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We investigate a model of continuous-time simple random walk paths
in Zd undergoing two competing interactions: an attractive one towards the
large values of a random potential, and a self-repellent one in the spirit of
the well-known weakly self-avoiding random walk. We take the potential to
be i.i.d. Pareto-distributed with parameter α> d, and we tune the strength of
the interactions in such a way that they both contribute on the same scale as
t→∞.

Our main results are (1) the identification of the logarithmic asymptotics
of the partition function of the model in terms of a random variational for-
mula, and, (2) the identification of the path behaviour that gives the over-
whelming contribution to the partition function for α> 2d: the random-walk
path follows an optimal trajectory that visits each of a finite number of ran-
dom lattice sites for a positive random fraction of time. We prove a law of
large numbers for this behaviour, i.e., that all other path behaviours give
strictly less contribution to the partition function. The joint distribution of
the variational problem and of the optimal path can be expressed in terms of
a limiting Poisson point process arising by a rescaling of the random poten-
tial. The latter convergence is in distribution and is in the spirit of a standard
extreme-value setting for a rescaling of an i.i.d. potential in large boxes, like
in (KLMS09).
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1. Introduction and main results. In the last decades, there was a significant interest
in the study of random motions that are attracted to certain regions defined by a surrounding
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random medium. The most-studied type of models is called a random motion in a random
potential, which appears in the study of the parabolic Anderson model (PAM). The methods
have been refined and extended significantly in recent years, and a number of specific models
have been successfully treated in detail. The present paper makes a contribution to this line of
research by studying a model that combines attraction with repulsion and shows, as a result,
a much more pronounced behaviour.

We explain the model and the main purpose in Section 1.1. The crucial rescaling that we
take explained in Section 1.2, in which we also introduce our main objects of interest. The
key variational formula and the main results are presented in Section 1.3. In Section 1.4 we
provide some heuristic explanations for our results. The remainder of the paper is described
in Section 1.5. Remarks on the literature are given in Section 1.6.

1.1 The model and main purpose
Let d ∈N and ξ = (ξ(z))z∈Zd be a random potential with distribution P that consists of i.i.d.
random variables. Let P be the law of a continuous-time simple random walk X = (Xs)s≥0

on the lattice Zd with generator the discrete Laplacian ∆ starting from the origin. We take into
account two types of microscopic interactions. The random walk interacts with the random
field ξ and undergoes a self-repulsion of strength β. This leads us to associate with every
trajectory X the Hamiltonian

(1.1) H (ξ,β)

t (X) =

∫ t

0
ξ(Xs) ds− β

∫ t

0

∫ t

0
1{Xs=Xu} ds du,

where β ∈ [0,∞) is the intensity of the self-repulsion. The first term is the interaction with
the random potential ξ, the second is the self-intersection local time (SILT), the amount of
time pairs at which the random walk is at the same site. We introduce a polymer measure
P(ξ,β)

t that is absolutely continuous with respect to P (more precisely, to its restriction to paths
on [0, t]) with Radon-Nikodym derivative given by

(1.2)
dP(ξ,β)

t

dP
(X) =

eH
(ξ,β)
t (X)

Z(ξ,β)

t

,

where the normalizing constant Z(ξ,β)

t = E[eH
(ξ,β)
t ] is the partition function of the model. We

call this model the weakly self-avoiding random walk in a random potential. We want to
study its large-t behaviour.

When β = 0, the Feynman–Kac formula shows that Z(ξ,0)

t equals the total mass U(t) =∑
x∈Zd u(t, x) of the solution u to the parabolic Anderson model (PAM), the heat equation

with random potential ξ:

∂tu(t, x) =∆u(t, x) + ξ(x)u(t, x), x ∈ Zd,

with localised initial condition u(0,0) = 1 and u(0, x) = 0 for x ∈ Zd \ {0}. On the other
side, with ξ = 0 and β > 0, P(0,β)

t is the law of a weakly self-avoiding walk in continuous
time. Since the SILT is not an additive functional, there is no obvious connection between
this model and any partial differential equation.

It is clear that the Hamiltonian is a function of the walker’s local times ℓt, given by

ℓt(z) = ℓ(X)

t (z) =

∫ t

0
1{Xs = z} ds, z ∈ Zd.(1.3)

Indeed,

(1.4) H (ξ,β)

t (X) =
∑
z∈Zd

ξ(z)ℓt(z)− β
∑
z∈Zd

ℓt(z)
2 = ⟨ξ, ℓt⟩ − β∥ℓt∥22,
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where we wrote ⟨·, ·⟩ for the standard inner product on Zd and ∥ · ∥2 for the standard ℓ2-norm
on Zd.

In earlier work on the PAM, it turned out that the model is the easier to analyse and
the resulting picture is more pronounced for heavy-tailed potentials. Here we will assume
that the potential variables ξ(z) at all sites z ∈ Zd are independently Pareto-distributed with
parameter α> d, i.e., have the distribution function

(1.5) F (r) =P[ ξ(z)≤ r ] = 1− r−α, r ≥ 1.

In particular, we have ξ(z) ≥ 1 for all z ∈ Zd, almost surely. This is the most heavy-tailed
distribution for which the PAM is well defined; indeed, (GM90, Theorem 2.1) says that α> d
is necessary and sufficient for the partition function for β = 0 to be finite. Hence, by positivity
of the self-interaction our model is well-defined for any β ≥ 0.

In (KLMS09), it turned out that the typical behaviour of the random walk in the polymer
measure for β = 0 is to rush quickly to one of the peak points of the potential and to spend the
remainder of the time in it, and the highest peak sites form a rescaled Poisson point process
in the spirit of spatial extreme-value theory. Now we add a self-repellent force and show that
the picture is much more pronounced. Indeed, the typical path in our polymer model visits
not only one of these peak sites, but several of them after each other, spending a specified
amount of time in them each. We will describe this behaviour in terms of a random variational
problem, defined on a Poisson point process that we introduce below.

1.2 Rescaling and point measures
It is the purpose of this paper to study the counterplay between the effects coming from the
two terms in the Hamiltonian and the underlying probability distribution of the walk. To make
sure that these three effects (i.e., attraction by the potential, self-repulsion and entropy – see
the heuristics in Section 1.4) all run on the same scale, we take β depending on t as follows.
Fix a parameter θ ∈ (0,∞) and set

(1.6) βt := θ
tq−1

(log t)q
, where q =

d

α− d
.

Note that q and the large-t behaviour of βt are increasing in α; for α ≤ 2d, we have that
βt→ 0 as t→∞. To reduce the amount of parameters, in the following we write

(1.7) H (ξ)

t :=H (ξ,βt)

t , Z(ξ)

t := Z(ξ,βt)

t , P(ξ)

t := P(ξ,βt)

t .

We denote by

(1.8) rt :=
( t

log t

)1+q

an important characteristic spatial length scale. More precisely, rt will turn out to be the
typical distance of the relevant islands from the origin at which we will find (Xs)s∈[0,t] with
high probability under P(ξ)

t . Furthermore, it will turn out that the largest potential values in
boxes of radius ≈ rt are of order rd/αt . It is convenient to express statements like these in
terms of point processes, i.e., random variables with values in the setMp((0,∞)× Rd) of
Radon measures on (0,∞)×Rd with values in N0 ∪ {∞}, also called point measures since
they are of the form

∑
n∈N δxn

with xn ∈ (0,∞)×Rd. The crucial point is that the rescaled
point process

(1.9) Πt =
∑
z∈Zd

δ( ξ(z)

r
d/α
t

, z

rt

)
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converges as t→∞ , weakly with respect to the vague topology inMp((0,∞)× Rd), to-
wards a Poisson point process (PPP) Π with intensity measure αf−1−α df ⊗ dy:

(1.10) Π∼ PPP
(
(0,∞)×Rd, αf−1−α df ⊗ dy

)
.

This is a basic result from spatial extreme-value analysis; see Lemma 2.4 for the precise
statement. We will often write the points in (0,∞)×Rd as (f, y). The process Π may also
be seen as a standard Poisson point process in Rd with Fréchet-distributed i.i.d. marks. We
will write the probability with respect to Π also by P.

In order to formulate the path behaviour of the walk in terms of the local times ℓt(x) =

ℓ(X)

t (x) =
∫ t
0 1{X(s) = x}ds, we need to rescale them in time by t and in space by rt. Those

rescaled local times are considered as a density with respect to Πt of the measure W (ξ,X)

t

defined by

(1.11)
dW (ξ,X)

t

dΠt
(f, y) =

ℓt(yrt)

t
, (f, y) ∈ (0,∞)×Rd,

where we have extended the local times to a function ℓt : Rd → [0, t] satisfying ℓt = 0 on
Rd \Zd. Note that

W (ξ,X)

t =
∑
z∈Zd

ℓt(z)

t
δ( ξ(z)

r
d/α
t

, z

rt

)
We will often omit the superscripts and write simply Wt for W (ξ,X)

t . It does not encode the
number nor the order of the visits of the random walk to the sites. Wt lies in the setW of all
measures µ on (0,∞)× Rd with total mass µ((0,∞)× Rd)≤ 1. Our main object of study
will be Wt. Certainly the rescaled local times are an object of high interest themselves, but
their behaviour may be deduced from that of Πt and Wt.

By using the identities

(1.12) r
d/α
t t= rt log t ( dα = 1− 1

1+q ) and βtt
2 = θrt log t,

from (1.4) it is easily seen that
(1.13)

H (ξ)

t (X) =
∑
z∈Zd

ξ(z)ℓt(z)− βt
∑
z∈Zd

ℓt(z)
2 =

∑
z∈ Zd

rt

tξ(zrt)
ℓt(zrt)

t
− βtt

2
∑
z∈ Zd

rt

(ℓt(zrt)
t

)2

= rt log t

∫
(0,∞)×Rd

[
fw(f, y)− θw(f, y)2

]
dΠt(f, y), with w =

dWt

dΠt
,

i.e., the Hamiltonian is an explicit functional of the rescaled local times and the point process
Πt. This is the starting point of our analysis.

1.3 Main results: convergence towards a variational formula
In this section we formulate and comment on the main results of our paper. In Theorem 1.2 (a)
we prove the asymptotic behaviour of the partition function Z(ξ)

t defined in (1.2) in terms of
a limiting variational formula Ξ, which we define in Definition 1.1 in terms of an energy and
entropy functional. In Theorem 1.2 (b) we show that for α > 2d, the rescaled local times
measure Wt of a typical trajectory sampled from the mixture of P and P(ξ)

t converges in
distribution to the maximizer of the variational formula.

Contrary to the parabolic Anderson model, which corresponds to θ = 0, this maximizer
is – with probability larger than 0 – not a Dirac measure. However, which may be quite
unexpected, the support of this maximizer is still finite. More precisely, the number of points
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in the support is a random variable which attains any value of N with positive probability.
Interestingly, the behaviour of this variational formula changes for α ∈ (d,2d), we comment
on this in Remark 1.9.

We introduce a few definitions of functionals and notation as a preparation for the state-
ments of our main result, Theorem 1.2.

DEFINITION 1.1. Let P ∈Mp((0,∞)×Rd). We define

(a) the energy functional ΦP : W→ [−∞,∞] by

ΦP(µ) :=

{∫
(0,∞)×Rd

[
fw(f, y)− θw(f, y)2

]
dP(f, y) if µ≪P,w = dµ

dP ,

−∞ otherwise,
(1.14)

(b) the entropy functional DP : W→ [0,∞] by

DP(µ) :=

{
supY⊂suppRd µ,#Y <∞D0(Y ) if µ≪P,
∞ otherwise,

(1.15)

where D0(∅) = 0 and D0(Y ) for a finite nonempty set Y ⊂ Rd is the smallest possible
| · |-length of a path from the origin that reaches all points in Y ; i.e., the minimum over∑N

i=1 |σi−σi−1| of bijections σ : {0, . . . ,N}→ Y ∪{0} with σ0 = 0, where N =#(Y \
{0}). We wrote

suppRd µ= {y ∈Rd : ∃f > 0, (f, y) ∈ suppµ},(1.16)

for the support of the projection of µ on Rd.
(c) the functional ΨP : W→ [−∞,∞) by

ΨP(µ) :=

{
ΦP(µ)− qDP(µ) if ΦP(µ)<∞,

−∞ otherwise.
(1.17)

For P ∈Mp((0,∞)×Rd) we define

(1.18) Ξ(P) = sup
µ∈W

ΨP(µ).

Because ΨP(0) = 0, (1.18) defines a function Ξ :Mp((0,∞)×Rd)→ [0,∞].
3

We write P⋊P(ξ)

t for the mixture of the laws of P and P(ξ)

t , i.e.,

P⋊P(ξ)

t [A×B ] =E
[
1A(ξ)P(ξ)

t [X ∈B ]
]
.(1.19)

We equipW , the space of all measures on (0,∞)×Rd with total mass≤ 1, with the vague
topology. By (Kle08, Corollary 13.31) and (Kal83, Theorem 15.7.7),W is a compact Polish
space, which will be convenient for the formulation of our results and proofs. Therefore, by
(Kle08, Corollary 13.30) (corollary of Prohorov’s theorem) and (Kal83, Theorem 15.7.7), the
set of probability measures onW forms a compact Polish space.

THEOREM 1.2. Fix θ ∈ (0,∞) and α ∈ (d,∞). We have the following convergences in
distribution:

(a) partition function:

(1.20)
1

rt log t
logZ(ξ)

t
t→∞
=⇒ Ξ(Π),

and,

P
[
Ξ(Π) ∈ [0,∞)

]
= 1.
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(b) law of the rescaled local times: Let α ∈ (2d,∞). Then the following hold:

(i) There exists a random variable µ∗ with values inW that maximizes ΨΠ, in the sense
that P-almost surely,

(1.21) ΨΠ(µ
∗) = Ξ(Π).

(ii) This maximizer µ∗ is P-almost surely unique in the sense that, P-almost surely,
ΨΠ(ν)<ΨΠ(µ

∗) for any ν ∈W \ {µ∗}. Furthermore,
• P-almost surely, µ∗ is a probability measure with finite support and µ∗ ≪ Π. In

particular, P[µ∗ = 0 ] =P[#suppµ∗ = 0 ] = 0.
• For all k ∈N, P[#suppµ∗ = k ]> 0.
Consequently,

P
[
Ξ(Π) ∈ (0,∞)

]
= 1.(1.22)

(iii) Under the mixed measure P⋊P(ξ)

t as in (1.19), Wt =W (ξ,X)

t converges in distribu-
tion to µ∗;

Wt
t→∞
=⇒ µ∗ inW,(1.23)

more precisely, for all g ∈Cb(W),

E
[
E(ξ)

t [g(W (ξ,X)

t )]
]
→E[g(µ∗)].(1.24)

The proof of Theorem 1.2 is given in Section 5 conditionally on crucial assertions for
the lower bound part of the convergence in (a) (which are proved in Section 6) and crucial
assertions about the upper bound in (a) and for (iii) (which are proved in Section 7).

REMARK 1.3 (The appearance of the energy and entropy functionals). We will later (in
Section 1.4 on the heuristics) see that qDΠ plays the role of the large-deviation rate functional
for the rescaled local times on the scale rt log t; hence we called it an entropy functional.
Observe that, see for example (1.13),

H (ξ)

t (X) = (rt log t)ΦΠt
(W (ξ,X)

t ),(1.25)

and, therewith,

(1.26) Z(ξ)

t = E
[
e(rt log t)ΦΠt (Wt)

]
.

This says that the random walker gains on the exponential scale rt log t the potential reward
that is given for w = dWt

dΠt
by
∫
(0,∞)×Rd fw(f, y) dP(f, y) and it pays the self-repellence

price that is given by the expression
∫
(0,∞)×Rd θw(f, y)

2 dP(f, y). See Section 1.4 for a
more precise heuristic explanation. 3

REMARK 1.4 (Interpretation of Theorem 1.2 (b)). Since µ∗ has finite support and is abso-
lutely continuous with respect to Π, there exist (random) k∗ ∈N and (f∗

1 , y
∗
1), . . . , (f

∗
k∗ , y∗k∗) ∈

supp(Π) and w∗
1, . . . ,w

∗
k∗ ∈ (0,1] satisfying

∑k∗

i=1w
∗
i = 1 such that

µ∗ :=

k∗∑
i=1

w∗
i δ(f∗

i ,y
∗
i )
.

Hence, if we interpret the convergence in (1.23) as almost sure convergence, the typical path
under P(ξ)

t spends ∼ w∗
i t time units in the site ∼ ⌊y∗i rt⌋ with value ξ(⌊y∗i rt⌋) ∼ f∗

i r
d/α
t for

any i ∈ {1, . . . , k∗} and elsewhere only o(t) time units
(or does not even reach them).
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The above is an informal interpretation. More formally, we obtain the following con-
sequence from Theorem 1.2 (b). Given h ∈ Cc((0,∞) × Rd), observe that the function
g : W → R defined by g(µ) =

∫
(0,∞)×Rd hdµ is continuous and bounded on W , i.e.,

g ∈Cb(W). Because

g(W (ξ,X)

t ) =

∫
(0,∞)×Rd

h(f, y)
ℓt(rty)

t
dΠt(f, y) =

∑
z∈Zd

h
(ξ(z)
r
d/α
t

,
z

rt

)ℓt(z)
t

,

g(µ∗) =

∫
(0,∞)×Rd

hdµ∗ =

k∗∑
i=1

w∗
i h(f

∗
i , y

∗
i ),

and since Wt =⇒ µ∗ inW , see (1.24), we obtain

E

[∑
z∈Zd

E(ξ)

t [ℓt(z)]

t
h
(ξ(z)
r
d/α
t

,
z

rt

)]
−→ E

[ k∗∑
i=1

w∗
i h(f

∗
i , y

∗
i )

]
.

3

REMARK 1.5. [Generalization of Theorem 1.2 (b) (iii)] Actually, we are able to prove a
slightly more general but more abstract convergence than in Theorem 1.2 (b) (iii). Indeed, let
us write L(ξ)

t for the law of Wt under P(ξ)

t , so that for a Borel set A⊂W we have

L(ξ)

t (A) = P(ξ)

t ({X : W (ξ,X)

t ∈A}) = E(ξ)

t [1{W (ξ,X)

t ∈A}].(1.27)

Then for µ∗ as in Theorem 1.2, we can show the following convergence in distribution with
respect to the weak topology (see Remark 5.6),

L(ξ)

t
t→∞
=⇒ δµ∗ .(1.28)

More precisely, for all continuous bounded functionals f defined on the set of probability
measures onW ,

E
[
f(L(ξ)

t )
] t→∞
=⇒ E

[
f(δµ∗)

]
.(1.29)

The convergence in Theorem 1.2 (b) (iii) follows from this by taking f(ν) =
∫
g dν in (1.29)

for g ∈Cb(W) so that f(L(ξ)

t ) = E(ξ)

t [g(W (ξ,X)

t )] and f(δµ∗) = g(µ∗), implying (1.24). 3

REMARK 1.6 (Large-deviations explanation). Standard ideas from the theory of large de-
viations applied to the formula in (1.26) already suggest that the statements in Theorems 1.2
are true. Indeed, if (Wt)t∈(0,∞) would satisfy a large-deviations principle (LDP) on the scale
rt log t with rate function qDΠ, and if the limit Πt =⇒Π could be combined with this LDP,
and if the energy functional ΦΠ would have appropriate continuity and boundedness proper-
ties, then Varadhan’s lemma would imply the validity of our main statement. Roughly, this
is also our strategy for proving the theorems, but a lot of technicalities need to be overcome
along the way. 3

REMARK 1.7 (Traveling Saleman Distance). Observe that D0(Y ) in the definition of
DP (see (1.15)) represents the Travelling Salesman Distance of a path connecting 0 to all the
points of Y but without returning to 0.

REMARK 1.8 (A particular case: d = 1). In dimension 1, both the expressions of the
energy functional ΦΠ in (1.14) and of the entropy functional DΠ in (1.15) turn out to be
much easier. To be more specific, we consider x, z ∈ [0,∞)2 and µ ∈W such that µ≪ Π
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and minsuppR µ=−x and maxsuppR µ= z. Then, DΠ(µ) = (x+ z)−min{x, z} since it
is the shortest distance that one has to travel so that starting from the origin both sites −x and
z are visited (here we can of course say that the path first visits x and then z if x < z and the
other way around if x > z). Moreover, by screening effect in dimension 1, that is since every
site in [−x, z] is visited by a trajectory that reaches both −x and z, any (f, y) belonging to
suppΠ with y ∈ [−x, z] may be in the support of such µ ∈W without increasing the entropy.
Note that, P-a.s. Π((0,∞) × {0}) = 0 and therefore, it is sufficient to consider (x, z) that
are not simultaneously null. We introduce the order statistics (f (i)

[−x,z])i∈N of the field inside
[−x, z] such that for a sequence (y(i)

[−x,z])i∈N

suppΠ∩
[
(0,∞)× [−x, z]

]
= {(f (i)

[−x,z], y
(i)

[−x,z]) : i ∈N}.

Because every µ ∈ W with suppµ ⊂ (0,∞) × [−x, z] and µ≪ P is of the form µ =∑∞
i=1wiδ(f (i)

[−x,z],y
(i)

[−x,z])
for a sequence (wi)i∈N in [0,∞] with

∑∞
i=1wi ≤ 1, we have the

following identity by definition of ΦP (1.14),

sup
µ∈W : suppµ⊂(0,∞)×[−x,z]

ΦΠ(µ) = sup
w1,w2,···≥0,

∑∞
i=1 wi≤1

∞∑
i=1

(
f (i)

[−x,z]wi − θw2
i

)
.(1.30)

As the f (i)

[−x,z] are chosen decreasingly in i, it turns out that for large i, it is not worth taking wi

positive, or in other words, that there exists a k for which one may restrict to those sequences
(wi)i∈N with wk+1 = wk+2 = · · · = 0. This is made precise in Proposition 3.1: This finite
k is given in terms of a formula of the the order statistics (f (i)

[−x,z])i∈N, let us call it k⋆ here

(see (3.3)). By writing φk⋆

(
f
(1)
[−x,z], . . . , f

(k⋆)
[−x,z]

)
for the right-hand side of (1.30) with the

restriction wi = 0 for i≥ k⋆ + 1 (which agrees with the definition of φk given in (3.2)), we
then have the following description of Ξ(Π) in terms of the leftmost and rightmost points in
suppµ:

(1.31) Ξ(Π) := sup
x,y∈[0,∞)2\{(0,0)}

φk⋆

(
f
(1)
[−x,z], . . . , f

(k⋆)
[−x,z]

)
− q(x+ z)− qmin{x, z}.

3

REMARK 1.9 (Suggested scenario for α ∈ (d,2d)). In the course of our proof for Theo-
rem 1.2 we in particular show that the characteristic variational formula Ξ(Π) is finite almost
surely for α> d and positive for α> 2d. The latter assertion seems crucial for the behaviour
of the path in the random potential. It is not easy to give a short argument for that; apparently
the PPP possesses sufficiently many sufficiently high potential values with not too large dis-
tances between them, such that trajectories exist for which it is worth paying the travels in
order to profit from spending time in those large potentials.

This is different for α ∈ (d,2d). Indeed, in a forthcoming paper we will show that both
{Ξ(Π) = 0} and {Ξ(Π)> 0} have positive probability here. This can be roughly explained
as follows: With positive probability the PPP, like for α > 2d, possesses sufficiently many
high potentials with not too large distances. Also, the complement has positive probability,
leading to no such preferable locations as it is not worth travelling that far to profit from the
large potential. We conjecture that the intermediate order statistics need to be considered to
reflect the true behaviour of the random path. A closer description of this scenario will be
given in a future work. 3
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1.4 Heuristic explanation
Let us give here an explanation of the main result, Theorem 1.2. In Section 6 we will turn the
following heuristics into a proof of the lower bound (however, the proof of the upper bound
in Section 7 is very different).

We need to understand the large-t behaviour of the partition function Z(ξ)

t defined in (1.7),
i.e., the expectation of eH

(ξ)
t with βt defined in (1.6) and the Hamiltonian as in (1.13). The

first step is to understand the scales on which the probability from the simple random walk
and the contribution from the potential ξ run, where we first ignore the self-intersection term
and concentrate on the potential-interaction term. Hence, this part of the heuristics is the
same as for the behaviour of the PAM with Pareto-distributed potential in (KLMS09); let us
give an overview now. Note that there is a competition for the random walk between a reward
(called ‘energy’) from staying much time in sites with extremely large values of the potential
and the probabilistic cost (called ‘entropy’) to reach such preferable sites quickly: travelling
far and fast, the walker finds a larger potential value where it can stay longer, but this is more
costly. We need to find an optimal balance.

As in (KLMS09), we obtain a lower bound by inserting the indicator on the event Az,s
t

that the walker wanders on some fixed shortest path to a site z during the time interval [0, st)
and stays at z during [st, t]. The probability of this event is (recall that the jump rate of our
random walk is 2d)

P(Az,s
t ) = Poi2dst(|z|)(2d)−|z|e−(1−s)2dt#{ shortest paths 0←→ z}.

Taking |z| ≫ t, using Stirling’s estimation for the term |z|! that appears in the Poi-term, we
see that the dominating terms in the exponent are |z| log |z| and |z| log(st), so that, dropping
all lower-order terms,

P(Az,s
t )≈ exp

{
|z|
[
log

t

|z| + log s

]}
.

Now let us examine the contribution from the potential ξ. In order to obtain a preferably large
lower bound, we pick z as a maximizing point of the potential ξ within a box of radius r.
According to the Pareto-tails, we are able to pick z such that ξ(z)≈ rd/α, and this site will
be approximately of the order r, i.e., |z| ≈ r. Hence, from the stay at z during [st, t], the
potential contributes ≈ et(1−s)rd/α . The potential values that the random walk experiences on
the fast rush during [0, st] are negligible. Hence, we have the lower bound

Z(ξ)

t ≥ exp

{
r

[
log

t

r
+ log s

]}
etr

d/α

e−strd/α ,

and we have still the freedom to optimize over small s and large r. The optimal choice of
s ∈ [0,1] for the second and the last term is s≈ 1

t r
1−d/α, which implies the lower bound

(1.32) Z(ξ)

t ≥ exp
{
r log

t

r
+ trd/α − log

(
trd/α−1

)}
= exp

{
trd/α − d

α
r log r

}
.

The maximal r satisfies trd/α−1 = 1+ log r, and this is asymptotically satisfied by r = rt =
(t/ log t)1+q as in (1.8) with q = d

α−d as in (1.6). Then both the energy term trd/α and the
entropy term − d

αr log r ≈ −qrt log t are on the scale rt log t. Interestingly, the latter comes
exclusively from the probability of the crucial event Az,s

t , after optimizing on s ≈ 1/ log t,
whose choice depends on the potential value. This explains the appearance of the prefactor q
in (1.17) and the notion of an ‘entropy functional’ in Definition 1.1.

So far, this was the first part of the explanation, which applied also to (KLMS09), since
we considered only the potential interaction. Now let us become specific to our model, where
an additional self-intersection term in the Hamiltonian appears and makes the path paying
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an extra energy price when staying a long time in a single site. If this time is of order t,
then the price is of order βtt2 = θrt log t (see (1.12)) i.e., it is on the same scale. Therefore,
the strategy has to be improved by not only visiting one site, but several after each other
and staying in each of them some time ≍ t. Standard assertions from spatial extreme-value
theory guarantee that there are not only one, but many sites with potential values ≍ r

d/α
t ,

and they are homogeneously distributed over a centered ball with radius ≈ rt, so there are
many good candidates for sites to be visited. One needs to make a choice of the number
of the visited sites and the order in which they are visited during the time interval [0, t].
The travel between them costs an additional price of the same order as the first travel from
the origin to one of them since the distances of all these travels are on the same scale. The
functional ΦP(µ) in (1.14) describes the energetic gain (staying ≈ w(f, y)t time units in a
site ≈ yr with potential value fr

d/α
t for all the (f, y) in P and paying θw(f, y)2 for the self-

intersections), and the functional qDP in (1.15) describes the exponential probabilistic cost
payed by the simpe random walk. Hence, the rate functional ΨP =ΦP − qDP in (1.17) gives
the entire exponential cost of this path strategy on the scale rt for P =Πt, as we explained
in Remark 1.3. Then the exponential behaviour of the partition function Z(ξ)

t is given by the
maximum of µ 7→ΨΠ(µ), as in Varadhan’s lemma. An additional technical difficulty is the
combination of the large-deviation arguments with the point process convergence Πt→ Π;
see Remark 1.3.

1.5 Organization of the paper
The remainder of the paper is organized as follows. In Section 2, we explain our strategy
for proving Theorem 1.2 and formulate two types of intermediate results: the first comprises
a deterministic version of Theorem 1.2 for point measures that possess certain properties,
while the second states that Πt and Π possess these properties. This version of Theorem 1.2
is proved in Section 3 along with fundamental compactness and continuity properties of the
energy functional ΦP and the entropy functional DP , as well as the existence and main
properties of the maximizer. The proof that Πt and Π have the good properties is given in
Section 4. Hence, Sections 2–4 derive all the properties of the variational formula for Ξ(Π) as
formulated in Theorem 1.2. In Section 5 we start the proof of the large-t analysis of the model,
Theorem 1.2, by formulating two main ingredients for the proof for the lower respectively
upper bound (Propositions 5.2 resp. 5.4). The two propositions are proved in Sections 6 and
7, respectively.

1.6 Literature remarks
Let us give some survey on the literature on random motions in random potential and lo-
calisation properties. First examples appeared in work by Sznitman on Brownian motion
among Poissonian obstacles in the early 1990s, see his monograph (Szn98). Among many
other things, he proved almost-sure attraction to one island, but did not identify this island.
An analogous localization result (i.e., for the solution of the PAM rather than for the random
motion) in the space-discrete setting with an i.i.d. doubly-exponentially distributed potential
was (GKM07). Around 2010, it turned out that the strongest attraction to the intermittent
islands is present for potentials with heavy tails, since they have a particularly pronounced
profile: indeed, the islands are just singletons here. This has been observed for the first time
for the most heavy-tailed potential distribution, the Pareto distribution, in (KLMS09) and
has been investigated in great detail in (MOS11) and also for the exponential distribution in
(LM12); see the survey (Mör11). For double-exponentially distributed potential, localization
(and much more) was proved in (BKdS18). Most of these localization results are formulated
and proved for the solution of the PAM rather than for the random walk in the Feynmna–Kac
formula. See (Ast16, Sect. 6) and (Kön16, Sect. 6.3) for two comprehensive survey texts on
such localization results up to 2016.
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These two survey texts triggered interest in localization of discrete-time random walks
among Bernoulli traps, the (time and space) discrete version of Brownian motion among Pois-
son obstacles. Deep localization properties were derived in (DFSX20b, DFSX20a, DFSX21)
in this setting in dimension d≥ 2. Similar results for a correlated random potential in d= 1
(with i.i.d. gaps between the obstacles) have been derived recently in (PS24).

Earlier work (OR16, OR17, OR18) analysed the strongly related model of a spatial ran-
dom branching walk in a Pareto-distributed random field of branching rates. For this model,
this series of papers derives a description that resembles our model and results quite strongly.
It turns out there that the main bulk of the particles is highly concentrated in a number of sites
that are defined in terms of a Poisson point process (essentially the same as our Π); more pre-
cisely, the branching process subsequently visits points of this point process that are step for
step extremal with respect to a compromise between high potential values and short distances.
This precise mechanism is different from the one that is detected in the parabolic Anderson
model (PAM) in (KLMS09); the main difference to that model being that the branching pro-
cess is consistent and has no finite time horizon, like the PAM. With respect to our model, an
additional difference is the repellent effect from the second part of our Hamiltonian.

The second feature in our model is the Hamiltonian of the famous weakly self-repellent
random walk, the negative exponential of the self-intersection local time. It is here only a
side-remark that the behaviour of the weakly self-repellent walk is poorly understood in
dimensions d ∈ {2,3,4}, and it was a substantial challenge to investigate it in the other di-
mensions. See (MS13, Sla11) for surveying texts. Generally, it is expected that the typical
behaviour is a more or less uniformly spread-out behaviour in space on a scale tγd that is
much larger than the scale t1/2 of the free walk (at least in d ≤ 4), but much less than the
scale t of a ballistic walk (at least in d≥ 2). However, all these effects will not be seen in our
model, because of the presence of the random potential. We will necessarily be working on
a much rougher scale than those scales that are believed to be responsible for this spread-out
behaviour, and the resulting behaviour will be much more spread-out, but for reasons that
have to do with the potential and not with the self-repulsion.

1.7 Notation
We write N = {1,2, . . .} and N0 = {0,1,2, . . . ,}. For the rest of the paper, we fix d ∈ N,
θ,α ∈ (0,∞). We set QR := [−R,R]d for R ∈ (0,∞). We write =⇒ for convergence in
distribution. We abbreviate ‘Poisson point process’ by ‘PPP’. For y = (y1, . . . , yd) ∈ Rd we
write |y| =∑d

i=1 |yi| for the ℓ1 norm and for a ∈ Rd, r > 0 we write B(a, r) = {y ∈ Rd :
|y− a|< r} the open ℓ1 ball in Rd around a of radius r.

2. Preparation. In the present section, we prepare for the proof of Theorem 1.2 by
analysing the variational formula Ξ in (1.18). On the way, we need to extract several con-
tinuity and compactness properties of the energy and entropy functionals ΦP and DP as
functions of P ∈Mp((0,∞) × Rd). For this, we keep P deterministic in this section, but
restrict to a subclass of such P’s for which we can prove all needed assertions and for which
we can prove that the processes Πt and Π satisfy them. We define in particular a class of
good point measures, see Definition 2.7, with the characteristic that if P is good then ΨP has
at most one maximizer. In Theorem 2.8 we formulate all the necessary properties for deter-
ministic good point measures, among other things the uniqueness of the maximizer and its
continuous dependence on P . Furthermore, in Lemma 2.9 we state that Πt and Π are almost
surely good. The proofs are deferred to later sections.

It will be convenient for us to compactify specific subsets of (0,∞) × Rd as described
next. For h, s > 0 we define the cone-shaped set (see also Figure 1) with height h and slope
s by

(2.1) Hs
h :=

{
(f, y) ∈ (0,∞)×Rd : f > s|y|+ h

}
.
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h

f

0

s

Hs
h

y

FIG 1. Illustration of Hs
h.

We can embed (0,∞)×Rd continuously and openly into a locally compact Polish space E
with certain properties, mentioned in the lemma below. For a locally compact metric space E,
we writeMp(E) for the set of point measures on E, i.e., N0∪{∞}-valued Radon measures,
or equivalently, due to the fact that the support of each such measure is countable and locally
finite, the set of Radon measures that can be written as

∑
n∈N δxn

for a sequence (xn)n∈N
in E. We equip Mp(E) with the vague topology, i.e., Pn → P in Mp(E) if and only if∫
φ dPn→

∫
φ dP for each continuous compactly supported φ : E→ R. When E = E we

will simply write Mp =Mp(E). We denote by M◦
p the set of point measures in Mp that

are supported in (0,∞)×Rd and equip it with the topology fromMp.

LEMMA 2.1. There exists a locally compact Polish space E, with (0,∞)×Rd ⊂ E, such
that

(i) for every h, s > 0, the open set Hs
h is relatively compact in E, and for every compact

subset K in E there exist h, s > 0 such that K ∩ [(0,∞)×Rd]⊂Hs
h,

(ii) the map ι : (0,∞)× Rd→ E given by ι((f, y)) = (f, y), (f, y) ∈ (0,∞)× Rd is open
and continuous. In other words, (0,∞)×Rd is continuously and openly embedded in E.

Moreover,

(a) M◦
p can be viewed as a subspace ofMp((0,∞)× Rd), in the sense that for P ∈M◦

p,
P ◦ ι defines a point measure on (0,∞)×Rd.

(b) Let P ∈Mp((0,∞)×Rd). Define P on E by P(A) =P(ι−1(A)) for Borel sets A⊂ E.
Then P is an element ofM◦

p if and only if P(Hs
h)<∞ for all s,h > 0.

PROOF. The proof is given in Appendix A, below Lemma A.1.

REMARK 2.2. Observe that by the Portmanteau theorem (Kle08, Theorem 13.16), Pn→
P inMp(E) implies that Pn(A)→P(A) for all measurable relatively compact A⊂ E with
P(∂A) = 0. And hence by Lemma 2.1 (b), in particular for all measurable A with P(∂A) = 0
that are a subset of Hs

h for some h, s > 0.

LEMMA 2.3. For all t > 0, P(Π ∈M◦
p) =P(Πt ∈M◦

p) = 1 (withP as in Lemma 2.1 (b)).

PROOF. Let h, s > 0. We show that E(Π(Hs
h)) < ∞ and E(Πt(Hs

h)) < ∞, so that,
e.g., P(Π(Hs

h) < ∞) = 1, and therefore P(
⋂

s,h∈(0,∞)∩Q{Π(Hs
h) < ∞}) = 1. Because

Hs
h ⊂ Ht

j for t ≤ s and j ≤ h, this implies P(
⋂

s,h∈(0,∞){Π(Hs
h) <∞}) = 1 and thus, by

Lemma 2.1 (b) that Π ∈Mp.
We have

Πt(Hs
h) =

∑
z∈Zd

δ( ξ(z)

r
d/α
t

, z

rt

)(Hs
h) =

∑
z∈Zd

1

{ξ(z)
r
d/α
t

> s
∣∣∣ z
rt

∣∣∣+ h
}
.
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We calculate

P
(ξ(z)
r
d/α
t

> s
∣∣∣ z
rt

∣∣∣+ h
)
=
(
r
d/α
t

(
s
∣∣∣ z
rt

∣∣∣+ h
))−α

= r−d
t

(
s
∣∣∣ z
rt

∣∣∣+ h
)−α

.

Therefore, because α> d,

E
(
Πt(Hs

h)
)
≤
∑
z∈Zd

r−d
t

(
s
∣∣∣ z
rt

∣∣∣+ h
)−α

<∞.

Note that Π(Hs
h) is a Poisson distributed random variable with parameter∫

Rd

∫ ∞

0
1Hs

h
(f, y)

α

fα+1
df dy =

∫
Rd

1

(s|y|+ h)α
dy,

which is finite for α> d, so that E(Π(Hs
h))<∞.

From here on, we will make abuse of notation and write Π also for Π and Πt for Πt.
In the following lemma we state the convergence of Πt towards Π, as mentioned between

(1.9) and (1.10):

LEMMA 2.4 (Πt =⇒ Π). Let α ∈ (d,∞). Let t1, t2, · · · ∈ (0,∞) and tn→∞. We may
view Πtn and Π as elements ofM◦

p for all n. Then Πtn→Π inM◦
p as n→∞.

PROOF. That we may view Πtn and Π as elements ofM◦
p follows by Lemma 2.3.

The convergence follows by (BKdS18, Lemma 7.4) (the fact that we have (0,∞) × Rd

instead of R×Rd does not change the validity of the lemma, as the proof builds on (Res87,
Proposition 3.21) can be carried out in our situation in the same way). For this we have
to check the two conditions, namely (7.17) and (7.18) of that lemma (we take the N̂t in
that lemma to be equal to zero, furthermore let us mention that in (7.17) there should be
“ td

(2N̂t+1)d
” instead of “ td

(2N̂t)d
”). The first condition, (7.17), follows by

lim
r→∞

rdP
( ξ(0)
rd/α

> s
)
= lim

r→∞
rd(rd/αs)−α = s−α.

The second condition, (7.18), follows by the fact that for all s,h > 0∑
x∈Zd:|x|>rn

P
( ξ(0)
rd/α

> s
|x|
r

+ h
)
≤

∑
x∈Zd:|x|>rn

P
(
ξ(0)> s|x|r d

α
−1
)

≤ s−α
∑

x∈Zd:|x|>rn

|x|−αrα−d ≤ s−α

∫ ∞

rn

2

u−αrα−dud−1 du= s−α 2α−d

α− d
nd−α n→∞−−−→ 0.

For P ∈M◦
p and R> 0, define

(2.2) MR(P) := sup{f : (f, y) ∈ P and y ∈QR} .

LEMMA 2.5. Let P,P1,P2, . . . be inM◦
p such that Pn→P inMp. Then

(2.3) sup
n∈N

MR(Pn)<∞ for all R> 0 and lim
R→∞

sup
n∈N

MR(Pn)
R

= 0.

In particular, limR→∞
MR(P)

R = 0.
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PROOF. Fix ε ∈ (0,1). First observe that for any Q ∈Mp and any h > 0, Q(Hε
h) <∞

since Hε
h is relatively compact (in E), and thus V (Q) := sup{f : (f, y) ∈ suppQ∩Hε

h} <
∞. Fix h ∈ (0, ε) such thatP(∂Hε

h) = 0. By (Res87, Proposition 3.13), there exists an n0 ∈N
such that V (Pn)≤ V (P)+1 for all n≥ n0, implying M = supn∈N V (Pn)<∞. For R> 0,
note that (0,∞)×QR =A ∪B where A⊂ (0, ε(R+ 1)]×Rd and B ⊂Hε

h (see Figure 2),
so that

f

y

Hεh

(0,∞)×QR

(0, ε(R+ 1)]× Rd

FIG 2. Illustration (0,∞)×QR ⊂Hε
h ∪ (0, ε(R+ 1)]×Rd.

sup
n∈N

MR(Pn)≤max{ε(R+ 1),M}<∞,

implying the first statement in (2.3). For the second statement, divide the above inequality by
R, take the limsup as R→∞ and then the limit as ε→ 0.

Recall thatW denotes the set of subprobability measures on (0,∞)×Rd with total mass
≤ 1. For R> 0 and P ∈Mp((0,∞)×Rd) define the sets

F(P) := {µ ∈W : µ≪P and supp(µ) is finite} ,(2.4)

F1(P) := {µ ∈ F(P) : µ is a probability measure}.(2.5)

In the following lemma we show that if a point measure P has sufficiently many points, then
one may restrict to take the supremum over elements in F1(P) in the variational formula for
Ξ(P) (1.18). Then, we introduce the notion of a good point measure, under which we will
prove a conditional version of Theorem 1.2 (b) (ii).

LEMMA 2.6. Let P ∈M◦
p. Suppose that

∀δ > 0 ∃m ∈N ∃ distinct (f1, y1), . . . (fm, ym) ∈ suppP,
m∑
i=1

fi ≥ 2θ, D0(y1, . . . , ym)< δ.

(2.6)

Then

Ξ(P) = sup
µ∈F1(P)

ΨP(µ).(2.7)

The proof of lemma is given at the end of Section 3.2.

DEFINITION 2.7 (Good point measure). We say that a point measure P ∈M◦
p is good

if ΨP possesses at most one maximizer in F(P) in the sense that there exists at most one
ν ∈ F(P) such that supµ∈F(P)ΨP(µ) = ΨP(ν), and if it satisfies at least one of the two
following conditions:
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(i) There exists a β > 2 such that for all R,C > 0 there exists a εR,C > 0 such that for
ε≤ εR,C and for all y ∈QR the set [(Cε,∞)×B(y, εβ)]∩ suppP is nonempty.

(ii) P((0,∞)×QR)<∞ for every R> 0.

Now we can formulate a deterministic version of Theorem 1.2 (b) (ii) (and more) for good
processes.

THEOREM 2.8 (Analysis of ΨP for good P). If P,P1,P2, · · · ∈ M◦
p are good in the

sense of Definition 2.7, then the following statements hold.

(a) Maximizer: There exists a unique µ∗ ∈W such that

(2.8) ΨP(µ
∗) = sup

µ∈W
ΨP(µ).

This maximizer µ∗ has finite support, is a probability measure and satisfies µ∗≪P , i.e.,
µ∗ ∈ F1(P).

(b) Multisupport maximizer: Let k ∈N, ε := θ
4qk4 and L> 2θ+(q+1)ε. With Bε =B(0, ε),

define the regions of (0,∞)×Rd (see also Figure 3)

G=

[
L,L+

2θ

k

]
×Bε, E1 = (ε,L)×Bε, E2 =

(
L+

2θ

k
,∞
)
×Bε,

E3 =
{
(f, y) ∈ (0,∞)×Rd : |y|> ε,f > ε∨ (|y| − 3θ)

}
.

(2.9)

If P satisfies

P(G) = k and P(E1) =P(E2) =P(E3) = 0,(2.10)

then #suppµ∗ = k.
(c) Stability: For any open neighbourhood O ⊂W of µ∗,

(2.11) sup
Oc

ΨP < sup
W

ΨP =ΨP(µ
∗).

(d) Continuity of maximizer: If Pn→P in M◦
p, then the maximizers µ∗

n of ΨPn
converge

towards µ∗ as n→∞ in the vague topology.

Bε

L

L+ 2θ

ε

|y| − 3θ

E3E3

E1

E2

G

FIG 3. Illustration of the regions G, E1,E2 and E3 as in (2.9).

The proof of Theorem 2.8 is given in Section 3.4.
In order to be able to apply Theorem 2.8 to the point processes Πt defined in (1.9) and its

limiting PPP Π defined in (1.10), we use the following lemmas, whose proofs are given in
Section 4.



16

LEMMA 2.9 (Goodness of Π and Πt). Fix α ∈ (2d,∞). Then, for any t ∈ (0,∞), with
probability one, Π and Πt are good.

LEMMA 2.10. Let α ∈ (d,∞). Let k ∈N and G,E1,E2,E3 be as in (2.9). Then

P
[
Π(G) = k,Π(E1 ∪E2 ∪E3) = 0

]
> 0.

PROOF. Since the regions in (2.9) are disjoint and each of them has finite and positive
intensity measure, the random variables Π(G), Π(E1), Π(E2), Π(E3) are independent and
have non-trivial Poisson distributions, so that P[Π(G) = k,Π(E1) = Π(E2) = Π(E3) = 0]
has positive probability.

It is clear that Theorem 1.2 (b) (ii) directly follows from Theorem 2.8, combined with
Lemma 2.9 and Lemma 2.10.

For the proof of the lower bound in Section 6, we use the following lemma so that we can
apply Lemma 2.6 to Π.

LEMMA 2.11. Let α ∈ (d,∞). With probability one, Π satisfies (2.6).

3. Analysis of the variational formula. Here we give the proof of Theorem 2.8; that is,
we analyse the maximum of ΨP and its maximizer for an arbitrary point measure P that is
good in the sense of Definition 2.7.

Let us first give a short outline of the proof. In Section 3.1 we analyse the maximization
of the energy functional ΦP(µ) over µ when the number of points of P is fixed; this involves
only the maximization over the potential values. In Section 3.2, we introduce the crucial tool
for handling variational problems, namely the Gamma-convergence, and derive Γ-continuity
properties of P 7→ΦP and P 7→DP and consider the compactness of the objects appearing in
the variational formula supµ∈W ΨP(µ) (the right-hand side of (2.8)): if P is good, then one
can restrict the variational formula to measures inW that have a compact support with respect
to Rd. Then we give the proof of Lemma 2.6. In Section 3.3 we show that any maximizer of
ΨP is necessarily of finite support. In Section 3.4 finally we prove Theorem 2.8 (a), putting
together the results derived in the preceding sections, namely the Γ-continuity of P 7→−ΨP ,
and the fact that we need to optimize ΨP only over compact subsets ofW . Recall that by our
definition of “good”, the uniqueness of the maximizer is guaranteed for good P .

3.1 Maximization of ΦP with fixed number of points
In this section we derive, for a given point measure with finite support, P =

∑k
i=1 δ(fi,yi),

explicit information about the maximization of ΦP(µ) over µ. We need slightly adapted no-
tation. Since we optimize here only ΦP(µ) over µ, we can also drop the points y1, . . . , yk;
see Definition 1.1. We obtain explicit information about the maximising vector w =
(w1, . . . ,wk) = (µ(fi, yi))

k
i=1.

Fix θ ∈ (0,∞) as always. Furthermore, we fix k ∈ N, assume that P =
∑k

i=1 δ(fi,yi) and
therefore may restrict our maximization problem to µ of the form µ=

∑k
i=1wiδ(fi,yi). Then

a comparison to Definition 1.1 shows that

sup
µ∈W

ΦP(µ) = φk(f1, . . . , fk),(3.1)

where φk : (0,∞)k→ [0,∞) is defined as

(3.2) φk(f1, . . . , fk) = sup
w1,...,wk≥0∑k

i=1 wi≤1

k∑
i=1

(
wifi − θw2

i

)
.
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We are going to analyze the function φk in this section.
Since φk(f1, . . . , fk) does not depend on the order of the fi, we may assume them to be

ordered in a decreasing way. The following is the main result of this section; it identifies the
optimal w1, . . . ,wk and thus the optimal µ, provides some of its properties and shows its
uniqueness.

PROPOSITION 3.1 (Analysis of φk). Fix k ∈N and f1 ≥ f2 ≥ · · · ≥ fk > 0.
Case 1: f1 + · · ·+ fk ≥ 2θ. Let k⋆ =K⋆(f1, . . . , fk), where

(3.3) K⋆

(
f1, . . . , fk

)
:= inf

{
j ∈ {1, . . . , k− 1} : jfj+1 ≤

j∑
i=1

fi − 2θ
}
∧ k,

where we interpret inf ∅=∞. Then the unique maximizer in (3.2) is given by

(3.4) wi :=

{
1
2θ

[
fi − 1

k⋆
(
∑k⋆

j=1 fj − 2θ)
]

if i≤ k⋆,

0 otherwise.

Moreover, wi > 0 for i ∈ {1, . . . , k⋆}, w1 + · · ·+wk∗ = 1 and

φk(f1, . . . , fk) = φk⋆
(f1, . . . , fk⋆

) =
1

4θ

( k⋆∑
i=1

f2
i −

1

k⋆

( k⋆∑
i=1

fi − 2θ
)2)

.(3.5)

In particular,

(3.6)
k⋆−1∑
i=1

f2
i

4θ
< φk(f1, . . . , fk)≤

k⋆∑
i=1

f2
i

4θ
.

Case 2: f1 + · · ·+ fk < 2θ. Then the unique maximizer is given by wi = fi/2θ, 1≤ i≤ k.
Moreover, w1 + · · ·+wk < 1 and

(3.7) φk(f1, . . . , fk) =

k∑
i=1

f2
i

4θ
.

The proof of Proposition 3.1 builds on the following lemma, and is given below the proof
of Lemma 3.2.

LEMMA 3.2. Let k ∈N and f1 ≥ f2 ≥ · · ·fk ≥ 0.

(a) The map

(w1, . . . ,wk) 7→
k∑

i=1

[wifi − θw2
i ](3.8)

is maximized over [0,∞)k precisely for wi =
fi
2θ .

(b) Suppose
∑k

i=1
fi
2θ ≤ 1. Then (3.8) is maximized over (w1, . . . ,wk) ∈ [0,∞)k under the

constraint
∑k

i=1wi ≤ 1 precisely by wi =
fi
2θ .

(c) Let γ ∈R. Then (3.8) (as a function on Rk) is maximized over (w1, . . . ,wk) in Rk under
the constraint

∑k
i=1wi = γ by

wj =
fj
2θ

+
1

k

(
γ −

k∑
i=1

fi
2θ

)
, j ∈ {1, . . . , k}.(3.9)
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(d) Let γ ∈ [0,∞) and suppose that kfk +2θγ−∑k
i=1 fi ≥ 0. Then (3.8) is maximized over

(w1, . . . ,wk) ∈ [0,∞)k under the constraint
∑k

i=1wi = γ by (3.9), and we have
k∑

i=1

wifi − θw2
i =

1

4θ

k∑
i=1

f2
i −

θ

k

(
γ −

k∑
i=1

fi
2θ

)2
.(3.10)

(e) Suppose
∑k

i=1
fi
2θ ≥ 1 and kfk +2θ−∑k

i=1 fi ≥ 0. Then (3.8) is maximized over [0,1]k

under the constraint
∑k

i=1wi ≤ 1 by (3.9) with γ = 1.
(f) Suppose kfk + 2θ−∑k

i=1 fi ≤ 0 or equivalently

(k− 1)fk + 2θ−
k−1∑
i=1

fi ≤ 0.(3.11)

Then, if (3.8) is maximized by (w1, . . . ,wk) ∈ [0,1]k with
∑k

i=1wi ≤ 1, then wk = 0.

PROOF. (a) follows by the fact that wi 7→ wifi − θw2
i is concave for all i, so that the

maximum is attained where its derivative equals zero (or at the boundary, i.e., for wi = 0, but
this gives an outcome that is clearly less than for wi =

fi
2θ ).

(b) follows immediately from (a).
(c) is proved by using the Lagrange multiplier method: Define L :Rk+1→R by

L(w1, . . . ,wk, λ) :=

k∑
i=1

wifi − θ

k∑
i=1

w2
i − λ

( k∑
i=1

wi − γ
)
, w1, . . . ,wk, λ ∈ [0,∞).

(w1, . . . ,wk, λ) is the extremal point for L if ∇L(w1, . . . ,wk, λ) = 0, which is the case if

fi − λ− 2θwi = 0 for all i, and
k∑

i=1

wi = γ.

Combining gives λ= 1
k

∑k
i=1 fi− 2θγ and (3.9). This extremal point for L is the maximizer

for L over Rk as L is concave and because lim|x|→∞ xfi − θx2 =−∞ for all i.
(d) follows from (c) as the condition implies that kfj + 2θγ −∑k

i=1 fi ≥ 0 (remember
fj ≥ fk) for all j and thus wj ≥ 0 for wj as in (3.9), i.e.,

wj =
fj
2θ

+
1

k

(
γ −

k∑
i=1

fi
2θ

)
≥ 0.

As furthermore,

fj
θ
−wj =

fj
2θ
− 1

k

(
γ −

k∑
i=1

fi
2θ

)
,

we have obtain (3.10) by the following equality:
k∑

i=1

wifi − θw2
i =

k∑
i=1

wi(fi − θwi) = θ

k∑
i=1

(( fi
2θ

)2
− 1

k2
(
γ −

k∑
i=1

fi
2θ

)2)
.

(e) follows from (d) as one observes that (3.10) is maximal when γ is closest to
∑k

i=1
fi
2θ .

(f) Suppose w̃1, . . . , w̃k ∈ [0,1] for k ≥ 2 are such that
∑k

i=1 w̃i ≤ 1 (we may assume k ≥ 2
as θ > 0 so that (3.11) cannot be satisfied for k = 1). Let us define w1, . . . ,wk by wk = 0 and
for i ∈ {1, . . . , k− 1}

wi := w̃i +
1

k−1 w̃k.
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Then by writing γ =
∑k

i=1 w̃k =
∑k

i=1wk, we see that

k∑
i=1

w̃ifi − θw̃2
i −

(
k∑

i=1

wifi − θw2
i

)

= w̃kfk − θw̃2
k +

k−1∑
i=1

(w̃i −wi)(fi − θ(w̃i +wi))

= w̃kfk − θw̃2
k −

w̃k

k− 1

( k−1∑
i=1

fi − 2θγ
)

=
w̃k

k− 1

(
(k− 1)fk −

k−1∑
i=1

fi + 2θ− (1− γ)2θ− (k− 1)θw̃k

)

≤− w̃k

k− 1
((1− γ)2θ+ (k− 1)θw̃k)≤−θw̃2

k.

This proves that the maximizer has to satisfy wk = 0.

PROOF OF PROPOSITION 3.1. Case 2 follows directly from Lemma 3.2 (b).
In Case 1, observe first that jfj+1 ≤

∑j
i=1 fi− 2θ for all j > k⋆, and that f1+ · · ·+ fk⋆

≥
2θ. By definition of K⋆ one has (k⋆− 1)fk⋆

>
∑k⋆−1

j=1 fj − 2θ and thus fk⋆
> 1

k⋆
(
∑k⋆

j=1 fj −
2θ) and so w1 ≥w2 ≥ · · · ≥wk⋆

> 0. By Lemma 3.2 (f) it follows that wi = 0 for i > k⋆ and
so by (e) one completes the proof.

3.2 Some topological properties of the variational formula
In this section, we prove that the functional P 7→ −ΨP introduced in Definition 1.1 is
Gamma-continuous in the vague topology, which is the crucial property under which we
can find later arguments for the existence of maximizers and continuity properties of the
maximizers as a function of P . The main tool of the arguments is a characterization of the
vague convergence of point measures in terms of one-by-one convergence of its points.

Let us introduce the crucial sense of convergence for variational formulas.

DEFINITION 3.3 (Gamma convergence). Let X be a metric space. Let f, f1, f2, . . . : X→
[−∞,∞]. We say that the sequence (fn)n∈N Gamma converges to f , written fn

Γ,n→∞−−−−−→ f ,
if

(i) for all x ∈X and all sequences (xn)n∈N in X with xn→ x,

f(x)≤ lim inf
n→∞

fn(xn),

(ii) for all x ∈X there exists a sequence (xn)n∈N in X such that xn→ x and

f(x)≥ limsup
n→∞

fn(xn).

REMARK 3.4. Observe that f
Γ,n→∞−−−−−→ f if and only if f is lower semi-continuous. 3

We use the following statements about Γ-convergence, which are sometimes referred to as
the Fundamental Theorem(s) of Gamma convergence:
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THEOREM 3.5. Let X be a metric space. Let f, f1, f2, . . . : X → [−∞,∞]. Suppose

fn
Γ,n→∞−−−−−→ f .

(a) (Bra02, Proposition 1.18) For each compact K ⊂X

inf
x∈K

f(x)≤ lim inf
n→∞

inf
x∈K

fn(x).

(b) (Bra02, Theorem 1.21) Suppose there exists a compact set K ⊂X such that infx∈X fn(x) =
infx∈K fn(x) for all n ∈ N. Suppose that x1, x2, · · · ∈ X are such that fn(xn) =
infx∈X fn(x) for all n ∈N. Then there exists a subsequence of (xn)n∈N that converges to
an y ∈X for which infx∈X f(x) = f(y).

The main result of Section 3.2 is the following proposition. Part (a) will allow us to restrict
the search for a maximizer µ∗ of ΨP to those µ whose Rd-support is within some box in Rd.
Recall thatW is the set of subprobability measures on (0,∞)×Rd with total mass ≤ 1, and
QR = [−R,R]d. Furthermore, we introduce

WR = {µ ∈W : suppµ⊂ (0,∞)×QR}, R > 0.(3.12)

PROPOSITION 3.6. Let P,P1,P2,P3, . . . be inM◦
p such that Pn→P inMp. Then

(a) Compactness

lim
R→∞

sup
µ∈W\WR

sup
n∈N

ΨPn
(µ) =−∞.

(b) Gamma convergence of −Ψ

−ΨPn

Γ,n→∞−−−−−→−ΨP .

The proof of this proposition is at the end of this section. We prepare for the proof by citing
a well-known result from point-process theory about a characterization of vague convergence
by point-wise convergence. For P ∈Mp and L> 0, recalling that QL = [−L,L]d, we denote
by P (L) the point measure 1[L−1,∞)×QL

P , which means dP(L)

dP = 1[L−1,∞)×QL
, i.e.,

P (L)(A) =P
(
A∩

[
[L−1,∞)×QL

])
(3.13)

for any Borel measurable A⊂ E. For µ ∈W we also write µ(L) = 1[L−1,∞)×QL
µ.

Observe that as [L−1,∞)×QL ⊂Hs
h for some h, s > 0 (e.g. s= 1

4 and h= L
2 ), and Hs

h
is relatively compact in E, P([L−1,∞)×QL) ∈N0 for all P ∈Mp.

LEMMA 3.7. Let P,P1,P2, · · · ∈ Mp and L > 0 be such that Pn → P in Mp and
P(∂([L−1,∞)×QL)) = 0.

(a) Put k = P([L−1,∞)×QL) ∈ N0. Then there exist (fi, yi), (fn
i , y

n
i ) ∈ [L−1,∞)×QL,

for n ∈ N and i ∈ {1, . . . , k} such that, for all large enough n ∈ N (with empty sums
interpreted as zero),

P (L)

n =

k∑
i=1

δ(fn
i ,yn

i )
, P (L) =

k∑
i=1

δ(fi,yi), (fn
i , y

n
i )

n→∞−−−→ (fi, yi), i ∈ {1, . . . , k}.

(b) Suppose µ,µ1, µ2, . . . are inW such that µn→ µ inW and µn≪Pn for all n ∈N. Then
µ≪P and, with k, (fi, yi), (fn

i , y
n
i ) as above, there exist (wn

1 , . . . ,w
n
k ), (w1, . . . ,wk) ∈

[0,1]k such that, for all large enough n,

µ(L)

n =

k∑
i=1

wn
i δ(fn

i ,yn
i )
, µ(L) =

k∑
i=1

wiδ(fi,yi), wn
i

n→∞−−−→wi, i ∈ {1, . . . , k}.
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PROOF. For the first statement, note that [L−1,∞) ×QL is a relatively compact subset
of E and apply (Res87, Proposition 3.13). The second statement is a straightforward conse-
quence of the first.

Here is the main step in the proof of Proposition 3.6.

LEMMA 3.8. LetP,P1,P2, · · · ∈M◦
p be such thatPn→P inMp, and let µ,µ1, µ2, · · · ∈

W be such that µn→ µ inW . Then

(a) DP(µ)≤ lim infn→∞DPn
(µn).

(b) If µn≪Pn and there exists a R> 0 such that µn ∈WR for all n ∈N, then

ΦP(µ)≥ limsup
n→∞

ΦPn
(µn).

PROOF. (a) If µ ̸≪ P , then by Lemma 3.7 there exists an N ∈N such that µn ̸≪ Pn for all
n≥N , and the conclusion trivially holds. Therefore, we may assume µ≪P and µn≪Pn
for all n ∈ N. Moreover, we may assume that µ ̸= 0. Let L > 0 be such that P has zero
measure on the boundary of [L−1,∞)×QL and DP(µ

(L))> 0, which implies µ(L) ̸= 0. Let
k, fn

i , y
n
i ,w

n
i , fi, yi,wi be as in Lemma 3.7, and note that k ≥ 1. Let i1, . . . , im ∈ {1, . . . , k},

m ∈ N, be the distinct indices such that wij > 0, j ∈ {1, . . . ,m}, and wℓ = 0 otherwise. We
may assume that, for all i≤ k and all n large enough, wi > 0 implies wn

i > 0. Then

DPn
(µn)≥DPn

(µ(L)

n )≥D0(y
n
i1 , . . . , y

n
im)

n→∞−−−→D0(yi1 , . . . , yim) =DP(µ
(L)).

Therefore, for any L> 0, lim infn→∞DPn
(µn)≥DP(µ

(L)). SinceDP(µ) = supL>0DP(µ
(L)),

the claim follows.
(b) Let R> 0, µn ∈WR, µn≪Pn for all n ∈N and µn→ µ inW . Note that this implies

µ ∈WR as well and, by Lemma 3.7 (b), µ≪P . Let ε > 0. Let us first show that for large
L> 0

ΦPn
(µn)<ΦPn

(µ(L)

n ) + ε for all n ∈N and |ΦP(µ)−ΦP(µ
(L))|< ε.(3.14)

Indeed, take L > R such that L−1 < ε, µ((0,L−1) × QL) < ε/θ and P(∂([L−1,∞) ×
QL)) = 0. Then

ΦPn
(µn)−ΦPn

(µ(L)

n ) =

∫
(0,L−1)×QL

[
f − θ

dµn

dPn
(f, y)

]
dµn(f, y)≤ L−1 < ε,

and the same inequality is valid with Pn, µn replaced by P , µ, for which also

ΦP(µ)−ΦP(µ
(L)) =

∫
(0,L−1)×QL

[
f − θ

dµ

dP (f, y)

]
dµ(f, y)≥−θµ((0,L−1)×QL)>−ε,

where we used that dµ
dP ≤ 1. This concludes (3.14). Now it is enough to show that

ΦPn
(µ(L)

n ) → ΦP(µ
(L)), but this follows by Lemma 3.7: with k,fi, fn

i , yi, y
n
i ,wi,w

n
i as

therein and n large enough,

ΦPn
(µ(L)

n ) =

k∑
i=1

(
wn
i f

n
i − θ(wn

i )
2
)
→

k∑
i=1

(
wifi − θw2

i

)
=ΦP(µ

(L)).

As a by-product of the proof, we obtained:
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LEMMA 3.9. Let P ∈M◦
p and µ ∈WR for some R ∈ (0,∞). Then

ΦP(µ
(L))

L→∞−−−−→ΦP(µ), DP(µ
(L))

L→∞−−−−→DP(µ), ΨP(µ
(L))

L→∞−−−−→ΨP(µ).

PROOF. This follows by definition of DP and by (3.14).

PROOF OF PROPOSITION 3.6. (a) It suffices to show that given any A > 0, there exists
an R0 > 0 such that,

ΨPn
(µ)≤−A for all R≥R0, µ ∈W \WR and n ∈N.

Recall the definition of MR from (2) and recall that q = d
α−d > 0. By Lemma 2.5, there exists

an R0 > 0 such that

max{A, sup
n∈N

MR(Pn)} ≤ 1
2q(R− 1) for all R≥R0.(3.15)

Let R≥R0, µ ∈W \WR and n ∈N. We decompose (0,∞)×Rd into

S(0)

R := (0,∞)×QR, S(k)

R := (0,∞)×
[
QR+k \QR+k−1

]
for k ∈N.

Observe that ζ := µ((0,∞) × Rd) is in (0,1]. Write ζ =
∑

k∈N0
ζk with ζk := µ(S(k)

R ) for
k ∈ N0. Note that ζk > 0 implies DPn

(µ)≥ R+ k − 1, so that ζkDPn
(µ)≥ ζk(R+ k − 1)

for k ∈ N0. Since ΨPn
(µ) = −∞ if µ ̸≪ Pn, we may and do assume µ≪ Pn. Hence we

have the lower bound ζDPn
(µ) =

∑
k∈N0

ζkDPn
(µ)≥∑k∈N0

ζk(R+ k − 1). Furthermore,
we have the upper bound

ΦPn
(µ)≤

∑
k∈N0

∫
S

(k)
R

f dµ(f, y)≤
∑
k∈N0

ζkMR+k(Pn).

Together with (3.15) and DPn
(µ)≥R≥R0, this gives

ΨPn
(µ) = ΦPn

(µ)− qDPn
(µ)≤

∑
k∈N0

ζk
[
1
2q(R+ k− 1)− q(R+ k− 1)

]
− q(1− ζ)R

≤
∑
k∈N0

ζk(−A)− (1− ζ)A=−A.

(b) Let us first show (i) of Definition 3.3. Pick µ,µ1, µ2, · · · ∈ W such that µn→ µ. We
have to show that −ΨP(µ)≤ lim infn→∞−ΨPn

(µn), i.e., ΨP(µ)≥ limsupn→∞ΨPn
(µn).

By (a) we may assume that there exists an R> 0 such that µ,µn ∈WR for all n ∈N, because
if such R does not exist, then limsupn→∞ΨPn

(µn) =−∞. Passing to subsequences if nec-
essary, we may also assume that µn≪Pn for all n ∈ N and, by Lemma 3.7 (b), µ≪P . In
this case, the desired statement is a direct consequence of Lemma 3.8.

To verify (ii) of Definition 3.3, let µ ∈W . Assume first that ΨP(µ) = −∞. Since Pn is
countable for each n, there exists a (f, y) ∈ (0,∞)×Rd \⋃n∈NPn. Setting µn = (1− 1

n)µ+
1
nδ(f,y), it is clear that µn→ µ and ΨPn

(µn) =−∞ for every n.
Assume now that ΨP(µ) > −∞, which implies µ≪P . As we will soon see, it suffices

to show the following: for every L > 0, there exists a sequence µn with µn = µ(L)

n such that
DPn

(µn)→ DP(µ
(L)) and ΦPn

(µn)→ ΦP(µ
(L)). To prove the latter, fix L > 0 and take

k, (fi, yi), (fn
i , y

n
i ) as in Lemma 3.7. Define wi = µ(fi, yi) for i ∈ {1, . . . , k} and µn :=∑k

i=1wiδ(fn
i ,yn

i )
. Then

DPn
(µn) =D0({ynj : wj > 0})→D0({yj : wj > 0}) =DP(µ

(L)),
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µn → µ(L) and ΦPn
(µn) → ΦP(µ

(L)) as well, as shown in the last line of the proof of
Lemma 3.8.

Now, for each m ∈N, we can find a sequence (νm,n)n∈N inW with ν(m)

m,n = νm,n such that
DPn

(νm,n)→DP(µ
(m)) and ΦPn

(νm,n)→ΦP(µ
(m)) as n→∞. Let (Nm)m∈N be a strictly

increasing sequence in N such that∣∣∣DPn
(νm,n)−DP(µ

(m))
∣∣∣∨ ∣∣∣ΦPn

(νm,n)−ΦP(µ
(m))
∣∣∣< 1

m
for all n≥Nm.

Define mn := max{m ∈ N : Nm ≤ n} and µn := νmn,n. Note that mn→∞, µn→ µ and
n≥Nmn

, so that by Lemma 3.9,∣∣∣ΨPn
(µn)−ΨP(µ)

∣∣∣≤ ∣∣∣ΨPn
(µn)−ΨP(µ

(mn))
∣∣∣+ ∣∣∣ΨP(µ

(mn))−ΨP(µ)
∣∣∣ n→∞−−−→ 0.

With the convergence of Lemma 3.9 and the compactness in Proposition 3.6 (a), we prove
Lemma 2.6:

PROOF OF LEMMA 2.6. By Proposition 3.6 (a) it follows that there exists an R > 0
such that Ξ(P) equals supν∈WR

ΨP(ν). Then, by Lemma 3.9, it follows that Ξ(P) equals
supν∈F(P)ΨP(ν). Let ν ∈ F(P) and δ > 0. We show supµ∈F1(P)ΨP(µ) ≥ ΨP(ν) −
2δ. Let (f1, y1), . . . , (fm, ym) be distinct elements of P such that

∑m
i=1 fi ≥ 2θ and

D0(y1, . . . , ym) < δ. Let k ∈ N0 and (fm+1, ym+1), . . . , (fm+k, ym+k) be the distinct ele-
ments that form the support of ν (so possibly k = 0). By Proposition 3.1 there exist wi for
i ∈ {1, . . . ,m+ k} with

∑m+k
i=1 wi = 0 such that for µ=

∑m+k
i=1 wiδ(fi,yi) one has

ΦP(µ) = φk+m(f1, . . . , fm+k)≥ φm(f1, . . . , fm)≥ΦP(ν),

DP(µ)≤D0(y1, . . . , ym+k)≤ 2δ+DP(ν),

and thus ΨP(µ)≥ΨP(ν)− 2δ.

3.3 Maximizers have finite support
In this section we prove that, if P is a good point measure in M◦

p, then every maximizer
µ∗ of ΨP has a finite support. It is this result that needs one of the two conditions (i) or (ii)
of Definition 2.7. Indeed, we will use (i) to construct, from a maximization candidate with
infinitely many points, a better one with only finitely many points, and we will use (ii) for a
simple argument that the maximizer has only finitely many points.

PROPOSITION 3.10 (Maximizers have finite support). Let P be a point measure inM◦
p

that is good in the sense of Definition 2.7. Then

(a) ΨP has at least one maximizer,
(b) there exists a R> 0 such that every maximizer of ΨP lies inWR,
(c) every maximizer has finite support,

and, if P satisfies (i) of Definition 2.7, then

(d) every maximizer ν is a probability measure, i.e., ν =
∑k

i=1wiδ(fi,yi) for some k ∈ N,
w ∈ [0,1]k

∑k
i=1wi = 1, fi ∈ (0,∞), yi ∈ Rd for i ∈ {1, . . . , k}. Moreover,

∑k
i=1 fi >

2θ.
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PROOF. (a) By Proposition 3.6, see also Remark 3.4, ΨP is upper semicontinuous.W is
sequentially compact by (Kle08, Corollary 13.31). Therefore ΨP has at least one maximizer.

(b) By Proposition 3.6 (a), we may pick R > 0 so large that supµ∈W\WR
ΨP(µ) < 0 ≤

supµ∈WR
ΨP(µ). This implies that every maximizer lies inWR.

(c) Let ν ∈ WR be a maximizer of ΨP . Clearly, ν ≪ P (otherwise ΨP(ν) = −∞ <
ΨP(0)). Under (ii) of Definition 2.7, ν has finite support. Therefore we assume instead that
(i) of Definition 2.7 holds. Moreover, without loss of generality we may assume that the sup-
ports of P and ν are infinite. We are going to show that there exists a µ ∈WR+1 such that
suppµ is a finite set and ΨP(µ)>ΨP(ν), which implies the claim.

Let (fi, yi) ∈ (0,∞)×Rd for i ∈ N be distinct and such that {(fi, yi) : i ∈ N}= suppν.
We may assume that f1 ≥ f2 ≥ f3 ≥ . . . and fk→ 0 as k→∞ (due to the fact that [ε,∞)×
QR is relatively compact in E, because it is a subset of Hs

h for some s,h > 0, and so there
are only finitely many i such that fi ≥ ε for all ε > 0). We separate the proof in two cases,
depending on

∑
i∈N fi: Case 1:

∑
i∈N fi ∈ (2θ,∞], Case 2:

∑
i∈N fi ∈ [0,2θ].

Case 1
∑

i∈N fi ∈ (2θ,∞]. The idea is that Proposition 3.1 tells us that DP is maximized
using a finite number of points such that adding points the Φ part will not enlarge, but the D
part will increase.

Let δ > 0 be such that
∑

i∈N fi ≥ 2θ + 2δ. Let K1 be such that
∑K1

i=1 fi > 2θ + δ. Let
K2 ≥K1 be such that fk < δ

K1
for all k >K2. Then for k ≥K2 we have

ΦP(ν)≤ φk(f1, . . . , fk) + δ,(3.16)

k∑
i=1

fi − kfk+1 =

k∑
i=1

(fi − fk+1)≥
K1∑
i=1

(fi −
δ

K1
)≥ 2θ+ δ− δ = 2θ.(3.17)

By (3.16) it follows that (as the above can be done for any δ > 0), for φk as in (3.2),

ΦP(ν)≤ sup
k∈N

φk(f1, . . . , fk).

By (3.17) it follows that there exists a ℓ ∈ N such that K⋆(f1, . . . , fk) = ℓ for all k ≥
K2, where K⋆ is as in (3.3). Therefore, by Proposition 3.1, we have φℓ(f1, . . . , fk) =
φm(f1, . . . , fm) for all m≥K2 and thus, with wi as in (3.4), for w given by

w(f, y) =

{
wi if i ∈ {1, . . . , ℓ} and (f, y) = (fi, yi),

0 otherwise,

we have for µ=wP that ΦP(µ) = φℓ(f1, . . . , fℓ) = supk∈Nφk(f1, . . . , fk) and thus

ΦP(µ)≥ΦP(ν), DP(µ)<DP(ν) and therefore ΨP(µ)>ΨP(ν).

Case 2
∑

i∈N fi ∈ [0,2θ]. Let us first introduce some objects. For k ∈N, let

ak :=

∑∞
i=k+1 fi

2θ
.

Then ak→ 0 as k→∞. Let R1 := inf{s > 0: suppν ⊂ (0,∞)×Qs} the smallest r such
that ν ∈Wr . Then R1 ≤R since ν ∈WR. Then there exists a function φ : N→ N such that
yφ(n) converges to z = (z1, . . . , zd) ∈ ∂QR1

as n→∞. Assume, without loss of generality,
that z1 =R1. Let β > 2 and ε= εR1+1,3θ as in the condition (i) of Definition 2.7 on P . Pick
k ∈N such that θa2k − 8qaβk > 0 and 3aβk ≤ 1 and ak < ε∧ 1. Then define

a= ak and z̄ = (R1 + 2aβ, z2, . . . , zd).
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Observe that z̄ ∈QR1+1. By the assumption (i) on P from Definition 2.7 there exists a

(f̃ , ỹ) ∈ [(3θa,∞)×B(z̄, aβ)]∩ suppP

We observe that (f̃ , ỹ) /∈ suppν since ỹ /∈QR1
, but ỹ ∈QR1+3aβ ⊂QR+1. Since limn→∞ yφ(n) =

z, there exists a (f̂ , ŷ) ∈ suppν such that ŷ ∈ B(z, aβ) and therefore (f̃ , ỹ) ∈ (3θa,∞) ×
B(ŷ,4aβ).

f

y

y1 y2 y3

(f̂ , ŷ)

z z

(f̃ , ỹ)

(3θa,∞)×B(z, aβ)

FIG 4. Visualisation of z, z and (f̃ , ỹ) (for d= 1).

We recall Proposition 3.1, Case 2, which tells us that the unique maximizer of φk as in
(3.2), is given by ( f12θ , . . . ,

fk
2θ ). Define µ=wP (i.e., dµ

dP =w), where

(3.18) w(f, y) =


fi
2θ if (f, y) = (fi, yi) for some i ∈ {1, . . . , k},
a if (f, y) = (f̃ , ỹ),

0 otherwise.

Because
k∑

i=1

fi
2θ

+ a=

∑∞
i=1 fi
2θ

∈ [0,1],

it is clear that µ ∈ WR+1 and that µ has only finite support. We are going to show that
ΨP(µ)>ΨP(ν).

Observe that
∞∑

i=k+1

f2
i

4θ
≤ 1

4θ

( ∞∑
i=k+1

fi

)2

=
1

4θ
(2θa)2 = θa2.

Therefore, by using that
∑k

i=1
f2
i

4θ =
∑∞

i=1
f2
i

4θ −
∑∞

i=k+1
f2
i

4θ , we see that

(3.19) ΦP(µ)≥
k∑

i=1

wifi + af̃ − θ
( k∑

i=1

w2
i + a2

)
=

k∑
i=1

f2
i

4θ
+ af̃ − θa2 ≥

∞∑
i=1

f2
i

4θ
+ af̃ .

By Proposition 3.1 it follows that

(3.20) ΦP(ν)≤
∞∑
i=1

f2
i

4θ
.



26

Moreover, we recall the definition of DP in (1.15) and see that

DP(ν)≥D0({y1, . . . , yk, ŷ})≥D0({y1, . . . , yk, ŷ, ỹ})− 8aβ,(3.21)

where the last inequality holds true since any path starting from 0 and visiting all points
in {y1, . . . , yk, ŷ} can be extended to visit ỹ as well by traveling back and forth along the
straight line linking ŷ and ỹ (which are at most 4aβ apart from each other). Since suppRd µ=
{y1, . . . , yk, ỹ},

D0({y1, . . . , yk, ŷ, ỹ})≥D0({y1, . . . , yk, ỹ}) =DP(µ).

Thus, we deduce from (3.21) that

(3.22) DP(µ)≤DP(ν) + 8aβ,

and therefore, using (3.19), (3.20) and (3.22) in combination with the fact that f̃ ≥ 3θa we
obtain
(3.23)

ΨP(µ)−ΨP(ν)≥−
∞∑

i=k+1

f2
i

4θ
+ af̃ − θa2 − 8qaβ ≥ af̃ − 2θa2 − 8qaβ > θa2 − 8qaβ > 0.

(d) Suppose that µ =
∑k

i=1wiδ(fi,yi). If µ is a maximizer and
∑k

i=1 fi ≥ 2θ, then∑k
i=1wi = 1 because of Proposition 3.1 (as, like in Case 1, ΦP(µ) = φk(f1, . . . , fk)), so

that µ is a probability measure.
If
∑k

i=1 fi < 2θ and µ maximizes ΦP (observe ΦP , not ΨP ), then by Proposition 3.1,∑k
i=1wi < 1, i.e., µ is not a probability measure. Moreover, like in Case 2 above, one can

show that µ is not a maximizer of ΨP : Indeed, one chooses an a ∈ (0, ε ∧ 1) with a ≤
1−∑k

i=1wi, θa2 − 8qaβ > 0 and 3aβ ≤ 1 and follows the same lines as in Case 2 to find a
(f̃ , ỹ) such that ΨP(µ+ aδ(f̃ ,ỹ))>ΨP(µ).

3.4 Proof of Theorem 2.8
In this section, we prove Theorem 2.8 subject to Proposition 3.6 (b) (Gamma-convergence of
−Ψ) and Proposition 3.10 (finiteness of support of maximizers).

PROVE OF THEOREM 2.8. (a) follows directly by Proposition 3.10. (c) follows by the fact
that ΨP is upper-semicontinuous and W is sequentially compact (see the beginning of the
proof of Proposition 3.10), so that, in particular, Oc is sequentially compact for any open set
O ⊂W . Therefore there exists a maximizer of ΨP on Oc, which by the uniqueness cannot
be equal to the maximizer overW , therefore proving the desired inequality. (d) follows from
Theorem 3.5 (b) and Proposition 3.6 (b).

Let us now prove (b). The idea is that the points in G are all worth visiting because of
their large energy values, but at the same time they are not distinct enough so as to give
preference to only a couple of them. Having no points in E1,E2 and E3 contributes to make
points outside of G not worth visiting, because either their energy values are too low or their
distance too large.

Fix P ∈M◦
p with P(G) = k and P(Ei) = 0, i= 1,2,3. Denote by (f1, y1), . . . , (fk, yk)

the k points of P in G, with f1 ≥ f2 ≥ · · · ≥ fk. Take wi as in (3.4) of Proposition 3.1 and let
ν∗ :=

∑k
i=1wiδ(fi,yi). Note that, since fi ≥ L> 2θ for 1≤ i≤ k, the relevant formulas from

Proposition 3.1 will (mostly) be (3.4) and (3.5). We divide the proof into the following steps:

(Step 1) wi > 0 for all i ∈ {1, . . . , k}.
(Step 2) If ν ∈W and suppν ⊂G then ΨP(ν)≤ΨP(ν

∗);
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(Step 3) If ν ∈W and suppν ̸⊂G then ΨP(ν)≤ΨP(ν
∗).

Steps 2–3 together with (a) will then show that µ∗ = ν∗, and this together with Step 1 implies
(b).

Step 1 By Proposition 3.1 it suffices to check that k = K⋆(f1, . . . , fk), where K⋆ is as in
(3.3). This follows as for any j ∈ {1, . . . , k− 1} we have

j∑
i=1

fi − 2θ ≤ j(L+
2θ

k
)− 2θ = jL− (k− j)2θ

k
≤ jfj+1 −

2θ

k
< jfj+1.(3.24)

Step 2 We can assume that ν ≪P . We will first show the statement for ν ∈ W which are
nonzero. Observe that by (3.1), for any ν ∈W with ∅ ̸= suppν ⊂G,

ΨP(ν) = ΦP(ν)−DP(ν)≤ φ|J |((fj)j∈J)− qD0((yj)j∈J),

where J ⊂ {1, . . . , k} is such that suppν = {(fj , yj) : j ∈ J}. Therefore it suffices to show
that for all J ⊂ {1, . . . , k}, J ̸= ∅, one has

φ|J |((fj)j∈J − qD0((yj)j∈J)≤ΨP(ν
∗) = φk(f1, . . . , fk)− qD0(y1, . . . , yk).

Of course for k = 1 the above is clear. Suppose that k ≥ 2. Let J ⊂ {1, . . . , k} with m :=
|J | ≤ k− 1 and ℓ ∈ {1, . . . , k} \ J . By an inductive argument on m, it suffices to show that

φm((fi)i∈J)− qD0((yi)i∈J)≤ φm+1((fi)i∈J∪{ℓ})− qD0((yi)i∈J∪{ℓ}).(3.25)

First of all, a straightforward computation using (3.5) gives

φj+1((fi)i∈J∪{ℓ})−φj((fi)i∈J) =
1

4θm(m+ 1)

[
mfℓ −

(∑
i∈J

fi − 2θ

)]2
≥ θ

k4
= 4qε,

(3.26)

where in the last line we used that∑
i∈J

fi − 2θ ≤mfℓ −
2θ(k−m)

k
,(3.27)

which follows similarly as the estimate in (3.24). From this and the observations

D0((yi)i∈J∪{ℓ})−D0((yi)i∈J)≤ 4ε, 4qε− 4ε > 0,

we deduce (3.25). In order to finish this step, it suffices to observe that (because L > 2θ +
(q+ 1)ε),

ΨP(ν
∗)≥ φ1(f1)− qD0(y1) = f1 − θ− q|y1| ≥ L− θ− qε > ε > 0.(3.28)

Step 3 By (a) it suffices to show this step for ν with suppν ⊂ P finite support. Let (f, y) ∈
suppν \G be such that f is maximal among such points. Assume first that f > ε. In this case,
our assumptions on P imply that |y| ≥ f + 3θ. If f ≥ L + 2θ

k , then ΦP(ν) ≤ f , DP(ν) ≥
|y| ≥ f + 3θ ≥ f , and thus

ΨP(ν) = ΦP(ν)− qDP(ν)≤ f − qf < 0<ΨP(ν
∗).

If instead ε < f ≤ L + 2θ/k, then ΦP(ν) ≤ L + 2θ
k and |y| ≥ f + 3θ > ε + θ + 2θ

k , so
(remember (3.28))

ΨP(ν)≤ L+
2θ

k
− q|y| ≤ L− (q− 1)

2θ

k
− qθ− qε < L− θ− qε≤ΨP(ν

∗).
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Assume now that f ≤ ε. If suppν ∩ G = ∅ then ΨP(ν) ≤ ε ≤ ΨP(ν
∗) (because of

(3.28) again). Lastly, suppose suppν ∩ G = {(fi, yi)i∈J} ≠ ∅ where J ⊂ {1, . . . , k}
with |J | = m ≥ 1. Let N ∈ N be the number of points in suppν \ G. Denote by
(fk+1, yk+1), . . . , (fk+N , yk+N ) the points in suppν \ G with f = fk+1 ≥ fk+2 ≥ · · · ≥
fk+N . Observe that

mf ≤mε<mL− 2θ ≤
∑
j∈J

fj − 2θ,

so that for I = {k+ 1, . . . , k+N}, K⋆((fi)i∈J∪I) =K⋆((fi)i∈J). The latter equals |J | due
to (3.27) and thus ΦP(ν) ≤ φ|J∪I|((fi)i∈J∪I) ≤ φm((fi)i∈J) ≤ ΦP(ν

∗) and so ΨP(ν) ≤
ΨP(ν

∗).

4. Goodness of Π and of Πt . In order that we can apply Theorem 2.8 to the rescaled
process Πt (for all t > 0) defined in (1.9) and to the PPP Π defined in (1.10), we show in
this section that they are good in the sense of Definition 2.7 for any α ∈ (2d,∞). Moreover,
we prove Lemma 2.11 for α ∈ (d,∞). That is, we prove Lemma 2.9, see Lemma 4.2 and
Lemma 4.4. That both Π and Πt can be viewed as elements of M◦

p, has been shown in
Lemma 2.3.

LEMMA 4.1. Let s, r > 0 and x ∈ Rd. Let Vd ∈ (0,∞) be the volume of the unit ball in
Rd. Then

P
(
Π
(
[s,∞)×B(x, r)

)
= 0
)
= e−Vds−αrd .

PROOF. The random variable Π([s,∞)×B(x, r)) is Poisson distributed with parameter

(4.1)
∫
[s,∞)×B(x,r)

αy−(1+α) dy⊗ dz =

∫
[s,∞)

α

y1+α
dy Vdr

d = Vds
−αrd.

LEMMA 4.2.

(a) For t ∈ (0,∞), with probability one, Πt satisfies (ii) of Definition 2.7.
(b) If α ∈ (2d,∞), then with probability one, Π satisfies (i) of Definition 2.7.

PROOF. (a) By construction Πt satisfies (ii) since Πt

(
(0,∞)×QR

)
is simply the cardi-

nality of {x ∈ Zd : |x| ≤Rrt}, which is Rdrdt .
(b) Let β ∈ (2, αd ). First observe that QR can be covered by balls B(z, 1k ) with z ∈ 1

kZ
d

and z ∈QR+1, i.e.,

QR ⊂
⋃

z∈( 1

k
Zd)∩QR+1

B(z, 1k ).

Then, observe that therefore, with probability one Π satisfies (i) of Definition 2.7 if

P

( ⋃
R,C∈(0,∞)∩Q

⋂
N∈N

⋃
k≥N

⋃
z∈( 1

k
Zd)∩QR+1

{
Π∩

[
[Ck−

1

β ,∞)×B(z, 1k )
]
= ∅
})

= 0.

By the Borel–Cantelli Lemma, the above holds if we can show that for any R,C ∈ (0,∞),∑
k∈N

P

( ⋃
z∈( 1

k
Zd)∩QR+1

{
suppΠ∩

[
[Ck−

1

β ,∞)×B(z, 1k )
]
= ∅
})

<∞.
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Let R,C > 0. We may assume R> 2. By estimating the probability of the union by the sum
of the probabilities, and observing that #( 1kZ

d) ∩QR+1 ≤ (2k(R+ 1) + 1)d ≤ (5kR)d, by
Lemma 4.1 (with s=Ck−

1

β , r = 1
k , so that s−αrd =C−αk

α

β
−d),∑

k∈N
P

( ⋃
z∈( 1

k
Zd)∩QR+1

{
suppΠ∩

[
[Ck−

1

β ,∞)×B(z, 1k )
]
= ∅
})
≤
∑
k∈N

(5kR)de−VdC−αk
α
β

−d

.

Because β < α
d , we have α

β > d and therefore the above sum is finite.

LEMMA 4.3. Let P ∈M◦
p. Suppose ν ∈ F(P), ν ̸= 0 and ΨΠ(ν) = supµ∈F(Π)ΨP(µ).

Let k ∈ N, (f1, y1), . . . , (fk, yk) ∈ P be such that suppν = {(f1, y1), . . . , (fk, yk)}. Then
ΦP(ν) = φ̃k(f1, . . . , fk), where

φ̃k(f1, . . . , fk) =
1

4θ

( k∑
i=1

f2
i −

1

k

( k∑
i=1

fi − 2θ
)2)

.(4.2)

PROOF. Observe that (for φk as in (3.2))

ΦP(ν) = φk(f1, . . . , fk), DP(ν) =D0(y1, . . . , yk).

By the definition of the support, we have ν =
∑k

i=1wiδ(fi,yi) for some w1, . . . ,wk ∈ (0,1].
By Lemma 3.2 and (f) we may assume that kmin{f1, . . . , fk}+2θ−∑k

i=1 fi > 0 (otherwise
wi = 0 for some i). Therefore, by (e) of that lemma, it follows that ΦP(ν) = φ̃k(f1, . . . , fk)
(see also (3.4) and (3.5)).

LEMMA 4.4. Let α ∈ (0,∞) and t ∈ (0,∞). Recall the definition of F(P) in (2.4).

(a) With probability one, ΨΠ possesses at most one maximizer in F(Π).
(b) With probability one, ΨΠt

possesses at most one maximizer in F(Πt). Moreover, for
L> 0 and Π(L)

t = 1[L−1,∞)×QL
Πt (see also (3.13)), the function ΨΠ

(L)
t

possesses at most
one maximizer in F(Πt).

PROOF. (a) We show that the event that there exist µ1, µ2 ∈ F(Π) with µ1 ̸= µ2 and
ΨΠ(µ1) = ΨΠ(µ2) = supµ∈F(Π)ΨΠ(µ), has probability zero. For this it suffices to show
that P(NL) = 0 for any L> 0, where, with SL := [L−1,∞)×QL,

NL =
{
∃µ1, µ2 ∈ F(Π): µ1 ̸= µ2, suppµi ⊂ SL,ΨΠ(µ1) = ΨΠ(µ2) = sup

µ∈F(Π)
ΨΠ(µ)

}
.

Let L > 0. We give an explicit almost sure description of Π on SL. Let us write Θ for the
intensity measure of Π, i.e., Θ(d(f, y)) = αf−(1+α) df ⊗dy. Let N be a Poisson distributed
variable with parameter mL, where mL =Θ(SL). Let (Fj , Yj)j∈N be i.i.d. random variables
that are independent from N and whose law is given by 1

mL
1SL

Θ. Then,

1SL
Π is equal in distribution to

N∑
j=1

δ(Fj ,Yj).

Without loss of generality, we may assume 1SL
Π =

∑N
j=1 δ(Fj ,Yj). Then, by Lemma 4.3

NL is included in the event (we make abuse of notation and for m = 0 we understand
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φ̃m(Fj1 , . . . , Fjm) and D0(Yj1 , . . . , Yjm) to be equal to 0)


There exist k,m ∈N0, distinct i1, . . . , ik, i∗ and distinct j1, . . . , jm in {1, . . . ,N}

such that i∗ /∈ {j1, . . . , jm} and

φ̃k+1(Fi1 , . . . , Fik , Fi∗)

= φ̃m(Fj1 , . . . , Fjm) +D0(Yi1 , . . . , Yik , Yi∗)−D0(Yj1 , . . . , Yjm)

 .

(4.3)

The above event is included in the one where we replace {1, . . . ,N} by N. Then, it follows
that (4.3) has probability zero by Lemma 4.5.

(b) Follows similar as the above argument: Besides replacing Π by Πt, replace Θ by the
product measure of αf−(1+α)

1[r
−d/α
t ,∞)(f)df and

∑
z∈r−1

t Zd δz , and N by #(QL ∩ Zd).
Then again, one can show that the event (4.3) has zero probability by applying Lemma 4.5.
From this, the “moreover” part immediately follows too.

LEMMA 4.5. Suppose that F1, F2, . . . are i.i.d. random variables with values in (0,∞)
whose law has a density with respect to the Lebesgue measure. Let Y1, Y2, . . . be i.i.d. random
variables with values in Rd. Let k,m ∈N0. Suppose that i1, . . . , ik, i∗ are distinct element of
N and j1, . . . , jm are distinct elements in N such that i∗ /∈ {j1, . . . , jm}. Then

P
(
φ̃k+1(Fi1 , . . . , Fik , Fi∗) = φ̃m(Fj1 , . . . , Fjm) +D0(Yi1 , . . . , Yik , Yi∗)−D0(Yj1 , . . . , Yjm)

)
= 0.

(4.4)

PROOF. We explain the following argument in more detail below. If we condition the
above event in (4.4) on all variables except Fi∗ , that is, on Fi1 , . . . , Fik , Fj1 , . . . , Fjm ,
Yi1 , . . . , Yik , Yj1 , . . . , Yjm and Yi∗ , then by the formula for φ̃k (4.2), there exist C1,C2,C3 ∈
R, C1 ̸= 0 or C2 ̸= 0 such that the event in the probability of (4.4) becomes

C1F
2
i∗ +C2Fi∗ +C3 = 0.

The probability of such event is equal to zero as Fi∗ has a density with respect to the Lebesgue
measure.

Indeed, observe that φ̃1(fi∗) = fi∗ − θ = A0f
2
i∗
+ B0fi∗ − C0, for A0 = 0, B0 = 1 and

C0 =−θ, and for k ∈N,

Ak =
1

4θ
(1− 4θ2

k+ 1
), Bk =Bk(f1, . . . , fk) =

2

4θ(k+ 1)

( k∑
i=1

fi − 2θ
)
,

Ck =Ck(f1, . . . , fk) =
1

4θ

( k∑
i=1

f2
i −

1

k+ 1

( k∑
i=1

fi − 2θ
)2)

,

that

φ̃k+1(f1, . . . , fk, fi∗) =Akf
2
i∗ +Bkfi∗ +Ck.

So that for C̃k = Ck − (φ̃m(fj1 , . . . , fjm) +D0(yi1 , . . . , yik , yi∗) −D0(yj1 , . . . , yjm)
)
), we

have

P

(
φ̃k+1(Fi1 , . . . , Fik , Fi∗) = φ̃m(Fj1 , . . . , Fjm)

+D0(Yi1 , . . . , Yik , Yi∗)−D0(Yj1 , . . . , Yjm)

∣∣∣∣F = f,Y = y

)
=P(AkF

2
i∗ +BkFi∗ + C̃k = 0),(4.5)
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where

F = (Fi1 , . . . , Fik , Fj1 , . . . , Fjm), f = (fi1 , . . . , fik , fj1 , . . . , fjm),

Y = (Yi1 , . . . , Yik , Yi∗ , Yj1 , . . . , Yjm), y = (yi1 , . . . , yik , yi∗ , yj1 , . . . , yjm).

As the law of Fi∗ has a density with respect to the Lebesgue measure, the right-hand side
(and thus the left-hand side) of (4.5) equals zero.

For the proof of Lemma 2.11, we use the following lemma.

LEMMA 4.6. Let λ ∈ (0,∞). Let ζ be a PPP on (0,1)d with intensity λ. If k ≤ (λ/4)1/d,
then

P
(
∃ distinct Z1, . . . ,Zk ∈ ζ : D0(Z1, . . . ,Zk)< d

)
≥ 1− exp

(
−
(λ
4

) 1

d

)
.

PROOF. Let ω be a PPP on Rd with intensity λ. In an almost sure and inductive sense we
define sequences (Ri)i∈N in (0,∞) and (Yi)i∈N in [0,∞)d by setting R0 = 0 and Y0 = 0 and
(on the probability one set such that the following infima are finite)

Ri+1 := inf
{
r > 0: ω(Yi + (0, r]d)> 0

}
,

and by letting Yi+1 ∈ [0,∞)d be the unique point in suppω ∩
(
Yi + (0,Ri+1]

d
)

(see also
Figure 5). Observe that

0

Y1R1

Y2

R2

Y3

R3

Y4

R4

FIG 5. Illustration of choosing R1,R2,R3,R4 and Y1, Y2, Y3, Y4.

P
(
∃ distinct Z1, . . . ,Zk ∈ ζ : D0(Z1, . . . ,Zk)< d

)
≥P

(
{Y1, . . . , Yk} ⊂ (0,1)d,

k∑
i=1

|Yi − Yi−1| ≤ d
)

Note that Yi ∈QR1+···+Ri
, |Yi−Yi−1| ≤ dRi and (R1+ · · ·+Rk)

d ≤ kd−1(Rd
1 + · · ·+Rd

k).
Thus

P

(
{Y1, . . . , Yk} ̸⊂ (0,1)d or

k∑
i=1

|Yi − Yi−1| ≥ d

)
≤P

(
k∑

i=1

Ri ≥ 1

)

≤P

(
k∑

i=1

λRd
i ≥

λ

kd−1

)
.
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On the other hand, the random variables λRd
i are i.i.d. Exp(1). Using E[e

1

2
(λRd

1−2)] = 2e−1 <

1, λk1−d − 2k ≥ λ
2k

1−d, λ
4k

1−d ≥ (λ4 )
1

d and the Markov inequality, we obtain

P

(
k∑

i=1

λRd
i ≥ λk1−d

)
≤P

(
k∑

i=1

(λRd
i − 2)≥ λ

2
k1−d

)

≤ e−
λ

4
k1−dE[e

1

2
(λRd

1−2)]k < e−
λ

4
k1−d ≤ e−(λ

4
)1/d .

PROOF OF LEMMA 2.11. Let δ > 0. For n,k ∈N let

Qn :=
[
1
n ,∞

)
×Q δ

d
, λn := ( δd)

dnα,

En,k :=
{
∃ distinct (f1, y1), . . . , (fk, yk) ∈ suppΠ∩Qn : D0(y1, . . . , yk)< δ

}
.

Then Π(Qn) is Poisson distributed with parameter λn. For n ∈ N let kn := ⌈λ
1

d
n⌉. Then on

the event En,kn
we have

kn∑
i=1

fi ≥
kn
n
≥ δ

d
n

α

d
−1,

which is larger than 2θ for sufficiently large n.
Hence, for such large n we have P(Π satisfies (2.6))≥P(En,kn

) and so it suffices to show

P(En,kn
)

n→∞−−−→ 1.(4.6)

Note that the projection of 1Qn
Π onto (0, δ/d)d is a PPP on (0, δ/d)d with intensity

λn(δ/d)
−d (because Π(Qn) is Poisson distributed with parameter λn). Therefore, for a PPP

ζ on (0,1)d with intensity λn, we have

P(En,kn
) = P

(
∃ distinct Z1, . . . ,Zkδ

∈ ζ : D0(Z1, . . . ,Zkδ
)< d

)
.

Therefore, by applying Lemma 4.6, we conclude (4.6).

5. Proof of Theorem 1.2. In the present section we will prove Theorem 1.2 subject to
Proposition 5.2 and Proposition 5.4 below, whose proofs are postponed to Sections 6 and 7,
respectively.

In some sense, Proposition 5.2 gives us the lower bound of Theorem 1.2 (b) (iii) whereas
Proposition 5.4 gives us the corresponding upper bound, as well as Theorem 1.2 (b) (iii).

Our strategy is the following. We first need to ‘compactify’ the partition function, i.e.,
to show that the random walk in the partition function can be restricted to some large box
with a diameter on the scale rt. This is done in Proposition 5.4 (c) in the sense of a con-
vergence in distribution. Furthermore, we derive upper (in Proposition 5.4 (a)) and lower (in
Proposition 5.2) bounds for the compactified partition function that lead to the right limit,
the variational formula Ξ. Finally we need to upper bound the compactified partition func-
tion with Wt outside a neighbourhood of the maximizer against something that has a strictly
smaller exponential rate. Here the stability of the variational formula from Theorem 2.8(c)
will be crucial.

The upper and lower bounds for the compactified partition function are proved even in
the almost-sure sense with respect to ξ, using the Skorohod embedding. That is, we do not
work with a fixed trajectory t 7→ Zξ,β

t for a given realization of ξ, but with a sequence of



WEAKLY SELF-AVOIDING WALK IN A PARETO POTENTIAL 33

realizations that are constructed jointly on one probability space. For this, we fix a sequence
of times (tn)n∈N. Since this construction is used several times in the paper, we state it in the
following remark.

REMARK 5.1 (Skorohod embedding). Let (tn)n∈N be a strictly increasing sequence in
(0,∞) such that tn→∞. By Skorohod’s representation theorem (see, e.g., (Bil99, Theorem
1.6.7)) and Lemma 2.4 we can define on the same probability space a sequence (Πn)n∈N of
point processes and a Poisson point process Π on (0,∞)×Rd of intensity αf−1−α df ⊗ dy
such that Πn is the same in distribution as Πtn (see (1.9)) for every n ∈N, and Π is the same
in distribution as Π, and

Πn→Π almost surely inM◦
p.

Without loss of generality we may assume that

(5.1) Πn =
∑
z∈Zd

δ( ξn(z)

r
d/α
tn

, z

rtn

),
for some random variables ξn(z) which are the same in distribution as ξ(z), for any n ∈ N
and z ∈ Zd. Fix a metric d on W that is compatible with the vague topology and write
B(ν, δ) = {µ ∈W : d(ν,µ)< δ} for ν ∈W and δ > 0. We introduce the following notation:

(5.2)
rn = rtn , γn = rn log tn,

Zn = Z
ξn,βtn

tn , Hn(X) =H
ξn,βtn

tn (X), PPPn = P(ξn)

tn , W n =W ξn,X
tn ,

and for R,δ > 0 and n ∈N

ZR,−
n = E

[
eHn(X)

1

{
max

s∈[0,tn]
|Xs| ≤Rrn

}]
and ZR,+

n =Zn −ZR,−
n ,(5.3)

ZR,−,δ
n = E

[
eHn(X)

1{d(W n, µ
∗)≥ δ}1

{
max

s∈[0,tn]
|Xs| ≤Rrn

}]
.(5.4)

Recall (1.18). For a good point measure P (see Definition 2.7) on (0,∞)×Rd and ν∗ ∈ F(P)
the unique maximizer of ΨP (the existence is shown in Theorem 2.8) so that Ξ(P) = ΨP(ν

∗),
we define

Ξδ(P) := sup
ν∈W:d(ν,ν∗)≥δ

ΨP(ν).(5.5)

For the probability measure on the space where the Π and Πn’s live, we make abuse of
notation and write P and assume this does not lead to confusion. 3

We can now formulate the lower bound for the partition function.

PROPOSITION 5.2 (Lower bound). Fix α ∈ (d,∞). Then, with P-probability 1,

lim inf
n→∞

1

γn

logZn ≥ Ξ(Π).(5.6)

The proof of Proposition 5.2 is given in Section 6. Now we formulate the appropriate upper
bounds for both assertions of Theorem 1.2. What will be crucial for the proof is the following
observation:
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LEMMA 5.3. Let α ∈ (2d,∞). There exists a random variable µ∗ with values in F(Π),
such that P-almost surely µ∗ is the unique element ofW such that

(5.7) ΨΠ(µ∗) = Ξ(Π).

Moreover, almost surely

Ξδ(Π)< Ξ(Π).(5.8)

PROOF. Because α > 2d, Π is almost surely good by Lemma 2.9. Therefore by Theo-
rem 2.8 (a) such µ∗ exists (that it is random in the sense that it is a measurable function on
the probability space, is not completely trivial; see Appendix B) and is unique almost surely
and by Theorem 2.8 (c), (5.8) holds.

PROPOSITION 5.4 (Upper bounds). Fix α ∈ (d,∞).

(a) Upper bound for compactified Zn:

P
[
limsup
R→∞

limsup
n→∞

1

γn

logZR,−
n ≤ Ξ(Π)

]
= 1.(5.9)

(b) Upper bound for compactified Zn away from maximizer: Assume that α> 2d. Then

P
[
limsup
R→∞

limsup
n→∞

1

γn

logZR,−,δ
n ≤ Ξδ(Π)

]
= 1, δ > 0(5.10)

(c) Compactification:

lim
R→∞

lim inf
n→∞

P

[
1

γn

logZR,+
n ≤−A

]
= 1, A > 0.(5.11)

The proof of Proposition 5.4 is given in Section 7. We extract the following lemma from
Proposition 5.2 and Proposition 5.4 (c) which will be used for the proof of Theorem 1.2.

LEMMA 5.5. For all ε, η > 0 there exist an R> 0 and an N ∈N such that for all n≥N

P

[
ZR,+

n

ZR,−
n

< ε

]
≥ 1− η.

PROOF. First, we bound ZR,−
n from below by restricting the expectation to the trajectory

that remains at the origin up to time tn and obtain (because by for example (1.13), for Ys = 0
for all s ∈ [0, tn], Hn(Y )≥−θγn)

(5.12) ZR,−
n ≥ P(ℓtn(0) = tn)e

−θγn = e−2dtn−θγn , n ∈N,R > 0.

Because γn = rn log tn = t1+q
n (log tn)

−q (see (1.8)), we have tn
γn
→ 0 as n→∞. Let ε, η >

0. Then, by also using (5.11) with A= 3θ there exists an R> 0 and an N ∈ N such that for
all n≥N ,

P
[
ZR,+

n ≤ e−3θγn

]
≥ 1− η, ZR,−

n ≥ e−2θγn , e−θγn < ε

so that

P

[
ZR,+

n

ZR,−
n

< ε

]
≥P

[
ZR,+

n

ZR,−
n

< e−θγn

]
≥ 1− η.
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Now we prove Theorem 1.2 subject to the above propositions and lemma.

PROOF OF THEOREM 1.2 (a). Let D be the continuity set of the distribution function for
Ξ(Π), i.e., the subset of R containing every continuity point of x 7→P(Ξ(Π)≤ x). We will
prove

1

γn

logZn
t→∞
=⇒ Ξ(Π),(5.13)

by showing the following two inequalities:

limsup
n→∞

P

[
1

γn

logZn ≤ h

]
≤P (Ξ(Π)≤ h) , h ∈R,(5.14)

lim inf
n→∞

P

[
1

γn

logZn ≤ h

]
≥P (Ξ(Π)≤ h) , h ∈D.(5.15)

The proof of (5.15) is more involved. Therefore we focus on (5.15), because (5.14) follows
in a similar fashion from Proposition 5.2. Observe that for any R> 0, because Zn =ZR,−

n +
ZR,+

n (see (5.3)),

(5.16)
1

γn

logZn =
1

γn

logZR,−
n +

1

γn

log
(
1 +

ZR,+
n

ZR,−
n

)
≤ 1

γn

logZR,−
n +

1

γn

ZR,+
n

ZR,−
n

.

Pick an η > 0. Let An,R := {ZR,+
n ≤ ZR,−

n }. By Lemma 5.5 there exist an R > 0 and an
N ∈N such that P(An,R)≥ 1− η for all n≥N .

Fix h ∈D and pick ε > 0. As 1
γn
≤ ε for large n, we have for sufficiently large n that

(5.17)

P

[
1

γn

logZn ≤ h

]
≥P

[{ 1

γn

logZn ≤ h
}
∩An,R

]
≥P

[{ 1

γn

logZR,−
n ≤ h− ε

}
∩An,R

]
≥P

[
1

γn

logZR,−
n ≤ h− ε

]
−P(Ac

n,R)

≥P

[
1

γn

logZR,−
n ≤ h− ε

]
− η.

At this stage, we use Proposition 5.4 (a), i.e., we use (5.9), to infer that (possibly by choosing
R larger)

P
( 1

γn

logZR,−
n ≤ Ξ(Π) + ε

)
= 1, for large n.(5.18)

Combining (5.17) and (5.18) gives

(5.19) lim inf
n→∞

P

[
1

γn

logZn ≤ h

]
≥P (Ξ(Π)≤ h− 2ε)− η, for any η, ε > 0.

By letting η and ε converge to zero and by using the continuity at h of x 7→P (Ξ(Π)≤ x),
this completes the proof of (5.15).

From (5.13) we deduce that 1
rt log t

logZ(ξ)

t =⇒ Ξ(Π) as we obtained the convergence along
diverging sequences of (tn)n∈N in (0,∞). We are left to show that Ξ(Π) is almost surely in
[0,∞). That Ξ(Π)≥ 0 follows directly by the fact that it is larger than ΨΠ evaluated in the
zero measure. That it is finite follows by the fact that H (ξ,βt)

t ≤H (ξ,0)

t and thus Z(ξ)

t = Z(ξ,βt)

t ≤
Z(ξ,0)

t . As the limit of 1
rt log t

logZ(ξ,0)

t is almost surely finite (by e.g. (1.6) in (KLMS09)), so
is the limit of 1

rt log t
logZ(ξ)

t , which is Ξ(Π).
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PROOF OF THEOREM 1.2 (b) (iii). Let δ > 0. First we show thatPPPn[d(W n, µ
∗)> δ] con-

verges to zero in P-probability, i.e., for all κ > 0,

P
[
PPPn[d(W n, µ

∗)> δ]> κ
]

t→∞−−−→ 0.(5.20)

Observe that for any R> 0

PPPn[d(W n, µ
∗)> δ]≤ ZR,−,δ

n +ZR,+
n

Zn
≤ ZR,−,δ

n

Zn
+

ZR,+
n

ZR,−
n

.

Let κ > 0. By Lemma 5.5 it is sufficient to show that there exists an R > 0 such that
P[Z

R,−,δ
n

Zn
≤ κ]

n→∞−−−→ 1. Let ε > 0. By (5.8) there exists an m ∈ N such that e−
1

3m < κ,
and

P[Bm,δ]≥ 1− ε, where Bm,δ =
{
Ξδ(Π)−Ξ(Π)<− 1

m

}
.

By Proposition 5.4 (b) and Proposition 5.2 there exists an R> 0 and an N ∈N such that for
all n≥N

P
[ 1

γn

logZR,−,δ
n ≤ Ξδ(Π) +

1

3m

]
≥ 1− ε, P

[ 1

γn

logZR
n ≥ Ξ(Π)− 1

3m

]
≥ 1− ε,

so that

1− 3ε≤P
[ZR,−,δ

n

Zn
≤ exp

(
− 1

3m

)]
≤P

[ZR,−,δ
n

Zn
≤ κ
]
.

From this we conclude (5.20). From the convergence in probability we deduce the existence
of a strictly increasing φ : N→ N such that PPPφ(n)[d(W φ(n), µ

∗)> δ]→ 0 P-almost surely.
This implies P-almost surely that W φ(n) =⇒ µ∗ inW , more precisely, EEEφ(n)[g(W φ(n))]→
g(µ∗) for any g ∈Cb(W). Therefore,

E
[
EEEφ(n)[g(W φ(n))]

]
→E[g(µ∗)], g ∈Cb(W).

Therefore, as for each sequence (tn)n∈N with tn→∞ there exists a strictly increasing φ :
N→N such that

E
[
e(ξ)

tφ(n)
[g(Wtφ(n)

)]
]
→E[g(µ∗)], g ∈Cb(W),

it follows that for any sequence (tn)n∈N with tn→∞
E
[
e(ξ)

tn [g(Wtn)]
]
→E[g(µ∗)], g ∈Cb(W),

and therefore (1.24).

REMARK 5.6. The proof of the more general convergence in distribution L(ξ)

t
t→∞
=⇒ δµ∗

as in (1.28) of Remark 1.5 can be deduced from the first part of the proof of Theo-
rem 1.2 (b) (iii) as follows.

First we observe that by Portmanteau’s theorem, for probability measures ρ1, ρ2, . . . on
W and µ ∈ W , one has ρn→ δµ weakly if and only if for all closed sets C ⊂W one has
limsupn→∞ ρn(C)≤ δµ(C), which in turns holds if and only if limn→∞ ρn(Cδ(µ))→ 0 for
all δ > 0, where Cδ(µ) = {ν ∈W : d(ν,µ)> δ}.

Let δ > 0. Let Cδ = {ν ∈W : d(ν,µ∗) ≥ δ}, i.e., Cδ = B(µ∗, δ)c. We write Ln = L(ξn)

tn .
From the fact that

Ln(Cδ) =PPPn[d(W n, µ
∗)> δ],
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we deduce from (5.20) that Ln(Cδ) converges to zero in P-probability, i.e., for all κ > 0,
P[Ln(Cδ)> κ]

n→∞−−−→ 0. From this we infer the existence of a strictly increasing φ :N→N
such that Lφ(n)(Cδ)→ 0 almost surely.

Therefore, by the above observation, it follows that Lφ(n)→ δµ∗ almost surely, and thus
L(ξ)

tφ(n)
=⇒ δµ∗ . As for each sequence (tn)n∈N with tn→∞ there exists a strictly increasing

φ : N→ N such that L(ξ)

tφ(n)
=⇒ δµ∗ , it follows that L(ξ)

tn =⇒ δµ∗ for any sequence (tn)n∈N
with tn→∞, implying (1.28).

6. Lower bound: proof of Proposition 5.2. Our strategy follows the heuristics de-
scribed in Section 1.4.

Recall the setting introduced at the beginning of Section 5, in particular Remark 5.1 on
the Skorohod embedding and the notations in (5.2). Let µ ∈ F1(Π), i.e., µ ∈W , µ≪Π and
µ be a probability measure (in case α ∈ (2d,∞) one may take µ= µ∗ as in Lemma 5.3). By
Lemma 2.6 it is sufficient to show that, with P-probability 1,

lim inf
n→∞

1

γn

logZn ≥ΨΠ(µ).(6.1)

Our approach to do this is to choose a specific path event An and use the trivial estimate

Zn ≥ E[eHn(X)
1An

].(6.2)

We describe the event An in Section 6.1, but first give an idea here after introduc-
ing the following objects. Since µ is in F1(Π), there exist (“P-”random) k ∈ N and
(f1, y1), . . . , (fk, yk) ∈ supp(Π) and w1, . . . ,wk ∈ (0,1] with

∑k
i=1wi = 1 such that

µ=

k∑
i=1

wi δ(fi,yi).

We may assume that the order of the (f1, y1), . . . , (fk, yk) is such that the minimal distance
between the y1, . . . , yk points is given by

∑k
i=1 |yi − yi−1|, where here and in the following

we take y0 = 0. Hence,

Ξ(Π) = ΨΠ(µ) =

k∑
i=1

(
fiwi − θ(wi)

2
)
− q

k∑
i=1

|yi − yi−1|.

Because Πn→Π inM◦
p almost surely, there exists an N ∈N such that for every n≥N

there exist distinct (fn
1 , y

n
1 ), . . . , (f

n
k , y

n
k ) ∈ suppΠn such that almost surely

(6.3) (fn
i , y

n
i )

n→∞−−−→ (fi, yi), i ∈ {1, . . . , k}.
Observe that by (5.1),

fn
i =

ξn(y
n
i )

r
d/α
n

, i ∈ {1, . . . , k}, n≥N.(6.4)

We will define the event An, such that on this event the path visits the sites rnyn1 , . . . ,rny
n
k

in this order, staying ≈ witn time units in rny
n
i for any i ∈ {1, . . . , k}. We define An and

estimate its probability from below in Section 6.1. Then, we bound Hn(X) from below on
An in Section 6.2. Finally, in Section 6.3 we combine these bounds and apply them in the
framework of the Skorokhod embedding defined above to finish the proof.

6.1 The path event
Let us introduce some useful notation involving paths that will be used to define the set An.
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DEFINITION 6.1. For x ∈ Zd and t ∈ [0,∞) we define the entry time at x after time t,
τx(t), and the exit time from x after time t, σx(t), by

τx(t) := inf{s > t : Xs = x}, σx(t) := inf{s > t : Xs ̸= x}.
Let t ∈ (0,∞),

δ, s ∈ (0,1), k ∈N, y0 := 0, y1, . . . , yk ∈ Zd, y = (y1, . . . , yk),

w1, . . . ,wk ∈ [0,1] with
k∑

i=1

wi = 1− s, w = (w1, . . . ,wk).
(6.5)

We define Aδ,s
t,k(y,w) to be the event where the random walk X walks from 0 to y1 and then

to y2 etcetera. It takes at most st
k time to reach y1, then it spends at least (1− δ)tw1 and at

most tw1 time at y1 before it jumps, then it spends at most st
k time to reach y2, waits at least

(1− δ)tw2 and at most tw2 time at y2 before it jumps, etc. More precisely, first we define
inductively the entry τ iy and exit times σi

y of the yi, after the time that yi−1 and thus all of
0, y1, . . . , yi−1 are visited

τ 0
y := 0, τ 1

y := τy1
(0), τ i

y := τyi
(τ i−1

y ), i ∈ {1, . . . , k},
σi
y := σyi

(τ i
y), i ∈ {0,1, . . . , k},

so that (by definition τ 0
y = 0≤ τ 1

y ≤ σ1
y ≤ · · ·τ k

y ≤ σk
y and)

Aδ,s
t,k(y,w) =

k⋂
i=1

{
τ i
y −σi−1

y 1i≥2 ≤
st

k
, σi

y − τ i
y ∈ [1− δ,1]twi

}
.

Observe that for i= 1 we have τ i
y = τ i

y −σi−1
y 1i≥2 ≤ st

k , so that the waiting time at 0 plus
the “walking time” to y1 is less or equal to st

k . Furthermore, observe that yk is reached before
t, i.e., σk

y ≤ t, because

σk
y = (σk

y − τ k
y) + (τ k

y −σk−1
y ) + · · ·+ (σ1

y − τ 1
y) + (τ 1

y −σ0
y) + (σ0

y − τ 0
y)

≤ twk +
st

k
+ twk−1 +

st

k
+ · · ·+ tw1 +

st

k
= t
(
s+

k∑
i=1

wi

)
= t.

LEMMA 6.2. For any t ∈ (0,∞), δ, s ∈ (0,1), k ∈N and y and w as in (6.5)

(6.6) P
(
Aδ,s

t,k(y,w)
)
≥

k∏
i=1

[
Poi 2dst

k

(
|yi− yi−1|

)
e−2dtwi(1−δ)[1− e−2dtδwi ]

( 1

2d

)|yi−yi−1|]
.

PROOF. By independence we have

P
(
Aδ,s

t,k(y,w
))

=

k∏
i=1

P
(
0≤ τ i

y −σi−1
y 1i≥2 ≤

st

k

)
P
(
σi
y − τ i

y ∈ [1− δ,1]twi}
)
.

By the strong Markov property and the fact that each jump occurs according to an Exp(2d)
random variable (as we assumed our continuous time random walk to have generator ∆), we
have

σi
y − τ i

y = σyi
(τ i

y)− τ i
y = σyi

(τyi
(τ i−1

y ))− τyi
(τ i−1

y )
(d)
= σ0(0)− τ0(0),

τ i
y −σi−1

y 1i≥2 = τyi
(τ i−1

y )− σyi−1
(τ i−1

y )1i≥2
(d)
= τyi−yi−1

(0)− σ0(0)1i≥2,
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and thus

P
(
σi
y − τ i

y ∈ [1− δ,1]twi}
)
= P

(
σ0(0)− τ0(0) ∈ [1− δ,1]twi}

)
= e−2dtwi(1−δ) − e−2dtwi ,

P
(
0≤ τ i

y −σi−1
y 1i≥2 ≤

st

k

)
= P

(
0≤ τyi−yi−1

(0)− σ0(0)1i≥2 ≤
st

k

)
≥ P

(
τyi−yi−1

(0)≤ st

k

)
.

To estimate the latter probability, we use the following estimate for ρ ∈ (0,∞) and z ∈ Zd,
where N(z) denotes the number of direct paths (i.e., of length |z|) from 0 to z:

P
(
τz(0)≤ ρ

)
≥ P

(
X makes |z| jumps within ρ time, from 0 to z

)
=Poi2dρ(|z|)(2d)−|z|N(z)≥ Poi2dρ(|z|)(2d)−|z|.

6.2 Energetic lower bound
Now we derive a lower bound of H (ξ)

t on Aδ,s
t,k(y,w).

LEMMA 6.3 (Lower bound for H (ξ)

t ). Let t ∈ (0,∞), δ, s ∈ (0,1), k ∈N and y and w as
in (6.5). Then, on the event Aδ,s

t,k(y,w),

1

rt log t
H (ξ)

t (X)≥ (1− δ)

k∑
i=1

ξ(yi)

r
d/α
t

wi − θ

k∑
i=1

w2
i − (k+ 5)θ(δ+ s).(6.7)

PROOF. We have (see also (1.13))

1

rt log t
H (ξ)

t (X) =
∑
z∈Zd

(ξ(z)
r
d/α
t

ℓt(z)

t
− θ
(ℓt(z)

t

)2)
.(6.8)

Using that ξ ≥ 0 and the basic estimate
∑

z∈Zd a2z ≤
∑

z∈A a2z + (
∑

z /∈A az)
2, which can be

used to show that the total normalized self-intersection local time (SILT) is not larger than
the sum of the normalized SILTs in the y1, . . . , yk plus the square of the remaining total local
time, we obtain that

1

rt log t
H (ξ)

t (X)≥
k∑

i=1

(ξ(yi)
r
d/α
t

ℓt(yi)

t
− θ
(ℓt(yi)

t

)2)− θ
(
1−

k∑
i=1

ℓt(yi)

t

)2
.(6.9)

Observe that the local time at each yi is at least the time the random walk waits before
jumping away, i.e.,

ℓt(yi)≥ σi
y − τ i

y ≥ (1− δ)twi.(6.10)

On Aδ,s
t,k(y,w), in between the times σi−1

y and τ i
y the walker is allowed to visit sites yj for

j ̸= i. Moreover, after σkt time, each of the yi may be revisited. We let mi ∈ [0,1] be such
that mit is the amount of time the path visits yi after σkt, for all i ∈ {1, . . . , k}. In particular,

(6.11) (1− δ)wi ≤
ℓt(yi)

t
≤wi + s+mi, i ∈ {1, . . . , k},

and consequently,(
1−

k∑
i=1

ℓt(yi)

t

)2
≤
(
1− (1− δ)

k∑
i=1

wi

)2
≤ (s+ δw)2 ≤ (s+ δ)2.(6.12)
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Since σyk
is both bounded from below by (1− δ)tw = t(1− δ)(1− s) ≥ t− (s+ δ)t, we

infer
∑k

i=1mit ≤ t− σyk
≤ (s+ δ)t and therefore deduce from the upper bound in (6.11)

that
k∑

i=1

ℓt(yi)

t

2

≤
k∑

i=1

(wi + s)2 + 2

k∑
i=1

mi(wi + s) +

k∑
i=1

m2
i

≤
k∑

i=1

w2
i + 2sw+ ks2 + 3

k∑
i=1

mi ≤
k∑

i=1

w2
i + (k+ 5)(s+ δ).(6.13)

Substituting these bounds (6.12) and (6.13) in (6.9) leads to (6.7).

6.3 Conclusion
We now prove Proposition 5.2, by proving that (6.1) holds Π-almost surely.

PROOF OF PROPOSITION 5.2. Recall the definition of the approximating sequence of
vectors in (6.3). We will assume that n ≥ N (where N is as mentioned before (6.3)). We
set (assuming N is large enough)

δn = sn =
1

log tn
, An :=Aδn,sn

tn,k

(
(rny

n
1 , . . . ,rny

n
k ) , (w1 −

sn
k
, . . . ,wk −

sn
k
)
)
.

By (6.2) we find a lower estimate for Zn by estimating Hn(X) on An from below and by
estimating P(An) from below. Recalling (5.2) and using Lemma 6.3 we see that on An, by
using (6.4),

(6.14)

1

γn

Hn(X)≥ (1− δn)

k∑
i=1

fn
i wn

i − θ

k∑
i=1

(wn
i )

2 − (k+ 5)θ(δn + sn)

n→∞−−−→
k∑

i=1

(fiwi − θ(wi)
2).

Due to the above limit, for (6.1) we are left to show

(6.15) lim inf
n→∞

1

γn

logP
(
An

)
≥−qD0(y1, . . . , yk).

With yn0 := 0, put

dni = rn|yni − yni−1|, i ∈ {1, . . . , k}.
From Lemma 6.2 we obtain

(6.16) P
(
An

)
≥

k∏
i=1

[
Poi 2dsntn

k

(
dni
)
e−2dtnwn

i (1−δn)[1− e−2dtnδnwn
i ]
( 1

2d

)dn
i
]
.

Since for n large enough wn
i = wi − sn

k = wi − 1
k log tn

is bounded away from 0 for all i ∈
{1, . . . , k}, since limn→∞ tnδn =∞ and since limx→∞ ex(1− e−x) =∞, we have that for
n large enough - by using that jj ≥ j! for j ∈N and that

∑k
i=1(w

n
i + sn

k )≤ 1,

P
(
An

)
≥

k∏
i=1

[
Poi 2dsntn

k

(
dni
)
e−2dtnwn

i

( 1

2d

)dn
i
]

≥
k∏

i=1

([ 2dsntn
k

dni

]dn
i

e−2dtn(wn
i +

sn
k
)
( 1

2d

)dn
i
)
≥ e−2dtn

k∏
i=1

[
sntn
kdni

]dn
i

.
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Clearly, as γn = rn log tn = t1+q
n (log tn)

q (see (1.8)) we have γ−1
n log(e−2dtn)→ 0. There-

fore, because dn
i

rn
= |yni −yni−1|

n→∞−−−→ |yi−yi−1| for all i ∈ {1, . . . , k} and n ∈N and because
γn = rn log tn and log rn

tnsn
= q log tn − q log log tn,

lim inf
n→∞

1

γn

logP(An)≥ lim inf
n→∞

1

γn

log

( k∏
i=1

[
sntn
kdni

]dn
i
)

≥− limsup
n→∞

k∑
i=1

dni
rn

rn
γn

(
log

dni
rn

+ log
krn
tnsn

)

≥−q
k∑

i=1

|yi − yi−1|=−qD0(y1, . . . , yk),

7. Upper bounds: proof of Proposition 5.4. Part (c) of Proposition 5.4 is a kind of
‘compactification’, which we will prove in Section 7.1. Part (a) is proved in Section 7.2
(using the Skorohod embedding of Remark 5.1), and Part (b) in Section 7.3.

7.1 Compactification
In this section, we prove Proposition 5.4 (c). For this we actually do not need to consider a
subsequence and the objects considered as in Remark 5.1. That is, we prove the following in
this section, from which one directly derives Proposition 5.4 (c):

PROPOSITION 7.1. Let α ∈ (d,∞) and θ ∈ (0,∞). For any A> 0,

lim
R→∞

lim inf
t→∞

P

[
1

rt log t
logE

[
eH

(ξ)
t (X)

1

{
max
s∈[0,t]

|Xs|>Rrt

}]
≤−A

]
= 1.(7.1)

Let us first state three auxiliary lemmas. In the first one we estimate the P-probability that
the random walk X takes too many jumps before time t (Lemma 7.2) and in the second one
we estimate the P-probability of the maximum of a modified version of the field ξ outside
a big box centered at the origin (Lemma 7.3). The third one (Lemma 7.4) is a classical
representation of the joint distribution of leading values in the ξ-field. The latter is used
because it suffices to prove the estimate (7.1) but with H (ξ)

t replaced by the maximum over
the ξ values in a box of radius Mt, where

Mt := max
s∈[0,t]

|Xs|, t ∈ [0,∞).(7.2)

LEMMA 7.2. For every R≥ 1 and all sufficiently large t,

(7.3) P[Mt ≥Rrt]≤ exp
(
− q

2
Rrt log t

)
.

PROOF. The number of jumps taken by X on the time interval [0, t] is in distribution
equal to a Poisson random variable Z with parameter 2dt. Therefore, P[Mt ≥Rrt]≤ P [Z ≥
Rrt]. By using Stirling’s inequality n! ≥ (ne )

n, the crude bound P [Z ≥ n] ≤ (2dt)n/n! ≤
(2dte/n)n for n ∈N implies (recall that rt = ( t

log t)
q+1)

(7.4) P [Z ≥Rrt]≤
(4det
Rrt

)Rrt ≤ exp
(
− q

2
Rrt log t

)
.

for any large t (we took an additional factor 2 to cover up that Rrt might not be in N).
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LEMMA 7.3. Let A,c > 0 and ε ∈ (0,1). Then there exists an R > 0 such that for all
r ≥ 1

P

(
max

x∈Zd\QRr

(ξ(x)
rd/α

− c
|x|
r

)
≤−A

)
≥ 1− ε.(7.5)

PROOF. Recall that QR = [−R,R]d. We write

QR =QR ∩Zd.

Pick a C > 0 such that for all r ≥ 1

#(Q(n+1)r \Qnr)≤Cnd−1rd, n ∈N.

Note that 1 − x ≥ e−2x for x ∈ [0, log 22 ]. Pick R ∈ N large enough such that CR > A and
1

(cR−A)αrd < log 2
2 . Then

P
(

max
x∈Zd\QRr

(ξ(x)
rd/α

− c
|x|
r

)
≤−A

)
=

∞∏
n=R

P
(

max
x∈Q(n+1)r\Qnr

(ξ(x)
rd/α

− c
|x|
r

)
≤−A

)

≥
∞∏

n=R

P
( ξ(0)
rd/α

− cn≤−A
)Cnd−1rd

=

∞∏
n=R

(
1− 1

(cn−A)αrd

)Cnd−1rd

≥ exp
(
− 2C

∞∑
n=R

nd−1−α
( n

cn−A

)α)
.

The exponential term on the right-hand side does not depend on r and converges to 1 as
R→∞ as d− 1− α<−1 and as n

cn−A is bounded from above.

We will use the following classical representation of the distribution of the maximum over
the ξ-values.

LEMMA 7.4. Let α ∈ (0,∞), n ∈ N and Z1, . . . ,Zn be i.i.d. random variables that
are Pareto distributed with parameter α. Then the order statistics Z1:n ≥ · · · ≥ Zn:n of
Z1, . . . ,Zn is given by(

Z1:n, . . . ,Zn:n

)
(d)
=

((Γn+1

Γ1

)1/α
,
(Γn+1

Γ2

)1/α
, . . . ,

(Γn+1

Γn

)1/α)
,(7.6)

where Γi =E1+ · · ·+Ei and (Ei)i∈N is a sequence of i.i.d. exponentially distributed random
variables with parameter one.

PROOF. It is a standard exercise, see for example (DVJ03, Exercise 2.1.2), to show that
the order statistics of n i.i.d. uniformly distributed random variables in distribution equals

E1

E1+···+En+1
, . . . , E1+···+En

E1+···+En+1
. By using that the Pareto distribution function is the composi-

tion of the uniform distribution function with Φ(s) := (1− s)−
1

α one finds the order statistics
of Pareto distributions and in particular (7.6).

PROOF OF PROPOSITION 7.1. We write ξ∗(B) = maxx∈B ξ(x) here. We have (recall
(1.1))

(7.7) H (ξ)

t ≤ tξ∗(QMt
).
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It is then sufficient to prove (7.1) with tξ∗(QMt
) instead of H (ξ)

t . Thus, we set

Ct,R := E
[
etξ

∗(QRrt )1
{
Mt >Rrt

}]
and Dt,R := E

[
etξ

∗(QMt\QRrt )1
{
Mt >Rrt

}]
.

Because ξ∗(QMt
) = ξ∗(QMt

\ QRrt) ∨ ξ∗(QRrt), the proof of (7.1) is complete once we
show that for every A> 0

(7.8) lim
R→∞

lim inf
t→∞

P

[
1

rt log t
logCt,R ≤−A

]
= 1,

and that

(7.9) lim
R→∞

lim inf
t→∞

P

[
1

rt log t
logDt,R ≤−A

]
= 1.

Let us begin with proving (7.8). Pick A > 0. Recall that tr
d/α
t = rt log t. As Ct,R =

etξ
∗(QRrt )P[Mt > Rrt], from Lemma 7.2 we obtain a T > 0 such that for every R ≥ 1 and

t≥ T

1

rt log t
logCt,R ≤R

( 1

R1−d/α

ξ∗(QRrt)

(Rrt)d/α
− q

2

)
.(7.10)

Pick R0 such that qR0

4 >A and thus, for every t≥ T and R≥R0 one has

(7.11) P

[
1

rt log t
logCt,R ≤−A

]
≥P

[
ξ∗(QRrt)

(Rrt)d/α
≤ q

4
R1−d/α

]
.

We apply Lemma 7.4 to ξ∗(QRrt) to obtain

P

[
ξ∗(QRrt)

(Rrt)d/α
≤ q

4
R1−d/α

]
=P

[
Γ#(QRrt )

(Rrt)d
≤
(q
4

)α
Rα−dΓ1

]
.

By the weak law of large numbers (Rrt)
−dΓ#(QRrt )

=⇒ 2d as t→∞, so that

lim inf
t→∞

P

[
Γ#(QRrt )

(Rrt)d
≤
(q
4

)α
Rα−dΓ1

]
=P

[
Γ1 ≥ 2d

(q
4

)−α
Rd−α

]
.

Then, by letting R→∞ we conclude (7.8).
It remains to prove (7.9). Since Dt,R is decreasing in R, it is sufficient to show that for

every ε ∈ (0,1), there exists a R ∈N such that

(7.12) lim inf
t→∞

P

[
1

rt log t
logDt,R ≤−A

]
≥ 1− ε.

We set

(7.13) x∗t := argmax{ξ(x) : x ∈QMt
\QRrt}.

Set

(7.14) BR,r :=
{

max
x∈Zd\QRr

(ξ(x)
rd/α

− q

4

|x|
r

)
≤−A

}
.

We pick ε > 0 and we use Lemma 7.3 with c= q
4 to obtain the existence of an R > 1 such

that for every r ≥ 1,

(7.15) P(BR,r)≥ 1− ε.
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As x∗t /∈QRrt , on BR,rt we derive the following estimates

Dt,R ≤ E
[
etξ(x

∗
t )1
{
Mt >Rrt

}]
≤ E

[
exp

(
tr

d/α
t

ξ(x∗t )

r
d/α
t

− q

4
(rt log t)

|x∗t |
rt

)
exp

(q
4
|x∗t | log t

)
1
{
Mt >Rrt

}]

≤ exp

(
rt log t max

x∈Zd\QRrt

(ξ(x)
r
d/α
t

− q

4

|x|
rt

))
E
[
e

q

4
|x∗

t | log t1
{
Mt >Rrt

}]
≤ e−Art log t E

[
e

q

4
Mt log t 1

{
Mt >Rrt

}]
.(7.16)

Furthermore, by Lemma 7.2, for large t we have P
[
Mt > jrt

]
≤ exp(− q

2jrt log t) for all
j ∈N and so,

E
[
e

q

4
Mt log t 1

{
Mt >Rrt

}]
≤

∞∑
j=R

E
[
e

q

4
Mt log t 1

{
jrt <Mt ≤ (j + 1)rt

}]

≤
∞∑

j=R

e
q

4
(j+1)rt log t P

[
Mt > jrt

]
≤ e

q

4
rt log t

∞∑
j=R

exp
(
−q

4
jrt log t

)

=
exp

( q
4(1−R)rt log t

)
1− exp

(
− q

4rt log t
) .

As R> 1, the latter converges to 0 as t→∞. Therefore, by combining this with (7.16), we
assert that for t large enough, we have

(7.17) BR,rt ⊂
{

1

rt log t
logDt,R ≤−A

}
.

It remains to combine (7.15) with (7.17) to derive (7.12).

7.2 Proof of Proposition 5.4 (a)
We adopt the setting introduced in Remark 5.1; see also (5.2) for abbreviations. Before
we start the proof and state a lemma that we will use for it, let us make the following
observations. First observe that by (1.25) Hn(X) = γnΦΠn

(W n). Let us write W ε
n for

the restriction of W n to [ε,∞)× Rd. Because for w = dW n

dΠn
one has

∫
(0,ε)×Rd fw(f, y)−

θw(f, y)2 dΠn(f, y)≤ ε, we have

Hn(X)≤ εγn +ΦΠn
(W ε

n).

Let Πε
n also be the restriction of Πn to [ε,∞) × Rd. As on the event {maxs∈[0,tn] |Xs| ≤

Rrn} the support of W ε
n is a subset of En := suppRd Πε

n ∩QR, we have
(7.18)
ZR,−

n = E
[
eHn(X)

1

{
max

s∈[0,tn]
|Xs| ≤Rrn

}]
≤
∑

A⊂En

eεγnE
[
eγnΦΠn (W

ε
n)1

{
suppRd W ε

n =A
}]

≤
∑

A⊂En

eεγn exp
(

sup
µ∈WR

suppRd µ=A

γnΦΠε
n
(µ)
)
P
[
A= suppRd W ε

n

]
.
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In the proof we will provide a probabilistic argument that allows us to restrict the A in the
summand to those which do not contain elements around zero, i.e., of A that are subsets of
suppRd Πε

n ∩QR \Qδ . Then we will use that {A= suppRd W ε
n} ⊂ {A⊂ suppRd W n} and

the following lemma (for which we do not need the Skorohod setting, i.e., we do not need to
restrict to a sequence of times). To motivate the condition of the lemma, observe that A⊂En

implies that A⊂ suppRd Πε
n ⊂ suppRd Πn ⊂ r−1

n Zd.

LEMMA 7.5. Let R > δ > 0. There exists a function γ : (0,∞) → R such that
limt→∞ γ(t) = 0, and such that for all t ∈ (1,∞) and all A⊂QR \Qδ with rtA⊂ Zd,

P
[
A⊂ suppRd Wt

]
≤ exp

(
− qD0(A)rt log t(1 + γ(t)).

)
.(7.19)

PROOF. Let t ∈ (0,∞) and A be as mentioned. Without loss of generality we may assume
that A is nonempty (because D0(∅) = 0). Write Ã= rtA. Observe that suppRd Πt = r−1

t Zd,
so that by definition of Wt, see (1.11),{

A⊂ suppRd Wt

}
=
{
ℓt(z)> 0 for all z ∈ Ã

}
.

The paths that realise the above event, i.e., that have a strict positive local time at all points
of A, they make at least n=D0(Ã) jumps. By using Stirling’s inequality n!≥ (ne )

n and that
n!

(n+m)! ≤ 1
m! , we obtain

(7.20)

P[ℓt(z)> 0 for all z ∈A]≤
∞∑

m=n

Poi2dt(m) =

∞∑
m=n

e−2dt (2dt)
m

m!

=
(2dt)n

n!

∞∑
m=0

e−2dt (2dt)m

(m+ n)!
n!≤

(
2dte

n

)n

.

Now we use that n=D0(Ã) = rtD0(A), that n > δrt (because A is nonempty and a subset of
QR\Qδ) and use that rt = t1+q(log t)−(1+q) so that log t− log rt =−q log t+(1+q) log log t
to obtain(

2dte

n

)n

≤
(
2dte

δrt

)rtD0(A)

= exp
(
D0(A)rt

(
log

2de

δ
+ log t− log rt

)
= exp

(
D0(A)rt

(
log

2de

δ
− q log t+ (1+ q) log log t

))
,

so that by setting γ(t) =−(log t)−1(log 2de
δ +(1+q) log log t) we obtain the desired inequal-

ity.

PROOF OF PROPOSITION 5.4 (a). Fix ε > 0 and η > 0 and choose κ > 0 so small that

(7.21) P
(
Π([ε,∞)×Qκ) = 0

)
≥ 1− η

2
.

The P-almost-sure convergence Πn→Π in M◦
p (see Lemma 2.4) entails that, see for ex-

ample Remark 2.2,

(7.22) Πn([ε,∞)×Qκ)
P−a.s.−→
n→∞

Π([ε,∞)×Qκ).

Therefore there exists an N ∈N such that P(BN )≥ 1− η, where

BN := Bε,κN = {Πn([ε,∞)×Qκ) = 0 for all n≥N} .
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Henceforth, we will work on the event BN . Let R > 0. Observe that on BN , for any n ∈ N,
one has suppRd W ε

n ⊂ En for

En = En,ε,R,κ = (suppRd Πε
n)∩ (QR \Qκ).

Therefore, by adapting the last inequality in (7.18) to restricting to subsets A of En, we have
on BN , for all n≥N

ZR,−
n ≤

∑
A⊂En

eεγn exp
(

sup
µ∈WR

suppRd µ=A

γnΦΠn
(µ)
)
P
[
A⊂ suppRd W n

]
.(7.23)

Therefore, by Lemma 7.5 and because D0(A) =DΠn
(µ) for any µ ∈W with suppRd µ=A,

we have

(7.24)

ZR,−
n ≤

∑
A⊂En

eεγn exp
(

sup
µ∈WR

suppRd µ=A

[
γnΦΠε

n
(µ)− γn(1 + γ(tn))qDΠε

n
(µ)
]
.
)

≤ eεγn2#En exp
(
sup
µ∈W

[
γnΦΠε

n
(µ)− γn(1 + γ(tn))qDΠε

n
(µ)
]
.
)

Since Πn→Π inM◦
p it follows by Remark 2.2 that for any ε > 0, Πε

n→Πε inM◦
p, where

Πε is the restriction of Π to [ε,∞)×QR \Qκ. Therefore,

#En =#En,ε,R,κ =Πε
n((0,∞)×QR \Qκ) =Πn([ε,∞)×QR \Qκ)

→ Π([ε,∞)×QR \Qκ),

and thus

lim
n→∞

1

γn

(log 2#En) = 0,

and, since limn→∞ γ(tn) = 0, we have by Theorem 3.5 (a) and Proposition 3.6 (b),

limsup
n→∞

sup
µ∈W

[
γnΦΠε

n
(µ)− γn(1 + γ(tn))qDΠε

n
(µ)
]
≤ sup

µ∈W
[ΦΠε(µ)− qDΠε(µ)]≤ Ξ(Πε).

Therefore, on BN , for any R> 0,

limsup
n→∞

1

γn

logZR,−
n ≤ ε+Ξ(Πε).

So summarizing the above, for every ε and η in (0,∞) there exist a κ > 0 and an N ∈N such
that P[Bε,κN ]≥ 1− η and thus

P
[
limsup
n→∞

1

γn

logZR,−
n ≤ ε+Ξ(Πε)

]
≥P[Bε,κN ]≥ 1− η.

As Πε → Π in M◦
p almost surely, we have for any sequence (εk)k∈N with εk ↓ ∞;

limsupk→0Ξ(Π
εk)≤ Ξ(Π) almost surely by Theorem 3.5 (b). Therefore, for all η > 0 and

ζ > 0 there exists an ε > 0 such that

P[ε+Ξ(Πε)≤ Ξ(Π) + ζ]≥ 1− η,

and thus

P
[
limsup
n→∞

1

γn

logZR,−
n ≤ Ξ(Π) + ζ

]
≥P

[
limsup
n→∞

1

γn

logZR,−
n ≤ ε+Ξ(Πε)

]
≥ 1− η.

As the above holds for any η > 0 and ζ > 0, (by first taking η to zero and then ζ) we obtain
(5.9).
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7.3 Proof of Proposition 5.4 (b)
In this section we prove Proposition 5.4 (b) by mentioning where to adapt the proof in of

Proposition 5.4 (a) as in the previous section.

PROOF OF PROPOSITION 5.4 (b). Let us write

Cδ = {ν ∈W : d(ν,µ∗)≥ δ}, Sδ =
⋃
{suppRd ν : ν ∈ Cδ(µ∗)}.

Thus Sδ is the subset of Rd where the ν that are at least at distance δ of µ∗, are allowed to
be supported. Then, similarly to (7.18) and (7.23), the following estimates hold, with Eδn =
En ∩Sδ , on BN , for n≥N

ZR,−,δ
n = E

[
eHn(X)

1{d(W n, µ
∗)≥ δ}1

{
max

s∈[0,tn]
|Xs| ≤Rrn

}]
≤
∑
A⊂Eδ

n

eεγn exp
(

sup
µ∈WR∩Cδ

suppRd µ=A

γnΦΠε
n
(µ)
)
P
[
A⊂ suppRd W n

]
.

Then, similar to (7.24), by using that Eδn ⊂ En, we obtain (on BN , for n≥N )

ZR,−,δ
n ≤

∑
A⊂Eδ

n

eεγn exp
(

sup
µ∈WR

suppRd µ=A

[
γnΦΠε

n
(µ)− γn(1 + γ(tn))qDΠε

n
(µ)
]
.
)

≤ eεγn2#En exp
(
sup
µ∈Cδ

[
γnΦΠε

n
(µ)− γn(1 + γ(tn))qDΠε

n
(µ)
]
.
)

The rest of the proof follows in the same fashion as in the proof of Proposition 5.4 (a) in the
previous section, by taking Ξδ (see (5.5)) instead of Ξ.

APPENDIX A: THE SPACE E

LEMMA A.1. Let E be the union of (0,∞)×Rd with (0,∞], E= ((0,∞)×Rd)∪(0,∞].
Define d : E×E→ [0,∞) for s, s′in(0,∞] and (f, y), (f ′, y′) ∈ (0,∞)×Rd by

d(s, s′) =
∣∣s− s′

∣∣ ,
d(s, (f, y)) =

1

f
+

∣∣∣∣ f

1∨ |y| − s

∣∣∣∣ ,
d((f, y), (f ′, y′)) =

1

f ∧ f ′

(
1− e−| log f−log f ′|−|y−y′|

)
+

∣∣∣∣ f

1∨ |y| −
f ′

1∨ |y′|

∣∣∣∣ .
(a) d is a metric on E.
(b) The function ι : (0,∞)×Rd→ E, ι((f, y)) = (f, y), (f, y) ∈ (0,∞)×Rd, is continu-

ous and open.
(c) E equipped with the topology generated by d is a locally compact Polish space, such that

(i) and (ii) of Lemma 2.1 hold. Moreover, for s,h > 0, the closure of Hs
h, is given by

Hs
h = {(f, y) ∈ (0,∞)×Rd : f ≥ s|y|+ h} ∪ [s,∞] ,(A.1)

and is a compact set.
(d) For every compact set K in E there exist h, s > 0 such that K ∩ [(0,∞)×Rd]⊂Hs

h for
some h, s > 0.
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PROOF. (a) The idea behind this is very similar to (BKdS18, Section 13) (which considers
a larger space than R×Rd instead of (0,∞)×Rd). In order to see that d is a metric, we have
to show that the triangle inequality is satisfied. If a,b, c ∈ E, then d(a,b)≤ d(a, c) + d(c,b)
follows easily if at least one element of a,b, c is in (0,∞]. Therefore, we show that d satisfies
the triangle inequality on (0,∞)×Rd. It is rather easy to see that it suffices to prove that d
is a metric on R×Rd (by plugging in λ= log f and z = y), where

d((λ, z), (λ′, z′)) = e−(λ∧λ′)
(
1− e−|λ−λ′|−|z−z′|

)
(λ, z), (λ′, z′) ∈R×Rd.

As we will see, this can be boiled down to the fact that (1− e−a)(1− e−b)≥ 0 for a, b≥ 0.
Let (λ, z), (λ′, z′), (λ′′, z′′) ∈ R× Rd. We may assume λ < λ′ and λ′ = λ+ a,λ′′ = λ+ b,
a > 0, b ∈ R. Then with p = |z − z′|, q = |z − z′′|, r = |z′ − z′′|, so that p ≤ q + r and
e−|z−z′| = e−p ≥ e−q−r ,

eλ
[
d((λ, z), (λ′′, z′′)) + d((λ′′, z′′), (λ′, z′))− d((λ, z), (λ′, z′))

]
= e−(b∧0)

(
1− e−b−q

)
+ e−(a∧b)

(
1− e−|b−a|−r

)
−
(
1− e−a−p

)
≥
(
1− e−b−q

)
+ e−a

(
1− e−|b−a|−r

)
−
(
1− e−a−q−r

)
=−e−b−q + e−a − e−|b−a|−a−r + e−a−q−r

= e−a(1− ea−b−q − e−|b−a|−r + e−q−r){
≥ e−a(1− e−q − e−r + e−q−r) = e−a(1− e−q)(1− e−r)≥ 0 if b > a,

= e−a(1− e|b−a|−q)(1− e−|b−a|−r)≥ 0 if b < a.

(b) It is rather straightforward to check that a sequence (fn, yn)n∈N in (0,∞)×Rd con-
verges to an element (f, y) of (0,∞)×Rd with respect to d if and only if it converges with
respect to the Euclidean metric on (0,∞)×Rd. Therefore ι is continuous and open.

(c) That (A.1) holds follows by the definition of d. Observe that for a sequence (an)n∈N in
Hs

h there either exists a subsequence that is contained in [s,∞] or a subsequence in (0,∞)×
Rd of the form (fn, yn)n∈N for which either

(1) fn is contained in a set of the form [h,M ] for some M ≥ h (and thus the yn are contained
in a ball of radius s(M + h)), or,

(2) fn→∞ (and thus lim infn→∞
fn
|yn| ≥ s).

In both cases one can find a subsequence of (fn, yn)n∈N that converges in Hs
h. Hence Hs

h is
compact.

Every (f, y) ∈ (0,∞)×Rd has a compact neighbourhood in (0,∞)×Rd and therefore in
E, because ι is continuous. On the other hand, every t ∈ (0,∞] has a compact neighbourhood,
for example Hs

h for s < t and h= 1
t−s (indeed, observe that {a ∈ E : d(a, t)< t− s} ⊂Hs

h).
Therefore E is locally compact.

Observe that a sequence (fn, yn)n∈N whose elements belong to (0,∞)×Rd is a Cauchy
sequence in E either if it is a Cauchy sequence in [h,h−1] × Rd for some h ∈ (0,1) or if
fn→∞ and fn

|yn| → s for some s ∈ (0,∞], this s is then the limit in E. From this we infer
that E is complete. It is separable as Q>0 ×Qd ∪Q>0 is dense, where Q>0 = (0,∞) ∩Q.
Therefore E is a Polish space.

(d) This follows by the fact that every compact set in E is a subset ofHs
h for some h, s > 0.

Indeed, first it will be clear that every compact set is a subset of {(f, y) ∈ (0,∞)×Rd : f ≥
h} ∪ (0,∞] for some h > 0. Secondly, (0, s] is not compact for all s > 0 and moreover, if
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(fn, yn)n∈N is a sequence in (0,∞) × Rd with fn, yn→∞ and fn
|yn| → 0, then it does not

possess a subsequence that converges in E.

PROOF OF LEMMA 2.1. The existence of E for which (i) and (ii) hold, follows by
Lemma A.1.

(a) Because ι is an open map, ι(B) is a Borel set in E for every Borel set B in (0,∞)×Rd.
Hence P ◦ ι defines a measure on E, clearly with values in N0 ∪ {∞}. It is a Radon measure
because ι is continuous and so ι(K) is compact in E for every compact set K in (0,∞)×Rd.
Therefore it is a Point measure on (0,∞)×Rd.

(b) Because the embedding is continuous, it follows that P is a measure on E. Hence it is
an element ofMp if and only if it is a Radon measure. Therefore by (i) it follows that P is
an element ofMp if and only if P(Hs

h)<∞ for all s,h > 0. Suppose the latter is the case.
Then suppP ⊂ (0,∞)×Rd, as if otherwise, then there exists a sequence (fn, yn)n∈N in this
support that converges in E to 2s for a s ∈ (0,∞]. This can only be the case if that sequence
is contained in Hs

h for some h > 0, in which case P(Hs
h) =∞.

APPENDIX B: MEASURABILITY OF THE MAXIMIZER µ∗

In this section we show the measurability of the µ∗ as in Lemma 5.3.
First observe that Π, Πn and Π(L)

n for all n,L ∈N are all good point measures P-almost
surely by Lemma 4.4 and Lemma 4.2. Let (Ω,F) be the underlying (complete) measurable
space of P. Let Ω1 ∈ F be such that on Ω1, Π, Πn and Π(L)

n for all n,L ∈ N are all good
point measures and such that Πn→Π on Ω1. Then, for all ω ∈ Ω1 and all n,L ∈ N, there
exist µ∗[ω], µ∗

n[ω] and µ∗
n,L[ω] such that

ΨΠ[ω](µ
∗[ω]) = Ξ(Π[ω]), ΨΠn[ω](µ

∗[ω]) = Ξ(Πn[ω]), ΨΠ(L)
n [ω](µ

∗[ω]) = Ξ(Π(L)

n [ω]).

Let us set µ∗[ω] = µ∗
n[ω] = µ∗

n,L = 0 for all n,L ∈ N. As, on Ω1, Π(L)

n
L→∞−−−−→ Πn and

Πn
L→∞−−−−→Π, by Theorem 2.8 (d) we have µ∗

n,L
L→∞−−−−→ µ∗

n and µ∗
n

n→∞−−−→ µ∗ on Ω. There-
fore it suffices to show that µ∗

n,L is measurable for all n,L ∈ N in order to conclude that µ∗

is measurable (likewise, µ∗
n for all n ∈N).

As Π is almost surely good, there exists an Ω1 ⊂ Ω with P(Ω1) = 1 such that for each
ω ∈Ω1, by Theorem 2.8 (a) there exists a unique µ∗[ω] ∈ F(Π(ω)) such that

ΨΠ[ω](µ
∗[ω]) = Ξ(Π[ω]).

We will show that there exists an Ω∗ ⊂Ω with P(Ω∗) = 1 such that ω 7→ µ∗[ω] is measurable.
This follows because ΠL

n has a finite support: For ω ∈ Ω1, there exist m[ω] ∈ N0 and
distinct (f1[ω], y1[ω]), . . . , (fm[ω], ym[ω]) in suppΠL

n [ω] such that

ΨΠL
n [ω]

(µ∗
n:L[ω]) = Ξ(ΠL

n [ω]) = φm(f1[ω], . . . , fm[ω])− qD0(y1[ω], . . . , ym[ω]).

These m, f1, . . . , fm and y1, . . . , ym are measurable as this is a finite optimization problem.
Then µ∗

n:L =
∑m

i=1wiδfi,yi
, where the wi are measurable functions of the f1, . . . , fm due to

Proposition 3.1.
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