process can
be computed as follows (see e.g. Blaszczyszyn�Keeler 2014):

E[φ(Ψ′)] = φ(∅) +

∞∑
n=1

∫
(0,1)n

φt′1,...,t′nµ
(n)(t′1, . . . , t

′
n)dt′1 . . . dt

′
n,

where φt′1,...,t′n are given by the inclusion-exclusion principle, i.e.

φt′1 = φ({t′1})− φ(∅),

φt′1,t′2 =
1

2
φ({t′1, t′2})− φ({t′1})− φ({t′2}) + φ(∅), . . .

φt′1,...,t′n =
1

n!

n∑
k=0

(−1)n−k
∑

t′i1
,t′i2

,...t′ik
distinct

φ({ti1 , . . . , tik}). (8)

Remark: another result of Handa 2009 ⇒ KB �nds the joint
density of (Z(1), . . . , Z(m)). Here not only PD(α, 0), but
PD(α, θ) needed for the computations!
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Summary

A reasonable way to model wireless networks and to describe
propagation is to assume that the locations of the base stations
form a homogeneous Poisson point process on R2.

In this content, among certain assumptions to the distributions
of the power values, the propagation (loss) process becomes
another �inhomogeneous� Poisson point process
→ about this we proved Lemma 1. of BKK.
In this content, we de�ned the SI(N)R, STI(N)R processes.
The paper KB establishes the relation between the SINR
process of wireless networks and the two-parameter
Poisson�Dirichlet process.
⇒ new properties of the S(T)I(N)R processes that had not been
known before, applying results from the paper PY. Among these
we have seen:

the ratios of consecutive STINR values have beta distr.

the factorial moment density of the STINR process.
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