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The Parabolic Anderson Model

We consider the Cauchy problem for the heat equation with random coefficients:

Bu(t,z) = Adu(t,z)+e(x)ult,2),  for (t,2) € (0,00) x Z<, 1)
u(0,z) = 1o(2), for z € 74, 2)

¢ = (&(2): z € Z%) i.i.d. random potential, [—oo, co)-valued.
Af(z) = >~z Lf(y) — f(2)] discrete Laplacian
Ad + £ Anderson Hamiltonian

u(t, -) is a random time-dependent (not shift-invariant) field

oo o0

U(t) = >, cza u(t, 2) total mass

Interpretations / Motivations:
® Random mass transport through a random field of sinks and sources.
® Expected particle number in a branching random walk model in a field of random
branching and killing rates.

Moment assumption: H(t) = log(e*$(9)) < oo for any t > 0.
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The universality classes

According to [vaN DER HOFSTAD/K./MORTERS 2006], there are, under some regularity assumption,
precisely four universality classes:

(i) double-exponential case: log Prob(£(0) > r) ~ —e”/? as r — oo with p € (0, ), see
[GARTNER/MOLCHANOV 1998].
(i) double-exponential case with p = oo, see [GARTNER/MOLCHANOV 1998].
(i) almost bounded potentials (see below)
(iv) bounded potentials: log Prob(£(0) > —z) ~ —z?/(1=7) as z | 0, with v € [0, 1), see

[Biskup/K. 2001].

In this talk, we consider almost bounded potentials:

Assumption: For some p € (0, c0) and some scale function (t) = o(t),

i 2 (ty) — yH(t)
t—o0 k(1)

= —pylogy, y > 0.

Introduce another scale function 1 < «(t) = t°(1) by

() = a7 -
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Characteristic variational problem

Informally, «(t) is the order of the diameter of the area from which the main contribution to
the total expected mass stems, i.e.,

({U(t)) ~

>o ult2)),

|z| <Re(t)

t > 1 and then R — oo.

Our goal: Describe the shapes of £ that give the biggest contribution to (U(t)).

The moment asymptotics are given as follows [vaN DER HOFSTAD/K./MORTERS 2006]:

1

~ log(U (1)) =

H (ta(t) )

~ x+o(1)

ta(t)—4

a(t)?

)

where

X:

peC(RY)

min

L) = A®)].

Here \(v) is the top of the spectrum of A + 4 in L2(R?), and L(v)) =

The minimiser is the parabola ¥, (x) = p + ,02 log
(= logarithmic Sobolev inequality).

The principal eigenfunction of A 4 1, is g,,

where g2 is the Gaussian density g2(z) = (£)4/2e=rl®
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Explanation of the moment asymptotics

|7In terms of the shifted and rescaled potential —‘
_ . H(ta(t)~?)
&(2) = a(t)?[(la(t)e]) - |

ta(t)—4
the total mass may be written
U(t) e~ HE/a®ODa® oy {

)

using an eigenvalue expansion and scaling properties of the eigenvalue. The shifted and
rescaled potential satisfies the large-deviation principle

Prob(&, ~ 1) ~ exp { —

t
a(t)?

L)}

Combining this with Varadhan’s lemma, suggests the moment asymptotics.

Interpretation: The main contribution to the expectation of the total mass U (¢t) comes from
e those & which make ¢, resemble the perfect parabola 1) ,,.

e those solutions u(t, -) that resemble the perfect Gaussian density gg, up to spatial
rescaling and vertical shifting.

Goal: Give mathematical substance to this.
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Potential confinement

Let dist(-, -) be a metric for L!-convergence on compact subsets of R¢. Our main result is a
law of large numbers for ¢, towards the parabola v,

Theorem [GRUNINGER/K. (2007)]: For any € > 0,

(Ut)Ir, . (&)

lim =0

t=oo (U(2)) |

where

I'te = ﬂ m {w: dist(e%w(x—i_')/\M,e%wp(')) > 6}.

M>0 gzezd: |z|<tlogt

1e :
® In words, the totality of all £ such that every shift of e » SeAM is, for any M > 0, away
1
from the Gaussian gg —er P, gives a negligible contribution.

® An almost sure version of the potential confinement property was proved in
[GARTNER/K./MoLcHANOV (2007)] for the double-exponential distribution and in [SznITMAN
(1992)] for the related model of Brownian motion among Poisson traps.

® A path confinement property (for the Brownian motion in the Feynman-Kac
representation of u(t, z)) was proved in [SzNnITMAN (1992)], [BOLTHAUSEN (1992)], [POVEL

(1999)] for the trap problem.
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Comments on the proof

Functional analytic side: A key step is to prove the strictness of the minimisation in the
following strong sense for a variant of the formula for :

—x = sup [AW) = plog ([ L(W)] > sup [Aw) — plog (L)) | = —x=

wert,s

Probabilistic side: Derive effective estimates for the contribution to U (¢) from &'s such that &,
is away from ), in the above sense.

As in the above heuristics, we have

UOIr, . E,) _ o\ —igx
R w<exp{aé)QA(&)}ﬂrt,s(ﬁt)}ea(> .

Now add and subtract the term ﬁplog(%ﬁ(gt)) in the exponent. The difference term is
estimated against the variational formula —x .. Hence,
(%) < e_ﬁ“‘“")(exp [ ot (Se@E))})
a(t)? p
Combinatorial techniques show that the exponential rate of the last term vanishes, i.e.,
(x) — 0 exponentially fast.

Remark: The combinatorics only work after cutting the potential at some large level, i.e., after
replacing &, by &, A M, which must be incorporated beforehand.
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