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The Parabolic Anderson Model
We consider the Cauchy problem for the heat equation with random coefficients:

∂tu(t, z) = ∆du(t, z) + ξ(z)u(t, z), for (t, z) ∈ (0,∞) × Z
d, (1)

u(0, z) = 1l0(z), for z ∈ Z
d. (2)

ξ = (ξ(z) : z ∈ Z
d) i.i.d. random potential, [−∞,∞)-valued.

∆df(z) =
P

y∼z

ˆ

f(y) − f(z)
˜

discrete Laplacian

∆d + ξ Anderson Hamiltonian

u(t, ·) is a random time-dependent (not shift-invariant) field

U(t) =
P

z∈Zd u(t, z) total mass

Interpretations / Motivations:
Random mass transport through a random field of sinks and sources.

Expected particle number in a branching random walk model in a field of random
branching and killing rates.

Moment assumption: H(t) = log〈etξ(0)〉 <∞ for any t > 0.
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The universality classes

According to [VAN DER HOFSTAD/K./MÖRTERS 2006], there are, under some regularity assumption,
precisely four universality classes:

(i) double-exponential case: log Prob(ξ(0) > r) ≈ −er/ρ as r → ∞ with ρ ∈ (0,∞), see
[GÄRTNER/MOLCHANOV 1998].

(ii) double-exponential case with ρ = ∞, see [GÄRTNER/MOLCHANOV 1998].

(iii) almost bounded potentials (see below)

(iv) bounded potentials: log Prob(ξ(0) > −x) ≈ −xγ/(1−γ) as x ↓ 0, with γ ∈ [0, 1), see
[BISKUP/K. 2001].

In this talk, we consider almost bounded potentials:

Assumption: For some ρ ∈ (0,∞) and some scale function κ(t) = o(t),

lim
t→∞

H(ty) − yH(t)

κ(t)
= −ρy log y, y > 0.

Introduce another scale function 1 � α(t) = to(1) by

κ
“ t

α(t)d

”

=
1

α(t)d+2
, t� 1.
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Characteristic variational problem

Informally, α(t) is the order of the diameter of the area from which the main contribution to
the total expected mass stems, i.e.,

〈U(t)〉 ≈
D

X

|z|≤Rα(t)

u(t, z)
E

, t� 1 and then R → ∞.

Our goal: Describe the shapes of ξ that give the biggest contribution to 〈U(t)〉.

The moment asymptotics are given as follows [VAN DER HOFSTAD/K./MÖRTERS 2006]:

1

t
log〈U(t)〉 =

H
`

tα(t)−d
´

tα(t)−d
−
χ+ o(1)

α(t)2
, where χ = min

ψ∈C(Rd)

h

L(ψ) − λ(ψ)
i

.

Here λ(ψ) is the top of the spectrum of ∆ + ψ in L2(Rd), and L(ψ) = ρ
e

R

Rd eψ(x)/ρ dx.

The minimiser is the parabola ψρ(x) = ρ+ ρ d
2

log ρ
π
− ρ2|x|2

(=⇒ logarithmic Sobolev inequality).

The principal eigenfunction of ∆ + ψρ is gρ,

where g2ρ is the Gaussian density g2ρ(x) = ( ρ
π

)d/2e−ρ|x|
2

= 1
e
e

1
ρ
ψρ(x).
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Explanation of the moment asymptotics

In terms of the shifted and rescaled potential

ξt(x) = α(t)2
h

ξ
`

bα(t)xc
´

−
H

`

tα(t)−d
´

tα(t)−d

i

,

the total mass may be written

U(t) e−H(t/α(t)d)α(t)d

≈ exp
n t

α(t)2
λ(ξt)

o

,

using an eigenvalue expansion and scaling properties of the eigenvalue. The shifted and
rescaled potential satisfies the large-deviation principle

Prob(ξt ≈ ψ) ≈ exp
n

−
t

α(t)2
L(ψ)

o

.

Combining this with Varadhan’s lemma, suggests the moment asymptotics.

Interpretation: The main contribution to the expectation of the total mass U(t) comes from
• those ξ which make ξt resemble the perfect parabola ψρ.

• those solutions u(t, ·) that resemble the perfect Gaussian density g2
ρ, up to spatial

rescaling and vertical shifting.

Goal: Give mathematical substance to this.
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Potential confinement

Let dist(·, ·) be a metric for L1-convergence on compact subsets of R
d. Our main result is a

law of large numbers for ξt towards the parabola ψρ:

Theorem [GRÜNINGER/K. (2007)]: For any ε > 0,

lim
t→∞

〈U(t)1lΓt,ε
(ξt)〉

〈U(t)〉
= 0,

where

Γt,ε =
\

M>0

\

x∈Zd : |x|≤t log t

n

ψ : dist
`

e
1
ρ
ψ(x+ ·)∧M

, e
1
ρ
ψρ(·)´

≥ ε
o

.

In words, the totality of all ξ such that every shift of e
1
ρ
ξt∧M is, for any M > 0, away

from the Gaussian g2ρ = e
1
ρ
ψρ , gives a negligible contribution.

An almost sure version of the potential confinement property was proved in
[GÄRTNER/K./MOLCHANOV (2007)] for the double-exponential distribution and in [SZNITMAN

(1992)] for the related model of Brownian motion among Poisson traps.

A path confinement property (for the Brownian motion in the Feynman-Kac
representation of u(t, z)) was proved in [SZNITMAN (1992)], [BOLTHAUSEN (1992)], [POVEL

(1999)] for the trap problem.
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Comments on the proof

Functional analytic side: A key step is to prove the strictness of the minimisation in the
following strong sense for a variant of the formula for χ:

−χ = sup
ψ

h

λ(ψ) − ρ log
“ e

ρ
L(ψ)

”i

> sup
ψ∈Γt,ε

h

λ(ψ) − ρ log
“ e

ρ
L(ψ)

”i

= −χε.

Probabilistic side: Derive effective estimates for the contribution to U(t) from ξ’s such that ξt
is away from ψρ in the above sense.

As in the above heuristics, we have

(∗) :=
〈U(t)1lΓt,ε

(ξt)〉

〈U(t)〉
≈

D

exp
n t

α(t)2
λ(ξt)

o

1lΓt,ε
(ξt)

E

e
t

α(t)2
χ
.

Now add and subtract the term t
α(t)2

ρ log( e
ρ
L(ξt)) in the exponent. The difference term is

estimated against the variational formula −χε. Hence,

(∗) ≤ e
− t

α(t)2
(χε−χ)

D

exp
n t

α(t)2
ρ log

“ e

ρ
L(ξt)

”oE

.

Combinatorial techniques show that the exponential rate of the last term vanishes, i.e.,
(∗) → 0 exponentially fast.

Remark: The combinatorics only work after cutting the potential at some large level, i.e., after
replacing ξt by ξt ∧M , which must be incorporated beforehand.
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