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Best wishes, also from Nina Gantert!

CONGRATULATION AND ALL OUR BEST WISHES, DEAR ZHAN!

(from another birthday conference (2016))
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The team and the purpose

Nicolas Pétrélis Renato dos Santos Willem van Zuijlen
(Nantes) (Belo Horizonte) (WIAS)

B We study a continuous-time random walk on 72 with attraction to randomly located sites,
but also under self-repellent interaction.

B The first effect is in the spirit of the parabolic Anderson model, where it is known that the
path typically moves quickly to one site and stays there for the rest of the time (highly
localised behaviour).

B The self-repellence (properly fine-tuned) forces the random walker to quickly move to
many other sites as well.

B We express this comprehensively in terms of a random variational problem.
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The model

X = (X5)s>0 continuous-time simple random walk on Z<.
& = (&(2)) ,eza i.i.d. random potential Pareto-distributed with parameter o > d:

Firy=P[é(z)<r]=1—-7r"%  r>1

Hamiltonian ~ H{&? (X / &(Xs) ds— ﬁ/ / Iix,=x,y ds du, B €[0,00).

(€,5)
dP{E? eHi 7 (X) (&R

_ 0 _
Transformed path measure P (X) = Z&n where Z,") = E[e"t

].

Special case: 5 = 0. Here Zt(g‘o) is the parabolic Anderson model (PAM). The walk is
attracted to the sites with the best compromise between a high value of £ and being not too far
from the origin. It runs quickly to the best site and stays there until time ¢.

The PAM with Pareto-distributed potential was studied in [K., LACOIN, MORTERS, SIDOROVA
2009]. See [MORTERS, ORTGIESE, SIDOROVA 2011] for an extension and [MORTERS 2011] for
a survey on the PAM with heavy-tailed potential. Furthermore, see [BISKUP, K., DOS SANTOS
2018] for localisation in the PAM for the double-exponential distribution, and see [ASTRAUSKAS
2016] and [K. 2016] for surveys on the PAM. Localisation for some bounded potential has been
proved in [DING, FUKUSHIMA, SUN, XU 2020].
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Local times and rescaling

t
local times  £:(2) = / X, =z} ds, zeZ% (1)
0

Then

HED(X) = Y e()l(z) =B Y b(2)” = (&, 4) — Bllea]l5.

z€24 z€24
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Local times and rescaling

t
local times  £:(2) = / X, =z} ds, z e 7% (1)
0

Then

HED(X) =D E(2)(2) = B Y li(2)? = (& b) — Blleef3.

z€24 z€24

Three influences:
B attraction to sites of high £-peaks,
B self-repellence,
B probability costs.
Interesting only if all three contribute on same scale. Hence, we rescale the self-repellence:
replace (3 by B such that
(€)= Belllellz under PE70).

How do we find the asymptotic scale of £ under IF’iE’Bf)?
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Spatial extreme-value theory =—> consequences of rescaling %

Since we consider large-t exponential moments, of &, this comes from the highest peaks of &,
according to spatial extreme-value theory. For Pareto-distributed &, the highest peaks are
single sites, and their heights and locations are approached by a PPP as follows.

. t \14g d
spatial length scale : re = (@) , where ¢ = s
a—
rescaled point process: = E 6 i) =11 ast — oo,

zezd rt

with reference Poisson point processs
I1 ~ PPP((0,00) x R*, af "' df ® dy).

Hence, we expect the rescaled local times +¢(|yr:]) to be concentrated on i & the points of
II (i.e., its space-part). Then

2
HP(X) = d/a/€d/; ride — Bit” /(K (‘:n)) ridz.
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Rescaled model

Hence, the central object is the rescaled local times as density w.r.t. I1;:

(&, X) T4 4
w(fon) = () = ) € 0,00 x B2

Then th(E‘X) is a random variable with values in W, the set of subprobability measures on
(0, 00) x RY. With the vague topology, it is compact and Polish.

qg—1
With a parameter 6 € (0, o), we put 3; := 6 Togt)®"
Then
H (X) =1 logt/ [fw(f,y) — 0w(f,y)*] dIL(f,y).
(0,00) xR4

(¢ and B; are decreasing in «. If @ > 2d, then 8; — 0 ast — 00.)

Abbreviate — H{® = H;*"V 79 =7 P =P
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Energy and entropy %

Interpret a point measure 4 on (0, 00) X R¢ as the rescaled measure of the points where the
walk spends =< ¢ time; assume that p < P. (Later, we take P = 11, the PPP.)
Putw = 3—7‘; and define

the energy functional ~ ®p(u) = / [fw(f,y) — Ow(f, y)g] dP(f,y),

(0,00) xR4
and the entropy functional ~ Dp(u) = sup  Do(Y),
Y @supppq 1

where Do (Y) is the smallest possible length of a path from the origin that reaches all points in
Y (in the spirit of the traveling-salesman problem).

Variational problem:  Z(P) = sup (®»(u) — ¢Dp(k)), P € My((0,00) x R%).
HEW
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Results %

Theorem: Weak convergences
For 6§ € (0,00) and @ € (d, 00),
1.

o9
1
ﬂl‘
d
m
=
V)
>
(o
.
jul
g
m
=
J
I
—

r¢logt
2. ifa € (2d, 00), then
2.1 P-almost surely,

[®n — ¢Dn|(n*) = E(IL)  for a unique random 1*.

2.2 Almost surely, ;1" is a probability measure with finite support and ™ << I1I. For all
k € N, P[#supp u* = k] > 0. Consequently, P [ Z(II) € (0,00) | = 1.
23 W 22 4% in W in the sense that

E[EF [g(W )] = Elg(w?)], g€ Cu(W).

Actually, 2.3 is implied by the stronger statement that IP’f o (Wt('*:’x))’1 converges weakly on
W under E towards d,,+, which we actually prove.
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Interpretation and explanation :az;;af é

Recall that
H{(X) = (relogt) o, (W) and  Z{® = E[elt 8" Pm (W],

Hence, Varadhan’s lemma suggests the main result, if we can explain why and how D
describes the random walk (= later).

Relevance of the minimizer 1™
There exist (random) k™ € Nand (f1,y1), ..., (fr+, Yi+) € supp(II) and
wi,...,wi« € (0, 1] satisfying Zle w; = 1 such that

-
* *
W= wibs -
=1

Hence, a bit loosely speaking, the typical path under ]P’,(f) spends ~ w; t time units in the site
~ |yire] with value E(|y;re]) ~ fi*rf/a forany i € {1,...,k"} and elsewhere only o(t)
time units.

No assertion about the order of the visited sites! This is still to be optimized in the spirit of the
traveling salesman problem.
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Heuristics (1) %

Denote by A;"° the event that the walker wanders on some fixed shortest path to a site z
during the time interval [0, st) and stays at z during [st, t]. Then

P(AZ*) = Poigaar(|2])(2d) ~1*le = =2 4 fshortest paths 0 «— 2z}
t
~ exp{|z| {log m + logs} } ,
trd/a —strd/o‘

t
Z89 > exp {r {log —+ log s] } e e ,

and hence

The optimal s € [0, 1] for the second and the last term is s ~ L' ~%/:

Z% > exp {rlog L +tr?/® _log (trd/‘kl)} = exp {trd/a - gv'logr}.
r «

The maximal r satisfies tr/*~* =1 + logr, ie., r = . = (t/logt)' ™ with ¢ = ~%
Then both the energy term tr¥* and the entropy term — gr logr &~ —qr:logt are on the
scale ¢ log t.

Hence, the functional ¢ Dp (1) = g SUPY €suppyq 1 Dy(Y) describes the exponential

probabilistic cost payed by the simple random walk.
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Heuristics (2)

So far, this is without self-repellence (like in the PAM) and without specifying the cost (borrowed
from [K., LACOIN, MORTERS, SIDOROVA 2009]).

Because of ﬂttQ = Or log t, the self-repellence term is on the same order, but the functional
Dp(p) = f(O,oo)XIRd [fw(f,y) — 0w(f,y)?] dP(f,y) is not minimal if w is concentrated

a/

on just one site. There are many sites with potential values < , and their distances are all

of order < ry.
Elementary (but cumbersome) optimizing techniques, jointly with PPP-calculations, derive the
assertions of the theorem. Main tools:

B Gamma-convergence
B Skorohod-embedding
B compactification of the variational problem (vague topology).

We first coin the term goodness of a given rescaled point process, and then show that, for
a > 2d, both II; and II have this property.
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Conjectures for a € (d, 2d)

We also show that, almost surely,
a>d = ZEII)<oco and a>2d = E(II)>0.

The latter assertion seems crucial for the behaviour of the path in the random potential.
Apparently the PPP possesses sufficiently many sufficiently high potential values with not too
large distances between them, such that trajectories exist for which it is worth paying the travels
in order to profit from spending time in those large potentials.

Conijecturally different for & € (d, 2d)! We think that both {=(II) = 0} and {Z(II) > 0}
have positive probability here. With positive probability the PPP has the above property, but
also the complementary property, leading to no such preferable locations as it is not worth
travelling that far to profit from the large potential. We conjecture that intermediate order
statistics need to be considered.
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