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1 Introduction

Random Schrodinger operators—most notably, the Anderson Hamiltonian H = A +
&—have been a subject of intense research over several decades. Most of the attention
has been paid to the character of the spectrum and the ensuing physical consequences
for the quantum evolution. However, the associated parabolic problem—characterized
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by the PDE 0,u = Au + £&u—is of as much interest both for theory and applications.
Here we study the latter facet of this problem for a specific class of random potentials.
Our main result is the proof of localization of the solution to the above PDE for large
time in a neighborhood of a process determined solely by the random potential.

A standard way to describe the parabolic Anderson model (PAM) is via a non-
negative solution u : 74 x [0, 00) — [0, 00) of the Cauchy problem

du(z, 1) = Au(z, 1) + E(Qu(z, 1), zeZ t €(0,00), (1.1)
u(z,0) = 19(2), zeZf (1.2)

Here & = (£(2)),¢zq is ani.i.d. random potential taking values in [—~00, 00), 1, is the
indicator function of a point x € 74, d; abbreviates the derivative with respect to ¢,
and A is the discrete Laplacian acting on f: Z¢ — R as

Af@) =Y. [fo) - @) (1.3)

yily—zl=1

where | - | denotes the £! norm on Z¢.

The interest in (1.1-1.2) for mathematics as well as applications comes from the
competing effect of the two terms on the right-hand side of (1.1). Indeed, the Laplacian
tends to make the solution smoother over time, while the field makes it rougher. The
problem (1.1) appears in the studies of chemical kinetics [13], hydrodynamics [8], and
magnetic phenomena [23]. We refer to the reviews [8,19] for more background, and
to [13] for the fundamental mathematical properties of the model. A recent compre-
hensive survey of mathematical results on the PAM and related models can be found
in [15]; the related spectral order-statistics questions are reviewed in [3].

A non-negative solution to the Cauchy problem (1.1-1.2) exists and is unique as
soon as the upper tail of [£(0)/ logS(O)]d is integrable [13]. Under this condition,
there is also a representation in terms of the changed-path measure,

1

&) A
X = o

exp {/t E(Xs)ds} Po(dX), (1.4)
0

on nearest-neighbor paths X = (X;)s>0 on 74, where Py stands for the law of a
continuous-time random walk on Z¢ (with generator A) started at zero. Indeed, the
Feynman—Kac formula shows

u(z, ) = UMD QS (X = 2) = By [l 0600 1] (15)
whereby the normalization constant U () obtains the meaning

t
Ut)y= > ux.n =Eo[exp/ é(Xs)ds}. (1.6)
0

xeZd

The aforementioned competition is now obvious probabilistically: the walk would
like to maximize the “energy” fot &(X,)ds, by spending its time at the sites where &
is large, against the “entropy” of such trajectories under the path measure Py.
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An alternative and equally useful way to view (1.1) is as the definition of a semigroup
t > ¢! (A8 on ¢2(Z%). The solution to (1.1-1.2) is then given by

ux, 1) = (1, e 4491) (1.7)

£2(2d)"
This opens up the possibility to control the large-r behavior through spectral analysis
of the Anderson Hamiltonian. To this end, it is useful to restrict the problem to a
sufficiently large (in 7-dependent fashion) finite volume A C Z¢ (with 0 € A) as
follows. Denote by H 4 the Anderson Hamiltonian in A with (zero) Dirichlet boundary
conditions, i.e., for¢ € R4, Hy¢ = Hp where H = A+£ and ¢ is the extension of ¢
to RZ that is equal to zero on A€. Let u 4 be the solution to (1.1-1.2) restricted to A
and with the right-hand side of (1.1) substituted by H 4u. Then the above interpretation
yields

Al
uatet) = 30 60 (1) (0). (18)

k=1

where A(/’;) are the eigenvalues and ¢x) the corresponding eigenvectors of H,, which
we assume to be orthonormal in £2( A). Hereafter, we extend both the solution u 4 (-, t)
and the eigenfunctions of H 4 to Z¢ by setting them to be equal to 0 on A°.

The competition we described in the context of the changed-path measure (1.4)
now manifests itself as follows. The term in the sum in (1.8) that grows the fastest in ¢
is that with the largest eigenvalue. However, there is no a priori reason for it to be the
dominant term at a fixed time. Indeed, an eigenvalue will only contribute to (1.8) when
its eigenvector puts non-trivial mass on both 0 and x. Since the leading eigenvectors
decay exponentially away from their localization centers (Anderson localization),
|¢(j) (0)| will in fact be typically extremely small. It is thus the combined effect of both

e ry and qu) (x)q)ﬁ)(O) that decides which index k will give the main contribution to
the sum.

In the present paper, we analyze these competing effects for a class of random
potentials with upper tails close to the doubly-exponential distribution, characterized
by

Prob(£(0) > r) = exp{—€¢/*}, reR, (1.9)

where p € (0, 00). (Precise definitions will appear in Sect. 2.) For these potentials we
show that, at all large ¢, most of the total mass U (¢) of the solution resides in a bounded
neighborhood of a random point Z, determined entirely by &. This point marks the
optimal local peak of & for the strategy where the random walk in (1.4) traverses
to Z; in time o(t), and thereafter “sticks around” Z; in order to enjoy the benefits of a
“strong” local Dirichlet eigenvalue. We also characterize the scaling limits of Z; and
% log U (t), and obtain aging results for both Z; and u(x, t).

Our results build on a large body of literature on the PAM whose full account here
would divert from the main message of the paper. For now let us just say that we extend
results from [9,17,21,26], dealing with localization on one lattice site, to a benchmark
class of random potentials exemplified by (1.9), where the localization takes place in
large domains, albeit not growing with . An important technical input for us is the
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recent work [7], where eigenvalue order statistics for the Anderson Hamiltonian H =
A + & was characterized for this class of &. Further connections will be given in
Sect. 3.1.

2 Main results

We now move to the statements of our main results. Throughout the paper, In x denotes
the natural logarithm of x, and Inp x := Inlnx, In3x := Inlnlnx, etc denote its
iterates. We will use “Prob” to denote the probability law of the i.i.d. random field &.

2.1 Assumptions

We begin by identifying the class of potentials that we will consider in the sequel.
Besides some regularity, the following ensures that the upper tails of £(0) are in the
vicinity of the doubly-exponential distribution (1.9).

Assumption 2.1 (Upper tails) Suppose that esssup £(0) = oo and let

1

Foy =l g 0 =)

r > essinf £(0). 2.1
We assume that F is differentiable on its domain and that
. , 1
lim F'(r) = — forsome p € (0, 00). 2.2)
rF—> 00 p

The assumption above is exactly as Assumption 1.1 in [7], and implies Assump-
tion (F) of [14]. While the latter would be enough for most of our needs, the extra
requirements of Assumption 2.1 are used in the crucial step, performed in [7], of
identifying the max-order class of the local principal eigenvalues of the Anderson
Hamiltonian. In order to avoid technical inconveniences, we will also assume the
following condition on the lower tail of &.

Assumption 2.2 (Lower tails) Let £~ (x) := max{0, —&(x)}. We assume that
o 1
/ Prob(£7(0) > ¢*)7ds < oo. (2.3)
0

Assumption 2.2 is only used in the proof of Lemma 8.1, which is used in Proposi-
tion 4.6 to give a lower bound for the total mass U (¢). Note that (2.3) holds whenever
In(14£&7(0)) has a (d + €)-th finite moment (cf. [18]). We believe that, with the use of
percolation arguments, this assumption can be relaxed to £(0) > —oo almost surely
ind > 2.Ind = 1, (2.3) is equivalent to In(1 + &~ (0)) having the first moment, which
is known in the case of bounded potentials to be “essentially necessary” in the sense
that, when | In(1 + £7(0)) |3 is not integrable for some § € (0, 1), the solution might
scale differently. See [6], in particular Remarks 3 and 4 therein.
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We will assume the validity of Assumptions 2.1-2.2 throughout the rest of the paper
without explicitly stating this in each instance.

2.2 Results: Mass concentration

Recall that |x| denotes the £'-norm of x. Our first result concerns the concentration
of the total mass of the solution to the Cauchy problem (1.1-1.2):

Theorem 2.3 (Mass concentration) There is a Z¢-valued cadlag stochastic process
(Z4)¢>0 depending only on & such that t — |Z;| is non-decreasing and such that the
following holds: For each § > 0, there exists R € N such that, for anyl; > 0 satisfying
lim; o0 11 = 0,

. u(x,s)
Jlim Prob sup > >s|=0. (2.4)

selt—l;,t+1;] x: |x—Z;|>R U(S)

In words, (2.4) means that the solution at time ¢ is with large probability concentrated
near a single point Z;, and the control in fact extends to sublinearly-growing intervals
of time around ¢. This cannot be extended to linearly growing time-intervals due to
the jumps of the process s +— Z; (cf. Theorem 2.6 below), but a refinement of our
methods would show that, in this case, two islands would suffice, i.e., (2.4) would still
hold if the sum is taken over boxes of radius R centered around two processes zo,
Z&% [see (4.9)]. We also believe that the almost-sure version of this statement, dubbed
as a “two-cities theorem” and proved in [16] for the case of Pareto potentials, could
be obtained with more work but prefer not to pursue this here.

In terms of the path measure Qf), Theorem 2.3 can be interpreted as concentration
for the law of the position of the path at time 7. By letting the radius R grow slowly to
infinity, this can be improved to include a majority of the random walk path:

Theorem 2.4 (Path localization) For any &; € (0, 1) with lim;_, , & In3 t = 00,

lim Qf) sup | Xy — Z¢| > e Int | =0 in probability, 2.5)
=00 selert,t]

where (Z;)s=0 is the stochastic process in Theorem 2.3.

To the best of our knowledge, statements about path localization such as Theo-
rem 2.4 were not yet available in the literature of the Parabolic Anderson Model. The
scales above come out of our methods and may be artificial; in particular, we do not
know if In7/In3 7 is the correct scaling for sup, ;<< [ X5 — Z;|.

2.3 Results: Scaling limit

Our next theorem identifies the large-¢ behavior of the pair of processes t — Z; and
t— %ln U (t). While U (¢) is continuous, Z; is only cadlag and thus it is natural to
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use the Skorohod topology to discuss distributional convergence. Two relevant scales

are
0

_ td; o t
"~ dnt

and r; = = e (2.6)

d; : = = ,
! Inst  dlint Ingt

marking the size of fluctuations of % In U(¢), and the typical size of | Z;|.
To describe the scaling limit, consider a sample {(};, z;): i € N} from the Poisson
point process on R x R¢ with intensity measure e *d ® dz. For § > 0, define

Yo(h, 2) :=,\—%, (A, z) e R x R?. (2.7)

It can be checked that, for every 6 > 0, the set {y/p(A;, z;): i € N} is bounded and
locally finite. Moreover, the maximizing point is unique at all but at most a countable
set of 8’s and we can thus define (Ag, Zg) to be the cadlag maximizer of ¥y over the
sample points of the process (cf. Sect. 7.2). We set

Wy = Yy(Ag, Zp). (2.8)
Then we have:

Theorem 2.5 (Scaling limit of the localization process and the total mass) There is a
non-decreasing scale function a; > 0 obeying

lim - = p 2.9)
t—o0 Inp t

such that the following holds: The stochastic process (Z;)~q in Theorems 2.3 and 2.4
can be chosen such that, for all s € (0, 00) and relative to the Skorohod topology on
D([s, 00), R x RY),

1
2= InU@t) —a, Zy law — —
Ot t t a
( d; T t—00 (W@, Zg)ee[ssoo) ’ (2.10)
O€ls,00)

In particular, for each 6 > 0, the pair ([9—1t InU(Ot)—ay,1/d;, Zo: ]/ 11) converges in law
to the pair Wy, Zg) € Rx R? whose coordinates are independent and distributed as
follows: W follows a Gumbel distribution with scale 1 and location d In(20), while
Zg has i.i.d. coordinates, each of which is Laplace-distributed with location 0 and
scale 0.

The scaling function a; characterizes the leading-order scale of the principal Dirich-

let eigenvalue of the Anderson Hamiltonian in a box of radius 7, as identified in [7].
See (7.3) below for a precise definition.
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2.4 Results: Aging

The techniques used to prove the above theorems also permit us to address the phe-
nomenon of aging in the problem under consideration. The term “aging” usually
refers to the fact that certain decisive changes in the system occur at time scales that
increase proportionally to the age of the system. Our next result addresses aging in
the process (Z;):~0:

Theorem 2.6 (Aging for the localization process) For each s > 0, and for (Z;);~0
and (Z;);>o as in Theorems 2.3, 2.4 and 2.5,

lim Prob(Z;1g; = Z; ¥6 € [0, s]) = lim Prob(Z, 45 = Z;)
t—00 —>00

B -~ (2.11)
= Prob(Z45s = Z1) = Prob (O > ),
where the random variable
O :=inf{0 > 0: Z149 # Z1} (2.12)
is positive and finite almost surely. Moreover,
d dd
——Prob (® > s) = - (2.13)

lim
s—oo (logs )d d!
In light of Theorem 2.5, Theorem 2.6 can be seen as a reflection of the fact that the
functional convergence stated in Theorem 2.5 is not achieved through a large number
of microscopic jumps, but rather through sporadic macroscopic jumps.

Our second aging result deals with the jumps in the profile of the normalized solution
u(-,1)/U(t). It comes as a consequence of the mass concentration of the normalized
solution around Z; together with Theorem 2.6.

Theorem 2.7 (Aging for the solution) For any ¢ € (0, 1), the random variable

ulx,t+s) u(x,t)
Uit+s) U@

(2.14)

1

—inf 0:

; s>0: )
xezZd

converges in distribution as t — 00 to the random variable © defined in (2.12).

A key point to note about Theorem 2.7 is that the limiting random variable does not
depend on ¢. This suggests that, in fact, the sum in (2.14) jumps from values near 0
to values near 1 as s varies in a time interval of sublinear length in 7.

2.5 Results: Limit profiles

The localization stated in Theorem 2.3 can be given in a more precise form provided
that we make an additional uniqueness assumption. In order to state this assumption,

@ Springer



Mass concentration and aging in the parabolic Anderson...

we need further definitions. Given a potential V : Z¢ — R, let

Lvy=Yer, (2.15)

xeZd

The functional £ plays the role of a large deviation rate function for random potentials &
with doubly-exponential tails. Whenever £L(V) < oo (in fact, whenever V (x) — —oo
as |x| — 00), A+ V has a compact resolvent as an operator on 02(Z%), and its largest
eigenvalue AV (V) is well-defined and simple. The constant

x = x(p) == —sup{A"(V): V € RZ', £(V) < 1} € [0,2d] (2.16)

is key in the analysis of the asymptotic growth of U (¢). The set of centered maximizers

M = {v e RZ': 0 € argmax(V), £(V) < 1 and AV(V) = —x} 2.17)

is known to be non-empty. The assumption below deals with uniqueness:

Assumption 2.8 (Uniqueness of maximizer) We assume that M:‘, = {V,}, ie., the
variational problem (2.16) admits a unique centered solution V.

The uniqueness of the centered minimizer is conjectured to hold for all p > 0, but
has so far only been proved for p large enough; see [11]. In the latter paper it is also
shown that, forany V' € M7, the non-negative principal eigenfunction of the operator

A +V is strictly positive and lies in ¢4Z4). Under Assumption (2.8), we will denote
henceforth by v, the principal eigenfunction of A + V,,, normalized so that

v >0 and vyl gz = 1. (2.18)

Then we have:

Theorem 2.9 (Limiting profiles) Suppose Assumption 2.8 and let (Z;);~o be the
process from Theorems 2.3, 2.4 and 2.5. There exist 1y € N and @, > 0 satisfy-
ing lim; o0 t; = 00 and lim;_, o a; /(p Iny t) = 1 such that, for all ¢ € (0, 1),

sup sup  |E(x + Zy) —a — V,(0)| —2 0 inprobability. (2.19)

selet, e~ 1t] xeZ4: |x|<p
. . . 1
Moreover, for any l; > 0 satisfying lim;— o0 71 =0,

u(Z; +x,s)

sup U6

selt—lni+l] '

—v,(x) =2 0 in probability. (2.20)

— 00

The scale @, in (2.19) coincides (up to terms that vanish as r — oo) with the maximum
of & inside abox of radius ¢ [see (5.1) for the definition, and also Lemma 5.1]. Moreover,
the scales a; and @, (with a; as in Theorem 2.5) satisfy lim;_ oo @; — a; = x. The
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scale u; provided in the proof of Theorem 2.9 satisfies u; < (In¢)* for some arbitrary
k < 1/d, but its actual rate of growth is not controlled explicitly.

The rest of the paper is organized as follows. In Sect. 3 below we discuss connec-
tions to the literature and provide some heuristics. Section 4 contains an extensive
overview of our proofs including the definition of the localization process Z;. The
technical core of the paper is formed by Sect. 5 (properties of the potential and spec-
tral bounds), Sect. 6 (path expansions) and Sect. 7 (a point process approach). The
bulk of the proofs related to our main results is carried out in Sects. 8—11, concern-
ing respectively negligible contributions to the Feynman—Kac formula, localization of
relevant eigenfunctions, path localization properties and the analysis of local profiles.
The proofs of some technical results are given in Appendices 12—14.

3 Connections and heuristics

In this section, we make connections to earlier work on this problem, and also provide
a short heuristic argument motivating the definition of the scales in (2.6).

3.1 Relations to earlier work

Let us give a quick survey on earlier works on the particular question that we consider;
we refer to [15] for a comprehensive account on the parabolic Anderson model, and
to [20] for a survey on certain aspects closely related to the present paper.

Since 1990, much of the effort went into developing a characterization of the log-
arithmic asymptotics of # — U (¢) and its moments, which are all finite if and only
if all the positive exponential moments of £(0) are finite. For this case, under a mild
regularity assumption, [27] identified four universality classes of asymptotic behav-
iors: potentials with tails heavier than (1.9) (corresponding formally to p = ©0),
double-exponential tails of the form (1.9), the so-called “almost bounded” potentials
(corresponding formally to p = 0), and bounded potentials. The first two cases were
treated in [14], and the last two in [27] and [5], respectively. Potentials with infinite
exponential moments were analysed in [28] (more precisely, Pareto and Weibull tails),
where weak limits and almost sure asymptotics for U (¢) were obtained.

In all of the classes mentioned above, the asymptotics of U (¢) is expressed in terms
of a variational principle for the local time of the path in Q' and/or the “profile”
of & that maximizes a local eigenvalue. The picture that emerges is that a typical
path sampled from Qf) for ¢ large will spend an overwhelming majority of time in
a relatively small volume whose location is characterized by a favourable value of
the local Dirichlet eigenvalue. Proofs of such statements have first been available for
a related version of the model using the method of enlargement of obstacles [25]
and later also for the double-exponential class by probabilistic path expansions [12].
However, neither of these approaches was sharp enough to distinguish among the
many “favourable eigenvalues.” In fact, while the expectation was that only a finite
number of such eigenvalues needs to be considered, the best available bound on their
number was ().
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For distributions with tails heavier than (1.9), progress on the mass concentration
question has been made in [16] and more recently in [9,17,26]. The distributions
therein considered are, respectively, Pareto, exponential, Weibull with parameter y €
(0, 2) and general Weibull. In these papers it is proven that, with large probability, the
solution is asymptotically concentrated on a single lattice point, which is an extremely
strong localization property. In the doubly-exponential case considered here, due to
less-heavy tails, the localization phenomenon is not so strong; indeed, restricting to
any bounded region misses some fraction of the total mass of the solution.

The analysis leading to our result depends crucially on the characterization of the
order statistics of local principal eigenvalues for the Anderson Hamiltonian performed
in [7], which allows us to conveniently represent local eigenvalues through a point
process approach. In this aspect, our paper shares similarities with [9], which draws
heavily upon the analysis of the spectral order statistics in [1,2]. However, our case also
harbors many significant differences, caused mainly by the non-degenerate structure
of the dominant eigenfunctions.

For the remaining two universality classes of £—namely, the bounded and “almost
bounded” fields—the mass-concentration question is yet more difficult because the
relevant eigenvectors extend over spatial scales that diverge with time. Nevertheless,
we believe that our approach could provide a strategy to study these cases as well.

3.2 Some heuristics

We present next a heuristic calculation based on [7] to motivate the appearance of
the scale r; defined in (2.6). We will describe a strategy to obtain a lower bound for
the total mass U () defined in (1.6). Our actual proof of the corresponding result (cf.
Proposition 4.6 below) follows similar but somewhat different steps.

Write B; C Z? for the £°°-ball with radius #, and denote by A%, ', 1 < k <
| B;|, the eigenvalues and corresponding orthonormal eigenfunctions of the Anderson
Hamiltonian in B, with zero Dirichlet boundary conditions. If Yg‘l ' € B, are points
g) 1

maximizing |¢p |, it can be shown via spectral methods that

ot (k)
Eyo [l €309 1(X, e B,vre(0.1)] 2 e 3.1)
By

Inserting in (1.6) the event where the random walk X reaches Y ;?kt) atatimes < t and
then remains in B, until time ¢, and using the Markov property at time s, we obtain

U() = Bo[eh S0 1 [ X, = ¥, X, € BiVr e [5.1]}]
(32)

3 ) (k) ®) /¢ 5 K

> Po(X, = Y) e e I 1Yl 1/5) (1=

where for simplicity we assumed that £ is non-negative, and to approximate the
probability Po(X; = Yg;)), we assume |Yékt) | > 5. Optimizing over s gives the can-

didate s = |Y l(;x | /A(k:, which we may plug in (3.2) provided that we also assume
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|Yp |/A < t. With this choice, (3.2) becomes approximately

R
. B t
exp [m;;; — Y IIn xgz} = e'% exp {zd,fT —|Yg lnag t, (3.3)

where a;, ~ pln; ¢ is the leading order of the principal Dirichlet eigenvalue of H in
a box of radius ¢ as identified in [7] (and is also the same scale appearing in Theo-
rem 2.5). In [7], itis shown that the collection of rescaled points {(Agi —ap)/di}1<k<|B,|
converges in distribution to (the support of) a Poisson point process. Assuming thus
that ()\%: —a;)/d; is of finite order, an index k optimizing (3.3) should balance out the

two competing terms, implying |Y 5’| ~ r.

4 Main results from key propositions

We give in this section an outline to the proof of Theorems 2.3, 2.4, 2.7 and 2.9. This
will be achieved by way of a sequence of propositions that encapsulate the key technical
aspects of the whole argument. The proofs of these propositions and of Theorems 2.5—
2.6 constitute the remainder of this paper and are the subject of Sects. 5-11 as well as
the three appendices. Note that Theorem 2.6 will be assumed in Sects. 4.5-4.6 below.

Throughout the rest of this work, we set N := {1,2,...} and Ny := N U {0}.
We denote by dist(:, -) the metric derived from the ¢'-norm | - |, and by diam(-)
the corresponding diameter. For a real-valued function f and a positive function g,
we write f(t) = O(g(t)) ast — oo to denote that there exists C > 0 such that
|f(@®)] < Cg(t) for all large enough ¢, and we write f(¢) = o(g(t)) in place of
lim,, | f(#)]/g(¢) = 0. In the latter case, we may also alternatively write | f (¢)| <
g)org() > |f(@)]. By o(-) or O(-) we will always mean deterministic bounds,
i.e., independent of the realization of &.

4.1 Definition of the localization process

For A c 7 finite, we denote by )»(X the largest Dirichlet eigenvalue (i.e., with zero
boundary conditions) of A + & in A. For L € Nand x € 74, we let

Br(x):=x+[-L,L1*NnZ4, 4.1

and when x = 0 we write By instead of By (0).
Fix k € (0, 1/d). For each z € Z¢, we define a &-dependent radius

0. = {exp{%é(x)” 4.2)

and we let
¢ =22’ §0) 2 60) Vy € B (@) (43)
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denote the set of local maxima of & in neighborhoods of radius o, which we call
capitals. For z € €, we abbreviate

4 (D
AT (2) = AB@z(Z)' “4.4)

For t > 0, we define a cost functional over the points z € € by setting

1n§Ir |z

W,(z) =20 (z) — lzI,  where InJ x :=Inz(x v e°). 4.5)

The functional ¥; measures the relevance at time ¢ of a capital z € € by weighting
the principal eigenvalue in B, (z) against the ¢!-distance to the origin |z|. The next
proposition shows that ¥; admits a maximizer:

Proposition 4.1 Almost surely, |€| = oo and, for allt > 0 and all n € R,
|{Z €EC: ¥ (2) > n}} < 00. (4.6)

The proof of Proposition 4.1 will be given in Sect. 5. In order to define Z; as a
cadlag maximizer of ¥;, we proceed as follows. Write (1, z) > (), z’) for the usual
lexicographical order of R x RY, i.e., (A, z) > (1/, ) if either A > A/, or A = A/ and
z > 7/ according to the usual (non-strict) lexicographical order of R¢. Now define,
recursively for k € N,

wh = sup ¥ (2), .7
ze‘f\{Zt(l) ’’’’’ Z[(k—l)}
SV = {ze\{Z",.... 2" ") W) = w0, “4.8)
and
zh e {z e (A%2).2) = (A7(2).2) Vi e 65“} : (49)

Observe that (4.9) determines Z uniquely. Then we set

Z, = 7", (4.10)
The above definitions ensure that the maps ¢ > ¥* are continuous while ¢ > Z
are cadlag, with ¢ +— |Z;| non-decreasing [see Lemma 7.5 and (7.42-7.43)]. We point
out that the choice of « in (4.2) is of minor relevance, not affecting the asymptotic
behavior of ¥, or its maximizers.
Note that we can have By, (z) N By, () # ¥ for distinct z, 2’ € €. Nevertheless, as
is shown next, the relevant points of ¢ are well-separated with large probability:
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Proposition 4.2 (Separation of relevant capitals) There exist subsets 6; C € such
that, forany k € N, B € (0, 1), and 0 < a < b < oo, with probability tending to 1 as
t —> o0,

{z,....Z} 6 Vs € lat, bi] (4.11)

and
dist(z, 7)) > tP for all distinct 7,7 € €;. (4.12)

Proposition 4.2 will be proved in Sect. 7.

Remark 4.3 1t would have been perhaps more natural to define ¥; with lngr |z| substi-
tuted by In 1% (z), which is a form that appears in the literature (see also the proof of
Proposition 4.6). The analysis is slightly simpler with our definition, cf. Sect. 7 below.
Substituting however lng' |z| by In3 ¢ (which is the leading order of lng' |Z;|) would
not be as convenient, as this would complicate our proof of functional convergence.

4.2 Properties of the cost functional

The technical statements start with a discussion of the properties of the above cost
functional ¥; and the process Z;. Recall the definitions of r; and d; from (2.6). The
various error estimates that are to follow will require a host of auxiliary scales. First
we fix t — & € (0, 1), & > (In31)~! arbitrary as in the statement of Theorem 2.4;
note that &, may converge to 0. Then, similarly to [22], we fix ¢;, f;, g, h; and b, such
that

er, frohy,by — 0 and g —> o0 (4.13)
t—00 t—>o0
while also g
L &b < fihy and g < e (4.14)
& lnsyt

As an example of scales satisfying (4.13-4.14), one may take suitable powers
of & In3 r. We then have:

Proposition 4.4 Fix0 < a < b < oo. Then, with probability tending to 1 ast — oo,

inf lI/Y(” > (p+o(1)Iny 1, (4.15)
s€lat,bt]
(s =) A (B — D) > drey (4.16)
and
refr < inf |Zg| < sup  |Zg| < reg:. “4.17)
s€lat,bi] s€lat,bt]

Proposition 4.4 is proved in Sect. 7, together with Theorems 2.5-2.6. The proofs
rely strongly on the extreme order statistics of the principal Dirichlet eigenvalue in
a box identified in [7] and, similarly to the approach of [9,16,17,21,22,26], on a
Poisson point process approximation. However, in order to deal with the fact that
the local eigenvalues do not depend on bounded regions in space, a coarse-graining
scheme taken from [7] is required. Our approach provides a quite direct implication of
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functional convergence and aging for Z; from the convergence of the underlying point
process (in a suitable topology), see in particular Lemmas 7.4, 7.6 and 7.9 below. We
believe that this approach could be useful to prove analogous results in other contexts,
e.g., the PAM with lighter potential tails.

Notice that in (4.16) we only require a gap between ¥;" and ¥, for s € {at, bt}.
This is because, while the gap is greater than d;e; with large probability at both at and
bt, there is by (2.11) a non-zero probability that s +— Z; jumps in the interval [at, bt],
leading to a zero gap at the jump time. Notwithstanding, if no such jump occurs, then
the gap remains uniformly positive throughout the interval. Indeed, define

g[’_y = {WS(I) — W;z) > d[e[} . (418)

Then we have:

Proposition 4.5 With probability one, for any 0 < a < b < oo and any t > 0,

Groat N Grt MZar = Zoty = ) (Grs NMZs = Zar)). (4.19)

selat,bt]
The proof of Proposition 4.5 is related to that of Theorem 2.6, and so it is relegated to

Sect. 7 as well.

4.3 Mass decomposition and negligible contributions

Having dealt with the cost functional and localization process, we proceed by giving
estimates on the solution to (1.1-1.2). As noted already earlier, this solution can be
written using the Feynman—Kac formula (1.5), which offers the strategy to control
u(t, x) by decomposing the expectation based on various restrictions on the underlying
random walk. A starting point is a good lower bound on the total mass U (¢):

Proposition 4.6 Forany 0 <a < b < oo,

inf finU@s) =50} = ottd;ber (4.20)

s€lat,bt]
holds with probability tending to 1 as t — oo.

For A C Z4, let
T4 :=inf{s > 0: X; € A} 4.21)

denote the first hitting time of A by the random walk X. Our decomposition of (1.5)
begins by restricting the expectation to paths that never leave a box of side-length

L;:=[tIn] t], where Inj7:=Iny(t Ve). (4.22)

This restriction comes at little loss since we have:
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Proposition 4.7 For any 0 < a < b < oo, there is a to = to(§) with tg < 00 a.s.
such that

s 1
sup InEg [efo §(Xu)du 4 {th < s}] < —=t(Inyt)Inz ¢t (4.23)
selat.br] ‘ 8

holds whenever t > ty.

Next we show that the bulk of the contribution to the Feynman—Kac formula comes
from paths that do not even leave the random domain

Dy, ={x € Z: |x| < |ZJ|( +h)}. 4.24)

Indeed, the contribution of paths that leave this set is bounded via:

Proposition 4.8 Forany0 <a < b < oo,

sup {ln Eo [eft; §(Xu)du 4 {r(D;vx)c <s <7t }]
selat,bt] ' !

—max {s¥”, s¥" — h,|Z,|In3 z}} < o(td,b;) (4.25)

holds with probability tending to 1 as t — oo.

We also control the contribution of paths that do not enter a fixed neighborhood
of Z te

Proposition 4.9 For all large enoughv € Nand all0 < a < b < oo,

sup {1n Eo [efo“‘deM [‘L’BV(ZS) ATas > s” —sw;z’] < o(tdib)  (4.26)

s€lat,bt]
holds with probability tending to 1 as t — o0.

The above propositions will allow us to restrict the Feynman—Kac formula to the
event

R;},s = {‘L’(Dﬁj)c > 5 > TBu(Z;)} s (427)

and proceed to control the result using spectral techniques; see Sect. 4.4.

Our proofs of Propositions 4.6 and 4.7, given respectively in Sects. 8.1 and 8.2, are
relatively simple and follow similar results in the literature. Propositions 4.8 and 4.9
are proven in Sect. 8.3; their main technical point is a path expansion scheme developed
in Sect. 6, based on an approach from [22]. Additional difficulties arise in our case due
to smaller gaps in the potential, and to the fact that the effective support of the relevant
local eigenvalues is unbounded in the limit of large times. This is overcome through
a careful analysis of the connectivity properties of the level sets of the potential and
their implications for the bounds derived via path expansions.

An important observation is that 1% (Zy) is the largest possible over all capitals
inside D7 ¢ (cf. Lemma 9.1). This comes as a consequence of the choice of /1, in (4.14),
which is of special relevance as it simultaneously allows the proofs of Proposition 4.8
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above (for which A; should be large enough) and Proposition 4.11 below (for which
h; should be small enough). We also note that a complementary upper bound to (4.20)
holds as well (cf. Lemma 8.6), which will be important for the proof of Theorem 2.5
in Sect. 8.4.

4.4 Localization

Once the path has been shown to enter a neighborhood of Z; by time ¢ with large
probability, the next item of concern is to show that it will actually not be found far
away from Z; at time ¢. This will be done by bounding the end-point distribution using
the principal eigenfunction ¢ ; corresponding to the largest Dirichlet eigenvalue of
the Anderson Hamiltonian in D7 ;, which we assume to be normalized so that

¢;s > 0on Dy

s ®rs=0o0n (D7) and |¢7| 1. (4.28)

’ez(% -
We have:

Proposition 4.10 For any v € Nand 0 < a < b < oo, the following holds with

probability tending to 1 as t — 00: For all s € [at, bt] and all x € Dy,

Eo [ef0 600 gy x| U@ sup o007 g0 @29)
: YEBY(Zs)

In order to use the bound in (4.29), we will need an estimate on the decay of ¢/
away from Z;. On the event G, ; from (4.18), this is the subject of:

Proposition 4.11 There exist cy, c; > 0and, forallv € N, also e, > 0 such that, for
all0 < a < b < oo, the following holds on with probability tending to 1 ast — 00:
For all s € [at, bt], on G, s we have

(i) ¢7,(x) <cre 24l vy ez, (4.30)

(i) ¢ () =& Vy € By(Zy). (4.31)

Propositions 4.10—4.11 are proven in Sect. 9. Proposition 4.10 is similar to Propo-
sition 3.11 in [22], and is obtained by adaptation of [12, Theorem 4.1]. The proof of

Proposition 4.11(i) an adaptation of [7, Theorem 1.4], while part (ii) relies on results
from [11,14] and [12] regarding the optimal shapes of the potential.

4.5 Proof of mass concentration results

We have now amassed enough information for the proof of Theorem 2.3, assuming
Theorem 2.6 and the above propositions:

Proof of Theorem 2.3 Fix v € N large enough so that Proposition 4.9 is available. Fix
0 < a < b < oco. We will first show that, for all § > 0, there exists an R € N such
that
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Jlim Prob (3s € lat, br]: ¥ =¥ >die;, OF (1Xs — Zs| > R) > §) =0,
(4.32)
and derive the desired claim from this at the very end.
We begin by noting that Propositions 4.6—4.9 imply that

! ) EX,)d
" (U(s)IEO [efisc ”HR;’,J])

< —smin {llls(“ —0® hy|Zs|Inst,

tlny tiny ¢
PRIty uf;”} Fo(tdb)  (4.33)

holds true for all s € [at, bt] with probability tending to 1 as t — oo. By Proposi-
tion4.4,0on G, s = (W —w® > d;e;} we may further bound (4.33) by

—atmin {dye;, hyr; fiIn3t, 3plnyt} + o(td;by) (4.34)
which goesto —ocoast — ocoby (2.6) and (4.14)—indeed, (4.14) shows thate; In3 t —

oo (in fact, e; > g;/In3 t with g; — o00) and so td;e; > ct/[(Int) In3 t]—implying
that

16 .
lim sup -2, [efo €<Xu>du1m;,:)c] =0 in probability. (4.35)

1= selat,bt] U(s)

Fix now § > 0 and let R € N be large enough such that

1)
£;3c1 Z ekl < > (4.36)
|x|>R

where c1, ¢; and ¢, are as in Proposition 4.11. By Propositions 4.10-4.11,

1 s
gl,s Z ]EO I:ef() g(Xu)du‘IR})sm{XS:x}] < (437)

su U
s€lat,bt] (s) x:|x—Zg|>R

NS NISC]

with probability tending to 1 as t — oo, which together with (4.35) implies (4.32).
To conclude the desired statement from (4.32), fix I; > 0, [; = o(¢) and note that,
by Theorem 2.6 and Propositions 4.4-4.5, with probability tending to 1 as t — oo,

Zy=27, and W —W® >die, Vs elt—Il,t+1] (4.38)

This together with (4.32) (witha < 1 < b) implies (2.4). O

The presence of the scale ¢; in (4.20) was not needed in the proof above, but it will
be important for the proof of Theorem 2.4. More precisely, it will be used to obtain
the following improvement of Proposition 4.9:
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Proposition 4.12 For all sufficiently large v € N,

! B [ efo §(Xo)ds
U(Z‘) 0 [e 0 1 {T(Dro,r)c >1 > TB,(Z;) > Stt}] t—) 0 (4.39)
in probability.

We will also need the following proposition, which bounds the contribution of paths
starting at a point x € B, (Z;) and reaching a distance greater than %e, Inz:

Proposition 4.13 For any k € N and any v € N, the following holds with probability
tending to 1 ast — oo: Forall x € B,(Z;) and all0 < s <t,

E, |:ef3 §(Xu)du 4 {T(Dtot)c >s, sup |X, —x|> %et 1nt}j|

0<u<s

<1 *E, [ef(f f“‘u)d“] . (4.40)

Propositions 4.12—4.13 will be proved in Sect. 10. They allow us to give:

Proof of Theorem 2.4 Fix v € N large enough so that the conclusion of Proposi-
tion 4.12 becomes available. Write T := 7p,(z,) and note that, since & > (In3 H~ L
when ¢ is large,

{ sup |Xs; — Z;| > & lnt} C (Ry)FU {r(th)c >t>7T> 8ft] UA;, 441

s€lest,t]

where
A= Tpe,e > 1, T < &t, sup |Xg— Xz[ > %8, Int}. (4.42)
' s€[T,1]
By (4.35), Propositions 4.4 and 4.12,
;&w ((th)c) v Q;E) (T(D}’,t)c >t>7> 8,t> =2 0 in probability. (4.43)
To control Q;s)(A,), let

G/(x,s):=E, I:efg-s(xu)d“‘I {T(D?I)C>S, SUP)< /<y |Xu7x|>%s, ]nt}] (4.44)

and use the strong Markov property and Proposition 4.13 to get

E [ Jo s ] = E [ S 60X 0ds 4 ) o ~]
0| € Ay XGBX(:Zt) 0|€ HT(D?,T)C>1::TXSS’I] t()C ‘[)
=Tvo (4.45)

with probability tending to 1 as r — 0o. The desired claim now readily follows from
(4.41), (4.43) and (4.45). O
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4.6 Proof of aging and limit profiles

The last set of propositions to be introduced here concern the proof of Theorems 2.7
and 2.9. We start with some supporting notation. Given a functiont — u, with u; € N,
let ¢7 ¢ denote the eigenfunction corresponding to the largest Dirichlet eigenvalue of
the Anderson operator in B, (Z), normalized so that

¢y > 0on By, (Z), ¢, =0onB; (Z) and |¢, ||£1(Zd) =1. (4.46)

(Notice our use of the £!-norm here.) When s = ¢ we omit one index from the notation.
Recall the choice of k € (0, 1/d) in (4.2). We then have:

Proposition 4.14 For any nu; € Nwith 1 < u; < (Int)€, and any 0 < a < b < oo,

u(-,s)
U(s)

= 0 in probability. (4.47)
21(zd)

lim sup 1gm

— ()
l_)ooselat,bt] b

We may thus obtain information about the profile of u(-, s) via that of ¢ ;. As shown

next, the latter can be controlled under Assumption 2.8, along with the shape of &:

Proposition 4.15 [f Assumption 2.8 holds, then there exists u; € Nwith 1 < uy <
(Int)* and a function a, satisfying lim;_, o a;/Iny t = p such that, for any 0 < a <
b < 00, both

sup  sup |E(x 4+ Zy) — @ — V,(x)| (4.48)
s€lat,bt] xeBy,
and
sup |67 (Zs +) = v | 1 0 (4.49)
s€lat,bt]

converge to 0 in probability as t — 0.

The proofs of Propositions 4.14—4.15 are based on an approach from [12] and will
be given in Sect. 11 below. Together with Theorem 2.6, they imply:

Proof of Theorem 2.9 Note that (2.19) follows directly from (4.48). For (2.20),
use (4.47), (4.49), the triangle inequality for the ¢!-norm and (4.38). O

We finish the section with:

Proof of Theorem 2.7 We adapt the proof of Theorem 1.1 of [21]. By Theorem 2.6, it
is enough to show that, for any ¢ € (0, 1) and b > 1,

u(z,s) _ u(z,t)

o Us) U@

selbl '

<e¢ ifandonlyif Z;=Z,Vselt,bt] (4.50)

holds with probability tending to 1 as t — oo.
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Assume firstthat Z; # Z, forsomes € (¢, bt]. By Propositions 4.4 and 4.5, we may
assume that Z,; # Z;, and therefore by Proposition 4.2 also thate.g. | Zp; — Z;| > V.
Fixing R so that (4.32) holds with § < %(1 — &), we obtain

2

u(z, br) _ u(z,t)

U (bt) U(t)
zez74
u(z,bt) u(z 1)
> Z U on Z @ >1-28>¢ 4.51)
lz—=Zp | <R |z—Z;]

with probability tending to 1 as ¢+ — oo, proving the “only if”” part of (4.50).
Assume now that Z; = Z, V s € [t, bt]. Then oLy =@ for all s € [t, bt], and the
“if” part of (4.50) follows by (4.47) with @ = 1 < b and Propositions 4.4-4.5. O

5 Preparations

In this section, we collect auxiliary results that will be used in the remainder of the
paper. We start with a few basic properties of the potential field and of the principal
Dirichlet eigenvalue of the Anderson Hamiltonian in subdomains of Z, leading to the
proof of Proposition 4.1. The two subsequent subsections concern additional properties
of the potential field, and the last one contains spectral bounds for the Feynman—Kac
formula.

5.1 Potentials and eigenvalues

First we consider the maximum of the potential in a box. Letay, be the minimal number
satisfying
Prob (£(0) > a;) = L7, (5.1

which exists since, by Assumption 2.1, £(0) has a continuous distribution. Note that,
in the notation of [14], @ = ¥ (d In L). Then we have:

Lemma 5.1 (Maximum of the potential)

lim max &(x)—ar =0 a.s. (5.2)
L—oo xeBp

Proof See Corollary 2.7 of [14]. O
Let us mention here some properties of ay . By equation (2.1) of [14],

ay, =dag +o(l) asL — oo whenever Inkr =InL(1+ o(1)) (5.3)

and, by Remark 2.1 therein, it is straightforward to verify thata; = (o +o(1))Iny L.

Next we recall the Rayleigh—Ritz formula for the principal eigenvalue of the Ander-
son Hamiltonian. For A € Z% and V : Z¢ — [—00, 00), let A(/;)(V) denote the largest
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eigenvalue of the operator A + V in A with Dirichlet boundary conditions. Then

d
A (V) = sup {((A +V)p. D)z ¢ € RY suppg C A, 19l 2z0) = 1} -
(5.4)
When V = & we sometimes write )»(/1‘) instead of )»(/1‘) (&). Here are some straightforward
consequences of the Rayleigh—Ritz formula:

1. forany I C A,

max V(z) —2d < AP(V) < 2(V) < max V(2); (5.5)
zell ZEA

2. the eigenfunction corresponding to )f}f(V) can be taken non-negative;

3. if V is real-valued and A is finite and connected (in the graph-theoretical sense
according to the usual nearest-neighbor structure of Z¢), then the middle inequality
in (5.5) is strict and, moreover, the non-negative eigenfunction corresponding
to )f/]x)(V) is strictly positive;

4. for A, A’ C 74 such that dist(A, A') > 2,

25,4 (V) = max {27 (V), 25} (5.6)

We can now give the proof of Proposition 4.1.

Proof of Proposition 4.1 Note that, for any R € N and z € Z¢,

{ze ¥} 2 {S(z) <ok 'InR, £(2) = g;wg )S(x)} , (5.7

and the probability of the event on the right-hand side does not depend on z and is
positive for some fixed large enough R. As the events on the right of (5.7) depend
only on a finite number of coordinates, the second Borel-Cantelli lemma shows that
|| = oo almost surely. Now, by (5.5), 1% (z) < &(z) for any z € % while, by
Lemma 5.1, almost surely £(z) < 2p In, |z] for all |z| large enough. This implies that,
almost surely,

Inz R
limsup sup ¥(z) < lim (2p Inp R — R n ) = —00 (5.8)
R—o0 ze%|z|=R R—o00 t
for each ¢ > 0, finishing the proof. O
Next we generalize (2.15-2.16). For A C Z4 and V : Z¢ — [—o00, 00), let

Lavy=Yer, (5.9)

xeA

with the convention e~ := 0. Then set

XA = x4(p) 1= — sup {M/‘,)(V); Ve [—o00, 012, La(V) < 1}. (5.10)
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When A = Z4 we write just x. From the definition it follows that, if I" C A, then
Xr = xa;in particular, 0 < x < x4 < 2d since x(y) = 2d for any x € 74,

5.2 Islands

Central to our analysis is a domain truncation method taken from [7], which we
describe next. Recall the choice of k € (0, 1/d) in (4.2) and fix an increasing sequence
R; € N such that

R <(nL)v1 and Ry > (InL)?asL — oo forsome B € («, 1/d). (5.11)

This sequence will control the spatial size of the regions in By, where the field is large,
and thus the (principal) local eigenvalue has a chance to be close to maximal. We will
often work with Ry satisfying additionally

Ry < (nL)*as L — oo forsomea € (B, 1/d), (5.12)

but for the proof of Proposition 4.13 in Sect. 10.2 we will need to consider Ry, growing
asInL.Given A > Oand L € N, let

HL,A ={z€BL: £(z) > aL —2A} (5.13)

be the set of high exceedances of the field inside the box By, and put

Dra= |J Br()NBL. (5.14)

zellp A

The parameter A, providing the cutoff between the “high” and “small” values of the
field, will be later fixed to a suitably large value that depends only on the dimension d
and the parameter p.
Let €/, 4 denote the set of all connected components of Dy, _4, to be called islands.
For C € € 4, let
z¢ = argmax {£(z): z € C} (5.15)

be the point of highest potential within C. Since &(0) has a continuous law, z¢ is a.s.
well defined for all C € €, 4.

Next we gather some useful properties of €;, 4. The first result concerns a uniform
bound on the size of the islands. Hereafter we will say that an L-dependent event
occurs “almost surely eventually as L — o00” if there exists a.s. a (random) Ly € N
such that the event happens for all L > L. Similar language will be used for events
depending on other parameters (e.g. t).

Lemma 5.2 (Maximum size of the islands) For any A > 0, there exists n4 € N such
that, for any Ry, satisfying (5.11), a.s. eventually as L — o0, all C € € _4 satisfy
[CN I Al <nganddiam(C) < nasRp.

Proof See the proof of Lemma 6.6 in [7]. O
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Ford >0,A>0and L € N, let
¢ yg={CeCa: Ay >a —x -5} (5.16)

denote the set of islands with large principal eigenvalue. We call these relevant islands,
as their eigenvalue is close to the principal eigenvalue of By (cf. Lemma 6.8 of [7]).
In the proofs of our main theorems, é§ will be fixed at some small enough value so as
to satisfy the requirements of some intermediate results below.

The next lemma is crucial for the proof of Proposition 7.1, which implies Proposi-
tion 4.4 and is one of the main ingredients in the proof of Theorem 2.5. It allows us to
compare the principal eigenvalues of relevant islands to those of disjoint boxes.

Lemma 5.3 (Coarse-graining for local principal eigenvalues) Assume Ry satis-
fies (5.11) and (5.12). Let N; € N satisfy LP <« N; < L% as L — oo for some
0 < B <a <1 Forall A > 0 sufficiently large and § > 0 small enough, the
following holds true with probability tending to one as L — 00:
(i) EachC € QZ‘SL’A satisfies Ag) - kg) > %p In2.
(ii) For eachC € Q‘Z’A, there exists z € 2Ny + 1)Z¢ such that C C By, (z) C Br.
(iii) Every two distinct C,C’ € Q‘Z,A satisfy dist(C, C') > 4dNy.
(v) Letng = {1+ A/(4d)}_1. Forany z € 2N + DZ4 such that

By,(2) C BL and g >dL—x —3+ @)™ (5.17)
there exists a C € @’SLy 4 satisfying C C By, (z) and

Ay > ,\;;NL o — . (5.18)

Proof Let A, § be as in the statement of [7, Lemma 6.7]; we may assume that A >
x + 8. Items (i—iii) follow from items (1-33) in this lemma (the scales there do not
match ours exactly, but the proof is the same). For (iv), assume that L is so large that
2d(na)*Re=1 < (n4)RL, and note that A%;/L (z) — A >ay —2A.By [7, Theorem 2.1]

applied to D := By, (2) and (5.6), there exists C € € 4, C N By, (z) # ¥ such
that (5.18) holds. In particular, C € C‘SL‘A so, by item (ii), we have C C By, (z). O

Our next goal is to control the behavior of the potential inside relevant islands. This
will be important for the proofs of Propositions 4.9 and 4.11 as well as Lemma 5.8
below. First we will need two lemmas concerning lower and upper bounds for L.

Lemma 5.4 Forany A C Z¢ and any a € R, if)u(/l‘) >athen LoA(E—a—xa) > L
Proof This is a consequence of (5.9-5.10) and 1) (V +a) = A} (V) + a. O

Lemma 5.5 Let Ry, satisfy (5.11-5.12). For any A > 0,

limsup sup L€ —ay) <1 as. (5.19)

L—oo CeC€p 4
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Proof This is a consequence of Lemma 5.2 and a straightforward extension of Corol-
lary 2.12 in [14] with R substituted by n4 Ry . O

We will now combine the previous two lemmas with results from [7,11] and [12]
to obtain upper and lower bounds around a;, for the potential in relevant islands.

Lemma 5.6 (Upper bound for the potential inside relevant islands) Assume (5.11-
5.12). For all § € (0, 1) small enough, there exist A1 > 4d and vi € N such that, for
all A > 0, a.s. eventually as L — oo,

sup sup  £(z) <ap —2A;. (5.20)
C€¢(Z,A ZEC\BVI (ZC)

Proof We follow the proof of Lemma 4.8 of [7]. Fix § € (0, 1) small enough such
that
25 28
A= pln(eﬂ—e ﬂ)>4d>x+8 (5.21)

and let € N be such that 2dn} ~' < § with n,, defined via 4 := (1 + A/4d)~".
ForC e (’:‘SL,A, et

={xelC: &x)>aL —2A}. (5.22)
We claim that
diam S < 2(r + 1)|S]. (5.23)

Indeed, suppose by contradiction that (5.23) does not hold. Then § = S§; U S> with
dist(S1, 82) > 2(r+1). Let §7 := {x € C: dist(x, ;) <r},i =1, 2. Then, by (5.6),

,\g‘; v x“) = M”US, >y —2dny ! >a - x — 28 (5.24)
where for the first inequality we use Theorem 2.1 of [7] applied to D :=C (note that
)»8) A1 > ay; —2A; since C is assumed to be in QL Ao l€., suchthatk( ) > ar— X —9,
and by (5.21)), and the last inequality follows by our choice of 7. Supposmg without

loss of generality that A<1) > )‘(sl’) , by Lemma 5.4 and (5.24) we have

Y — 25
x—28)/p >e .

Ly (& —ay) = ™ (5.25)

By Lemma 5.5, we may suppose that L¢(§ —ap) < ¢28/P Then, for any x € 7,

E(x)—ar, 25 E(x)—ay,

Lsr(6 —ap) <Le( —ap)—e 7 =<er—e ¢ . (5.26)
Combining (5.25-5.26) we obtain
. o
g(x)—aLgpln(ep —e ﬂ)=—2A1, (5.27)
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contradicting x € S. Therefore, (5.23) holds. To conclude, note that

2 — 24y
er =Le(§ —ar)=e 7 IS]. (5.28)

Since z¢ € S by (5.5) and (5.21), the inequalities (5.23) and (5.28) imply (5.20) with
vi = [2(r 4 DeArtd/ey, =

Lemma 5.7 (Lower bound for the potential in relevant islands) Suppose Ry, is such

that (5.11-5.12) hold. For any v € N, there exist A*,§ > 0 such that, for all A > 0,
the following is true a.s. eventually as L — oo:

inf inf  &(z) >ap —2A*. (5.29)

Ceay , z€Bulze)

Proof Recall the definition of M; in (2.17). We note that [12, Lemma 3.2(i)] holds
for M in place of M, as can be inferred from the proof. In particular, M7 # ) and,
by Lemma 3.1 therein, all V € ./\/l; satisfy £(V) = 1. On the other hand, by (3.21)
in [12] together with Theorem 2 and Proposition 3 of [11] (see also (5.44) therein),

A*:= — inf inf V(x) < oc0. (5.30)
VeMj;xer

Fix, by (3.6) in [12], § > 0 small enough such that

V e[—o0, O]Zd, 0 € argmax(V),
= AN(V) < —x —28.

LV) <1, inf sup [V(x) = V(x)| > A*
VGM* X€B,
(5.31)
FixC € 6‘2’ 4 and define
« . E(x+ze)—ap—8 ifx+zeelC,
Vi) = { —00 otherwise. (532)

By Lemma 5.1, V* € [—o0, O)Zd a.s. eventually as L — oo, and 0 € argmax(V*) by
the definition of z¢. Furthermore, L(V*) = Ec (¢ —ay — §) which s a.s. smaller than
1 for large L by Lemma 5.5. Now, since C € €L a-wehave AV(V¥) = A0 —a, —6 >

—x — 24, and thus the conclusion follows from (5.30-5.31). m|

We end this subsection with a comparison between the islands and capitals with
large local eigenvalues, which will be crucial in the proof of Proposition 7.1 below.

Lemma 5.8 Assume (5.11-5.12). There exists a constant ¢ > 0 such that, for all
A > 0 large enough and § > 0 small enough, the following occurs with probability
tending to one as L — oo:

() IfC e Q:L o thenzgc € €, (In L)*/? < 0zc < Rp and

0<2Y =% (ze) <e 1D, (5.33)
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(ii) For all z € € such that B, (z) C By and )L(g(z) > day, — x — 9, there exists
C e , suchthat z = z¢ and (5.33) holds.

Proof Let A, 8 > 0 satisfy the hypotheses of Lemmas 5.3 and 5.6, and let A; > 0
and v; € N be as in Lemma 5.6. We may assume that 2A > A;. For (i), note that,
if C € Ci’A, then (In L)</? + v; < 0zc < Maxgep, 0; < Ry for all L large enough
by (4.2), (5.2), (5.5) and (5.11), and thus z¢ € ¥. By Lemma 5.6, the set

[x eC: dist(x, [T, a,) < (InL)*/?} (5.34)

is contained in Bch (z¢) and thus (5.33) follows by Theorem 2.1 of [7] with ¢] :=
In(1+4 A1/(4d)).

For (ii), note that, again by (5.5), §(z) > ar, — A and thus z € I1y 4. Letting
C € €1 4 such that z € C, note that B, (z) C C since o, < Ry, and thus C € C‘Z,A.
Since o; > v1, z = z¢ by Lemma 5.6, and (5.33) follows by (). O

5.3 Connectivity properties of the potential field

In this section, we provide bounds on the number of points in which the potential
achieves high values inside connected sets of the lattice. These will be important in
the proof of Proposition 6.1. We will use the following Chernoff bound:

Lemma 5.9 Let Bin(p, n) denote a Binomial random variable with parameters p and
n. Then

P(Bin(p.n) > u) < exp {—u <ln % - 1)} forallu > 0. (5.35)

Proof Write E [exp{otBin(p, n)}] = {14+ pE¥—-DH}" < enre’ | apply Markov’s
inequality and optimize over @ > 0. O

Our first lemma reads as follows.

Lemma 5.10 (Number of intermediate peaks of the potential) For each B € (0, 1),
there exists ¢ € (0, 8/2) such that, a.s. eventually as L — 00, for all finite connected
subsets A C 7% with AN By # @ and |A| > (In L)#,

. ) —~ | Al
Np:=|{ze A: E(z) > (1 —e)ar}| < nLy" (5.36)
Proof Let e € (0, 8/2) be small enough so that, for all L large enough,
R 8
pL = Prob (£(0) > (1 — e)aL) < exp {—(ln '-% } . (5.37)

This is possible by e.g. Lemma 6.1 in [7]. Now fix a point x € By and n € N. The
number of connected subsets A C Z? with |A| = n and x € A is at most " for
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some cg > 0 independent of x (see e.g. [10], Section 4.2). For such a A, the random
variable N 4 has a Bin(p,, n)-distribution. Using (5.35) and a union bound, we obtain

Prob(El connected A > x, |Al=nand Ny > n/(lnL)s)

-8 _, l4+elnp L
< exp {—n ((ln L)y 2% —c¢y— W)} . (5.38)

When L is large enough, the expression in the large parentheses above is at least
%(ln L)!=P/2=¢ Summing over n > (In L)? and x € By, we get

p 3 connected A such that A N By # @,
|A] > (In L)’3 and (5.36) does not hold

p
<L exp {—cz(ln L)1+7_8} (5.39)

for some positive constants ¢y, ¢2. By our choice of ¢, (5.39) is summable on L, so
the conclusion follows from the Borel-Cantelli lemma. O

A similar computation bounds the number of high exceedances of the potential.

Lemma 5.11 (Number of high exceedances of the potential) For each A > 0, there
is a constant C > 1 such that, for all 5 € (0, 1), the following holds a.s. eventually
as L — oo: For all finite connected subsets A C Z¢ with A N By # @ and |A| >

C(In L)? it holds that
| Al
AN 4| < nL? (5.40)

Proof Proceed as for Lemma 5.10 first noting that, by Lemma 6.1 in [7],
pL := Prob (O € HL,A) <L7¢ 5.41)

for some ¢ € (0, 1) and all large enough L, and then taking C > 2(d + 1)/e¢. ]

5.4 Spectral bounds

Here we state some spectral bounds for the Feynman—Kac formula. The results in this

section are deterministic, i.e., they hold for any fixed choice of potential £ e RZ’,

Fix a finite connected subset A C Zd, and let H 4 denote the Anderson Hamiltonian
in A with zero Dirichlet boundary conditions, as described after (1.7). For z € A, let
u’, be the positive solution of

oru(x,t) = Hau(x, t), xe A, t>0,

u(x,0) =1,(x), xX €A, (5-42)
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and set U5 (1) :== )
tion

vea U (x, 7). The solution admits the Feynman—Kac representa-

t
uy(x, 1) =E,; |:exp {/0 S(Xs)ds} Htpe > 1, X, = x}:| (5.43)

where T ¢ is as in (4.21). It also admits the spectral representation

[A]
®
, P x
uby(x, 1) = E e 1 ¢ ()9 (x), (5.44)
k=1
where 1) > A7 > ... > 20" and ¢'), 07, ..., ¢} are respectively the eigen-

values and corresponding orthonormal eigenfunctions of H,4. One may exploit these
representations to obtain bounds for one in terms of the other, as shown by the follow-
ing lemma.

Lemma 5.12 (Bounds on the solution) For any z € A and any t > 0,

(1) t
e*a ¢(/;) (Z)z <E I:efo §X0dsy {rac >t,Xz=Z}]

! @)
S ]EZ I:efo g(XS)ds1{TAC>t}] S el}uA |A|3/2 . (545)

Proof The first and last inequalities follow directly from (5.43-5.44); the middle
inequality is elementary. O

The second lemma bounds the Feynman—Kac formula integrated up to the exit time
of the walk from the underlying domain:

Lemma 5.13 (Mass up to an exit time) For any z € A and y > A",

2 | exp EXg)—p)dsp | <1+ —— (5.46)
0

v =y
Proof See Lemma 4.2 in [12]. O
The next lemma is a well-known representation for the principal eigenfunction:

Lemma 5.14 Foranyx,y € A,

m =E, [exp {/T’Y (EXw) — 1Y) du} 1{z, < w}} . (5.47)
PN () 0
Proof See e.g. Proposition 3.3 in [22]. O

Our last lemma bounds the Feynman—Kac formula when the random walk is
restricted to hit a subset, and is the principal ingredient in the proof of Proposition 4.10:
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Lemma 5.15 (Bound by principal eigenfunction) For allt > 0, all z, x € A and all
I c A

E, [efOté(XS)dH{Xt =X, Tpc > > Tp}]

= U509 sup {9 00|} (548)
yel’

Proof We adapt the proof of Theorem 4.1 of [12]. Fix z € Z¢ and, for x € Z¢ and
t > 0, denote

wx, 1) == E, [eféf(xﬂdﬁ{xt — T > 1> zp}] . (5.49)

Note that, by invariance under time reversal, (5.49) is equal to the left-hand side
of (5.48). It will suffice to show that, forany 0 <s <tandy e I,

t—s _a M -2
E, [efo 5<Xu>d“1{X,,J:z,w,_s}]fe Al | wiy. o). (5.50)

Indeed, writing f(y, s) for the quantity on the left-hand side, by the strong Markov
property, w(x, t) equals

3 E, [efof SXOdA ez F O ry)]

yel'

Ty 2530 du
= 3 160 0wy, NE, [ef° (rex =27 1{%@}}

yel

= ¢V Y V| wi o

yel’

<oy @ s [ley 0| Ui, (5.51)
yel’

where in the second line we used (5.50) and, in the last one, we invoked (5.47) and
one more time applied the invariance under time reversal.
To prove (5.50), restrict to Xy = y inside the expectation defining w(y, t) to obtain

s t—s
w(y’ t) 2 ]Ey I:ef() S(X“)du1{XS:y,TAC>S}] Ey I:e/;) g(xu)dudl{X,,Szz,rAc>t—s}i| .

(5.52)
By Lemma 5.12,
E. [o/s €(Xuduy 2Oy 2
y | € (Xy=y,Tpc>s}| = € |¢A 2] (5.53)
implying (5.50) as desired. O
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The proof above has the following corollary, which will be used in Sect. 11.

Corollary 1 For I' C A, let w(x, t) be defined as in (5.49). Then

o (D —
w(x, t —s) < e g% (x) sup {|¢(/;)(y)| 5} Z w,t), xe€A, 0<s<t.
yel’

yel’
(5.54)
Proof The next-to-last inequality in (5.51) with ¢ substituted by ¢ — s yields
-3
w,t =) < ¢ 0 sup {640 7] o werr - o). (5.55)
yel’ yel
Now use (5.50), noting that w(y, ¢ — s) is not larger than its left-hand side. O

6 Path expansions

In this section, we develop a setup to bound the contribution of certain specific classes
of random walk paths to the Feynman—Kac formula. This leads to Propositions 6.1—
6.2 below, which are the key to the proof of Propositions 4.8—4.9 in Sect. 8, and
Propositions 4.12—4.13 in Sect. 10.

6.1 Key propositions

To start, we define various sets of nearest-neighbor paths in Z¢ as follows. For £ € Ny
and subsets A, A’ C Z4, define

o€ A, e A,
Py(A, A = (n0, ..., 70) € (ZHT: . (6.1)
|mi =il =1V1<i<{

and set
P2(A, A= 2o, A,
£eNy
Py = 2y, 7). 6.2)
P = 278, 7%.

When A or A’ consists of a single point, we write x instead of {x}. If 7 € £, we set
|| := £. We write supp(r) := {0, ..., 7T|z|} to denote the set of points visited by 7.

Let X = (X;);>0 be a continuous-time simple symmetric random walk with total
jump rate 2d; this is the process that “drives” the Feynman—Kac formula. We denote
by (Tn)nen, the sequence of its jump times (with 7p := 0). For £ € Ny, let 7 (X) :=
(Xo, ..., X1,) be the path in &, consisting of the first £ steps of X and, for ¢ > 0, let

7(Xos) = 7(X), where ¢, € Ny satisfies Ty, <t < Ty, +1, (6.3)
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denote the path in & consisting of all the steps taken by X between times 0 and 7.
Form ¢ #,L € Nand A > 0, we define

Ar.A(T) :=sup {AS): CeC€pa, supp(m) NC NI 4 # 0}, (6.4)

with the convention sup ) = —oo. This is the largest principal eigenvalue among the
components of €, 4 that have a point of high exceedance visited by the path.
The main results of this section are the following two propositions:

Proposition 6.1 Let Ry satisfy (5.11-5.12). For any A > 0, there exists a constant
ca > 0 such that the following holds a.s. eventually as L — oo: For each x € Bp,
each N ¢ P(x, 7% satisfying supp() C By and maxi<¢<|z||m¢ — x| > In L for
all m € N, each assignment w1 — (Y, 2z) € R X 74 such that

Ve = AL A(m) V@ — A) +e Rt (6.5)
and
Zy € supp(w) U U C (6.6)
CECL,A:

supp(m )NCNII L, A #0

are true for allm € N, and all t > 0, we have

InE, [efi X091 {7(Xo,) € N}] = sup {1y = (ns@L) = ea) 1z —x1}. 6.7)

TE

We note that, while we assume (5.11-5.12) in most of the paper, the proof of
Proposition 4.13 will require us to work without (5.12). In this setting, we have:

Proposition 6.2 Fix A > 0 and let ny € N as in Lemma 5.2. For any R € N
that obeys (5.11) and any ¥ € N such that v < Inz L as L — oo, the following
holds a.s. eventually as L — oo: For each x € By, each N' C P (x, Z¢) satisfying
supp(rr) C By and maxi<¢<|r| |7 — x| = (na + DRy forall w € N, each w +—
yr € R satisfying

Yo = AL AV @ —A) +e VR vg e N, (6.8)
and all t > 0,
InE, [eféé(xﬂdﬁ [7(Xo,) € /\/}] <tsupyr— LR InsL. (69)
TTE,

The key to the proof of Propositions 6.1-6.2 is Lemma 6.5 below, whose proof in
turn depends on intermediate results obtained in the next two sections. We emphasize

that all of these results are deterministic, i.e., they hold for any fixed potential £ RZ’.
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6.2 Mass of the solution along excursions

The first step to control the contribution of a path to the mass is to control the contri-
bution of excursions outside of [Ty 4 [recall (5.13)]. A useful result is the following:

Lemma 6.3 (Path evaluation) For any ¢ € Ny, any 1 € &y and any y satisfying
y > max; <7 §(m;) — 2d,

-1

7O(X) = ni| =11 o Md (6.10)

Ty
Er, [exp{ | EXy) — V)ds} 2d +y — E(my)
i=0 !

Proof The left-hand side of (6.10) can be directly evaluated using the fact that 7
is the sum of ¢ i.i.d. Exp(2d) random variables that are independent of 7 (X). The
condition on y ensures that all integrals are finite. O

Forapathm € #, L € Nand ¢ € (0, 1), we write

MES = |{x e {mo. ... -1} ) = (1 —e)aL}

e

, (6.11)

with the interpretation that Mf; ¢ = 0if || = 0. Then we have:

Lemma 6.4 (Mass of excursions) For any A, & > 0, there exist c > 0 and Ly € N
such that, for all L > Lo, all y > dp — A and all T € & satisfying 7w; & I 4 for
alli < £ :=|m|,

Ty
Exr [exp{ A EXy) — V)dS}

T79(X) = n] < gleles LMz (6.12)

where g4 = (1 + A/2d)~".
Note that the statement of Lemma 6.4 allows for 7y € I, 4.

Proof By our assumptions on 7 and y, we can use Lemma 6.3. Splitting the product

on the right-hand side of (6.10) according to whether & (7r;) is larger than (1 — ¢)ar

or not, and using that & (7r;) < ay —2A foralli < ||, we bound the left-hand side of
(6.12) by

¢ SZIL —A

qda |:CIA “od

For large L, ay > %,o Iny L and the number within square brackets in (6.13) exceeds

gaep(Ing L)/5d > 1. Since |{i < |7|: &(mi) < (1 —&)ar}| > M#’s, (6.12) holds

with ¢ 1= In(1 Vv 5d(qaep) ™). o

—i<t: g(rp)=(1—e)ar}l
i| (6.13)

6.3 Equivalence classes of paths
Here we develop a setup similar as in Section 6.3 of [22]. The idea is to categorize

paths 7 € & according to their excursions between 17, 4 and Dz 4 [ef. (5.13-5.14)]
and then apply the results from Sects. 5.4 and 6.2. Note that dist(/1, 4, DZ, 4) = Rp.
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First we discuss the concatenation of paths. If 7 and 7’ are two paths in & such
that ;| = 71(/), we define their concatenation as

Ton = (no,...,n|n|,7t{,...,7r|’n/|)e@. (6.14)
Note that |7 ont’| = |7| 4 |7'|. If w5 | # 7, we can still define the shifted concatena-
tionof w andn" aswont’ where 7' 1= (T|x|, Tjp|+ 7] =7}, ..., T|x| +n|/n,| —7;). The

shifted concatenation of multiple paths is then defined inductively via associativity.

If a path m € & intersects [1y 4, then it can be decomposed into an initial path,
a sequence of excursions between I1; 4 and Dz’ 4> and a terminal path. Explicitly,
there exists m, € N such that

T=7PoAV o ox™) oqgt) o, (6.15)
where the paths in (6.15) satisfy

7V e @@ Mpa) and 7V ¢Mpa, 0<i<|xV],
70 e 2D 4. ML a) and 7 ¢Mpa, 0<i<|7®], 2 <k <mg,

70 e P(Ipa.Df o) and 7Y €Dpa, 0<i<|2%|, 1 <k=<myz—1,

70 e P(Mpa, 2% and #"e Dpa, 0<i<|7"|,
(6.16)
while

e PD§ 47, T ¢ M aVi=0 if7" € P 4. Df 4, 6.17)

79 € Dp A, 7| =0 otherwise. ’

Note that the decomposition (6.15-6.17) is unique, and that the paths 7, 7“7 and 7

can have zero length. If 77 is contained in By, so are all the paths in the decomposition.
For L € Nand ¢ > 0, whenever supp(zw) N [Ty, 4o # ¥, we define

my My
ne= Y 70+ 17 and  kEe =Y MES 4+ MES (6.18)
i=1 i=1

to be respectively the total time spent in exterior excursions and the sum of the numbers
of moderately low points of the potential visited by exterior excursions (excluding their

last point). In the case when supp(;r) N [T 4 = ¥, we set my := 0, ny := || and
k,’;’s = M#’g. Recall from (6.4) that, in this case, Ap 4(7) = —o0.

We say that , 7’ € & are equivalent, written 7’ ~ 7, if my = myp, 7/0 = 7@
foralli = 1,....myand 7’ = 7 if 79 € Di’A. If 7/ ~ m, then ny/, kf;;s and

AL.A (") are all equal to the counterparts for 7.
To state our key lemma, we define, for m, n € Ny,

(@(m,n) — {JT c t@: My =M, Ny = }’l} s (6.19)
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and we denote by
Cr.a=max{|C|: C e €L 4} (6.20)

the maximal size of the islands in €7 4. We then have:

Lemma 6.5 Forany A, ¢ > 0, there existc > 0and Lo € N such that, forall L > Ly,
allm,n € Ny, all w € 22" with supp(rr) C Br, ally > hp a(w) Vv (@, — A) and
allt > 0,

1
Ex [0 COD8 1 7(Xg,) ~ 7))

Tm> 2dC " n Le
3/2) {m>0} LA (CIA) (c—In3 L)ky
<(C 14+ — — . 6.21
= ( L.A * Yy —ArL.a(m) 2d) ©20

Proof Fix A,e > 0 andletc > 0, Ly € N be as given by Lemma 6.4. For 0 < s <

(Xy

t
t <oo,setl! = els €Xw=ydu_oyy strategy is to prove the claim by induction on m.
- (1)

Suppose firstthatm = 1,let€ := |7"|and setz := 77, . There are two possibilities:
either mp belongs to Dy, 4 or not. Focussing first on the case 79 € Dy 4, which in
particular implies || = 0, the strong Markov property yields

T,
Ex [161 {ﬂ(XO,r)N”}] = Er, [lo£1i1{n<f><x>=ﬁ<l>}1 {Ti<t}1{Xs+T£€DL,AVSG[OJ—TZ]}:I

. s
=En 10‘31{n(e>(x)=ﬁ<1>}1{Te<z} E: | I A1{, >t s]
Dia”T
s s=Ty

6.22)

Since z € I 4, we may write C, to denote the island in €7 4 containing z. As
Tps , = TCe P.-a.s., Lemma 5.12 and our hypothesis on y bound the inner expectation

in (6.22) by |C.|3/2. Applying Lemma 6.4, we further bound (6.22) by

32 (4A\Y (c—Iny LyM=E
(ARG [IOT”{W)(X):;%U)}] =c)a (Z_d) S (6.23)

thus proving (6.21) inthe case m = 1, mp € Dy 4.
Assume next x := 7y € DZ,A. Abbreviating o :=inf{s > T;: X; ¢ Dr A}, we
can then bound

Eﬂo [161 {H(XO")NH}]
< Eng [I§ 10 )= o<y (B [Ig Vmxomp=01]) =g ] - (6:24)

Let ¢, := |7| and note that, since 7y, ¢ I1;, 4, by the hypothesis on y we have

— T Ly . L.
E, [16 s1{ﬂ(X0H)=ﬁ}] <E, [10@*1{71@*)()():,-,}] < (Z_;) ele=s ME (6 55
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by Lemma 6.4. On the other hand, by Lemmas 5.13 and 6.4,

12
En'o [181{77(0()():;[(1)}] = Eno I:IOTH{T[(@)(X):;[(I)}] E, I:IOCL]

2d Cp a gaNt (c—inyLym%¢
< (14 2E=LA ) (9A DM (626
_( +V—)~L,A(7T)><2d) © (0:20)

Putting together (6.24-6.26), we finish the proof of the case m = 1.

By induction, assume now that the statement is proven for some fixed m > 1,
and let 7 € Z2™tLn) Define 7/ == 7@ 0 A® 0 -+ 0 ™D 6 F#™D o 7. Then
7' e 2mn) where n = |7 V] + 1/, and kLf = ki;8 + M;glg). Setting £ := |7 V|,

o :=inf{s > Ty: X; ¢ D a}and x := yvr(()z), we get

Exr, [161 {n(xo.,)w}]

< Eg |:I(()71{7r([)(X):ﬁ(l),0<t} (Ex I:Ié_‘w {”(XO«’_“)NN/}]>S=U:| ,  (6.27)

from which (6.21) follows using the induction hypothesis and (6.26). The case m = 0
follows from equation (6.25) after substituting 7 by 7w and  — s by 7. O

6.4 Proof of Propositions 6.1-6.2

We are now ready to present the proofs of the above key propositions.

Proof of Proposition 6.2 The proofis based on Lemma 6.5 and results from Sects. 5.2—
5.3. Fix A > 0 and, for 8 as in (5.11), take ¢ € (0, 8/2) as in Lemma 5.10. Let
Ly € N be as given by Lemma 6.5 and take L > L so large that the conclusions of
Lemmas 5.10 and 5.2 hold. Fix x € By . Recall the definition of &™) Noting that
the relation ~ is an equivalence relation in 22" define

%m’”) = {equivalence classes of the paths in & (x, Z4H N 32(’"’")} . (6.28)
We first claim that, for a constant ¢; € N, a.s. eventually as L — oo,

’%m,n) < (ClRi)m(Zd)n Vm,n € Ny. (6.29)

Indeed, (6.29) is clear if m = 0. To prove it in the case m > 1, write, for A C 74,
0A :={z ¢ A: dist(z, A) = 1}. By Lemma 5.2, there is a ¢y € N such that

[0C] < 2d|C| < CORZ VC e €1 4 as.eventually as L — oo. (6.30)
We then define a map @: P2 — P, (x,79) x {1,..., coRY + 1) as follows:

For each A C Z4 with 1 < |A] < coRi, fix an injection f4: A — {I, ...,C()Ri}.
Given a path 7 € 2" N P(x, 7%, decompose 7 as in (6.15), and denote by 7
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the shifted concatenation, as defined after (6.14), of #", ..., 7™, 7. Note that, for
each 2 < k < m, the starting point ﬁ(()k) lies in dCy for some C;y € € 4, while
70 = 7o € 9C UC for some C € Cr. 4. Thus we may set

(7, focs GBS o fac, GF§"), coRY + 1) if 79 € C C Dy a,
(7, facs GEg))s -+ fac, (R, fye(@0))  if o € 8C C D§ .
(6.31)
As is readily checked, @ (r) depends only on the equivalence class of 7 and, when
restricted to equivalence classes, @ is injective. Thus (6.29) follows with the choice,
e.g., c1 = 2cp.
Take now N C P (x, Z%) as in the statement, and set

D () = {

N1 . — fequivalence classes of paths in AN 2"} ¢ %m’"). (6.32)

Choose for each M € N1 g representative 7w ¢ € M and use (6.29) to write

E, [efOt §(Xs)ds 4 {n(Xo,,)eN}] = Z Z E, [ef(; S(XS)dS‘I{Jr(Xo_,)NJrM}]

m,neNy Me./iv/’(m,n)
t
< Z (Cl Rz)m (2d)n sup Ex I:ef() %'(Xs)ds1 {JT(Xo_t)"’T[}] s (633)

m,neNy meNmm

where we use the convention sup @ = 0. For fixed 7 € N'"™ by (6.5) we may
apply (6.21), Lemma 5.2 and (5.11) to obtain, for all L large enough,

(e R Q)" [l 50001 ]

m €
<elVn (RideﬁLRL) ql'f‘e("_lr13 Lokz . (6.34)
We now claim that, for large enough L,
Kotz (=D v R 1= anp)™ = Ry (6.35)

Indeed, whenm = 0, | supp(r)| > maxj<¢<|z| |m¢ —x| = (na+1)R; by assumption.
Whenm > 2, |supp(x®)| > Ry forall2 < i < m.Whenm = 1, there are two cases:
if supp(7") N D} 4 # ¥, then | supp(s")| > Ry, while, if supp(7") C Dy 4, then
| supp()| > Ry by Lemma 5.2. Thus (6.35) holds by (6.18), (6.11) and Lemma 5.10.
Using (6.35), (5.11) and ¥, < In3 L, we may further bound (6.34) by

1 (m—1)v1
I:Ride&?/_ RL e—(ZﬁL+§)RL] q:}‘etyﬂ e(c+1+219L71n3 Lykk®

Ry (m=Dv1 &
< (e— 3L) " qz et)/ﬂ e(c+1+21?1‘71n3 L)k;% . (636)
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Inserting this back into (6.33), we obtain

E, [efo’ E(X)ds 4 {n(xo_,)e/\/}]

< sup exp {ty,, +(c+1+29; —In3 L) kf;"g} ) (6.37)
TE
Now (6.9) follows from (6.37), (6.35), (5.11) and ¥; < In3 L. O

Proof of Proposition 6.1 Note that, for large L, the assumptions of Proposition 6.1
imply those of Proposition 6.2 with ©};, = 1, and thus we may use (6.37). We proceed to
bound k#*g using assumption (5.12). Recall that we take S asin (5.11)and ¢ € (0, 8/2)
asin Lemma 5.10. Let C > 1 be asin Lemma 5.11 and, for o € (0, 1/d) asin (5.12),
take § € (ad, 1) and set ¢’ := § — ad > 0. We assume that L is so large that the
conclusions of Lemma 5.10 (with B,e as above) and Lemma 5.11 (with § as above)
are in place.
Note that, by Lemma 5.2, there exists a constant ¢; € (0, o) such that

k€ > ME*® — |supp(rr) N Ty 4] c2RY. (6.38)

By our assumptions on A, we have |supp(rr)| > InL > C(InL)? for large L. By
Lemma 5.11,

[supp()| _ [supp(m)]
supp(w) N IT < < 6.39
[supp(r) N T2, < =3 755 < RT(n L)? (6.39)

by (5.12). By Lemma 5.10, M#’S + 1 > | supp(m)|{1 — (In L)~*}. Thus
kL > |supp(m)| {1 —(nL)"' —(nL)" —cx(n L)—e’} . (6:40)

Now, by Lemma 5.2 and (6.6), | supp(;r)| > |zr — x| — na Ry ; this in conjunction
with | supp(sr)| > In L implies

|supp()| > |z — x| (1 - ”lfr‘llzL) . (6.41)

From (6.40-6.41) and (5.12) we obtain
(c+3—1In3L)kL® < (¢ +4 —1n3(dL)) |z — x| (6.42)
for large enough L, which together with (6.37) (with 97 := 1) implies (6.7). m]

7 Analysis of the cost functional

In this section, we identify the order statistics of ¥; and give the proofs of Theorem 2.6
and Propositions 4.4-4.5. Motivated by Proposition 6.1 and Lemma 5.8, we define the
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following generalization of the cost functional: For any # > 0 and any ¢ € R, let

Ve =200~ (i1l —o) L e, 1)

where )fﬁ(z) is as in (4.4). Arguing as for (4.6), we can see that, almost surely,
|{Ze‘5: lI/,‘C(Z)>77}| <oo forallt > 0,5 €eR, (7.2)

and thus we may define l1/<k) and Z; *) analogously to the corresponding objects for ¥;.
Let us now identify the scale a in Theorem 2.5. Noting that r; is strictly increasing
for large enough 7, we may take t +— L € N such that L7 = L;. Set N; :=

L%«/ pt/d], let ﬁ, := Ny and define g, to be the smallest positive number satisfying

Int)(Iny 1)1 d/2
Prob (,\;;%t - a,) _ <M> _ (1.3)

Such an a; exists (for ¢ large enough) since the principal Dirichlet eigenvalue of H in
By, is continuously distributed. Moreover, since ﬁt is non-decreasing and the right-
hand side of (7.3) is eventually non-increasing, by (5.5) we can take a; non-decreasing
as well.

Note that, as t — o0,

d ~
LY~ —t(nt)(In2t)Inz¢ and 2N, ~ /t(Int)(Inp 7) In3 2. (7.4)
1

An important result of [7] (Theorem 2.4 therein) is that, for any 6 € R,

d
t
lim = Prob (M5, > @ +0d) =<, (7.5)

t—00 ( )d

where d; is as in (2.6). A strengthened version of this statement [more precisely,
(7.20) with ?, (0) asin (7.21) below] will allow us to identify the order statistics of ¥; ..
Together with Theorem 2.3 and Lemma 6.8 in [7], (7.5) implies thata, = a; — x +o(1).
In particular, a; = (o + o(1)) Iny 7.

For0 <a <b < o0, c € Rand k € N, we define the events

(k) . : (i) @i+1) (i) @i+1)
gz ab,c = {mln (Wal c ™ lI/alJrc ) (lpbt,c - lI/htjrc ) > d,e,}
n () fan+dig >0 >0 > a, —deg} (76)
selat,bt] ’
N m {r,f, < m1n |Z(’) | < max, VAR r,gt}
s€lat,bt] ==

When ¢ = 0 and/or k = 1, we omit them in the notation.
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For a € (0, 00), let C([a, 00), R"), resp. D([a, 00), R™), denote the set of contin-
uous, resp. cadlag, functions from [a, 0o) to R”, both equipped with the Skorohod
topology (i.e., the J; topology). The following result is the main objective of this
section:

Proposition 7.1 Forallc € R, allk € N and all a > 0, the k-component stochastic
process

’

(i) € (@) (i)
0 lIj@t,c — ar A (ZQI,C) — ar ZQt,c
drt It

) , 0 € la, 0c0), 7.7
dr, i=1,...k

=1,...,

belongs a.s. to (C([a, 00), R) x D([a, 00), R) x D([a, 00), RINYK. Moreover, ast —
00, this process converges in distribution with respect to the Skorohod topology on
D ([a, 0), (R x R x Rd)k) to the process

6> ((E;”,Z;"j;”) e (W;"),Zﬁf)jg))), 0 € [a, 00), (7.8)
=0 O 150 —) Z0\k .
where Wy = Ay — gl|Zy | and (Ay', Zy );_, are the k first ordered maximizers of
the functional Yo(A,z)” = A — |§—| over the points (A, z) of a Poisson point process
on R x RY with intensity e *d\ ® dz, chosen in such a way that Eg) is continuous

and Zg), 7(9[ : cadlag. In particular, the probability of the event Et(k:z p.c defined in (7.6)

converges to 1 ast — oo and, for any fixed 0 € (0, 00), the random vector

(1) 1 (k) (k)
lI/(-)t,c — dar, Z(—)t,c lIlet,c — dar ZGt,c
—_—, vy | ——, (7.9)
dr, It dr, It

converges in law to a random vector in (R x R®)* with distribution given by

(QL\ZI |+m+$|Zk|+‘//1+"'+1/fk+(20)de*‘ﬁk>

k
Wy > > e [[dvi ®dzi.  (7.10)

i=1
From this we immediately get:

Proof of Proposition 4.4 This follows directly from Proposition 7.1, the definitions
(2.6) and the fact thata, ~ plIny t ast — oo. O

With the help of the results from Sect. 5, we also obtain:

Proof of Proposition 4.2 In light of Proposition 7.1, Lemma 5.8, Lemma 5.3(iii), and
Lemmas 5.1-5.2, the result follows by setting

% = {z €% By.(2) C B, 24 (2) > ay, — dtgt} (7.11)
and noting that )f‘”p(z) > W (z),ar, =dr, — x +o(l) and d;g; = o(1). O
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Note that the part of Theorem 2.5 concerning (Z;);~¢ already follows from Propo-
sition 7.1. Another useful consequence is the following comparison between the
quantities ¥; . and ¥;:

Lemma 7.2 Foranyc € Randany0 <a <b < 00, on 5;’2;,17 N 5;?;117’6 we have
sup | sup ¥.c(2) — U] = o(dibyey), (7.12)
s€lat,bt]' z#Zs
and
sup |y, (Zy) — ¥ | = od;byey). (7.13)
s€lat,bt]
ast — 0o.

Proof The inner supremum in (7.12) is attained at Z§l>c if Z§1)C # Zg, and at Z;Z)C if
) : (1) @) @) @) @)
Zsoe = Zg. Since 1y f; < |Zse| V | Zsel V| Z5”| < rig: on Et’a’b N El,a,b,c’ we can
write
It 8t 2 2 2
- |C|_t = lps,c(Z; )) - l]/; ) =< sup lpx,c(Z) - l[/s( )
a I#£Zs

< sup {%,c(z)—%(z)}<|c|%. (7.14)

e fe<lz|l<rig:

Hence (7.12) follows by using (2.6) and (4.14). The bound (7.13) is obtained analo-
gously. O

The proof of Proposition 7.1 is based on a point process approach, which we describe
next. This approach will also allow us to prove Proposition 4.5 and Theorem 2.6.

7.1 A point process approach

The key to the proofs of Proposition 7.1 and Theorem 2.6 is the convergence of the
set {()\C‘”ﬂ(z), 7): z € ¥} after suitable rescaling to (the support of) a Poisson point
process. We follow the setup and notation of [24] for point processes; some arguments
are for brevity relegated to the appendices.

Since we will need to apply the stated Poisson convergence to infer convergence
of certain non-local minimizing functions, we will need to compactify some sets of
R x R¥ as follows. Embed R x R? in a locally compact Polish space & such that the
set

H,’;::{(x,z)eRde:,\>%+n}c@ (7.15)

is relatively compact for any n € R and 6 € (0, 0o) and, for each compact set K C €&,
there exist @ > 0,n € R such that K N (R x RY) ¢ Hg. A suitable choice of € is
given in Appendix 13. Note that a Poisson point process in R x R with intensity
e *dA ® dz can be extended to € as the latter measure is a Radon measure on €.
Denote by .#p = ./p (&) the set of point measures (i.e., Ng-valued Radon measures)
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on €. We equip .#p with the topology of vague convergence, and let supp(P) denote
the support of P € .#p.
Let us denote

26 (2) —a

P = Z 8(Y;(Z), z/t) where Y;(z) 1= d
t

€€

(7.16)

Our convergence result for P; reads as follows.

Proposition 7.3 The point process P; defined in (7.16) belongs almost surely to .#p,
and converges in distribution as t — 00 with respect to the vague topology of Mp to
a Poisson point process supported in R x R¢ C & with intensity measure e *di ® dz.

The proof of the Proposition 7.3 relies on the following lemma:

Lemma 7.4 Let i be a Radon measure on R such that u ® dz is a Radon measure
on €. Let ﬁ, € Ng such that ﬁ, K tast — oo, and assume that, for each t > 0,
(?t (Z))ze(zﬁ,+1)zd is a collection of i.i.d. real-valued random variables satisfying the
following two conditions:

(i) Foreachs € R,

d

t ~
im ——Prob (Y;(0) > s) = u(s, 00). 7.17
Jim, 2 Prob (710) = 5) = a(s, 00) (7.17)
(i) Foreach > 0,n € R,
lim lim sup > Prob (2 0) > Ixl n) =0. (7.18)
n—00 ¢ o0 . ot
Xe@N+1DZ4: |x|>tn
Then, for each t > 0 large enough, the point process
Poi= D G (7.19)

xe@N,+1)z4

belongs almost surely to .#p, and converges in distribution ast — 0o with respect to
the vague topology of .y to a Poisson point process in R x RY C & with intensity
measure (4 @ dz.

Proof Note first that, by (7.18), when ¢ is large enough, the expected value of ﬁ, (Hg)
is finite for all & > 0, n € R, and hence ﬁ € #p. The claimed convergence may be
proved by a straightforward generalization of Proposition 3.21 of [24], with [0, co)
therein substituted by R? and E therein substituted by R (see also [28, Lemma 2.4]).
Indeed, we only need to verify (3.20) and (3.21) in [24]. For (3.21), we note that, for
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any compact K C &, there exists 7 € R such that K N (R x RY) C [, o0) x R¢, and
thus (3.21) follows from (7.17). For (3.20), it suffices to prove that

Z Prob (f’\,(O) € ) ® 8x/1(dz) byl ® dz vaguelyin .#p. (7.20)
xe@N,+1)z4

Indeed, by (7.17), the convergence in (7.20) holds when evaluated on functions with
support contained in the closure of a set of the form [—n, c0) x [—n, n]? C & with
n € N. This is extended to functions compactly supported in & by applying (7.18)
and the fact that, for any compact K C &, there exists & > 0, n € R such that
KNRxRYCHY. O

We can now proceed to:

Proof of Proposition 7.3 We will first apply Lemma 7.4 to an auxiliary process. For
each t > 0 define

, x e QN +1Z¢, (7.21)

and let 73[ be defined as in (7.19). Note that f/\,(x), X € (2ﬁ, + 1)Z4, are i.i.d. since
the corresponding boxes are disjoint. We claim the following:

The statement of Proposition 7.3 holds for P, in place of P;. (7.22)

Indeed, condition (7.17) follows from (7.5), while (7.18) is proved in Appendix 12.

Arguing as in the proof of Proposition 4.1, we see that, almost surely, P; € .#p for
all large enough 7. By (7.22) and since both P; and P, are simple, it suffices to show
that, for any 6 € (0, oo) and € R, with probability tending to 1 as t — oo there
exists a bijection

T; supp(ﬁ,) N Hg — supp(P;) N Hg (7.23)
such that
sup dist (T;(&), E) —> 0 in probability. (7.24)
Eesupp(ﬁ,)ﬂH‘,’] o0

To that end, pick x € (2N; + 1)Z¢ such that (¥, (x), x/1) € H{. We first claim that,
a.s. eventually as t — o0, all such x satisfy

By, (x) C By and xgivt (0 > dry — x +o(). (7.25)

Indeed, the second claim above follows from (5.3). If the first were violated, then
by (5.5), Lemma 5.1 and the fact that s — 2p(d;) "' Iny s — 5/(01) is decreasing for
s > 2d0tInt, we would have, a.s. eventually as t — oo,

" —a; * * _ AT
By, (x) B m - 20 1Iny |x| _ m < 2plIny L} _ Ly —N; — —o0 (7.26)
d, or = 4, or = 4, Or  1—oo
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by (7.4), contradicting (f’\t(x), x/t) € Hf,. This finishes the proof of (7.25). Now,

since N, = N L, by Lemmas 5.3 and 5.8 there exists, with probability tending to 1 as
t — 00, a unique z € ¢ satistying

Bo.(2) C By, (x) and g ) — 2 () < 2em 1 LD a2

which allows us to define an injective map

1 (%0, 5 ) = (Y@, ) € supp(Py). (7.28)

Let us verify that 7; satisfies the desired properties. Indeed, (7.24) follows since

ne—ci(ln L¥)</? N
< 7 —i—d@—; =g —> 0ast — oo, (7.29)
t

7—Xx
ot

Y:(x) = Yi(2)| +

and thus we only need to show that, with probability tending to 1 as t — oo, (7.28) is
in ’Hf’ and T; is surjective. Indeed, by (7.22), with probability tending to 1 as ¢t — oo,

P (1) = 30
implying by (7.29) that (7.28) is in HY. Moreover, if (Y;(z), z/1) € HY forsomez € €,
then as before )\%(z) > EL;ﬂ — x +o(l) and B, (z) C By Thus, by Lemmas 5.8
and 5.3, there exists x € (2ﬁ, + 1)Z4 such that (7.27) and (7.29) hold, implying

by (7.30) that (Y;(2), z/t) is the image by 7; of a point in supp(73,) n Hg. This finishes
the proof. O

7.2 Order statistics: Proof of Propositions 7.1 and 4.5 and Theorem 2.6

Our next task is to translate (4.7—4.9) (and generalizations thereof) in terms of maps
defined on point measures. We start with some necessary notation.
Denote by .5 the set of measures P on R x R that can be represented as

P = ZSO\[,Zi) for some Z C Nand (A, z;) € R x RY, (7.31)
ieZ

ie., /Z[; is the set of Ny-valued o -finite Borel measures on R x R4.
Fix a measurable map 9 : R x R¢ — R¢. To prove our main results, we will only
need to consider ¥ independent of the first coordinate, but we keep the setup here

more general for possible future applications. For a measure P € /Z/; asin (7.31), we
define

Pﬁ = ZS(M’g(M’Zi)), (7.32)
i€l
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and we set .
Mp.y =P e Mp: P’ e Mp). (7.33)

Finally, we generalize (2.7) by setting, for 6 > 0,

[0 (A, 2)]

. (A, z) e Rx R?. (7.34)

wg(k,z) =) —

For P € .#p and 6 > 0, we define W(’)(P)(G) 6“)(73)(9) and "'(’)(77)(9) recur-
sively for i € N with i < |supp(P)|, as follows: Abbreviating

S P)O) = {5 (PO, ..., B (P)O)) (7.35)
we set
W (P)(O) == sup {y§ (h, 2): (A, 2) € supp(P) \ EF(PYO)},  (7.36)
. Sy (P)(O) =

, (7.37)
{2 e SUPP(P)\”(<'>(7’)(9): YE(h,2) = (P ()}

and then pick

5y (P)(©)
e {2 eBYPIO): (h,2) = V. )V, ) e&JP) O}, (7.38)

with > denoting the usual lexicographical order of R x R¢ as introduced right
before (4.7). Note that this defines Sl(;)(P) unambiguously since the set in (7.38)
is a singleton. We then put

(AS(P), 23 (P)) = B (P) (7.39)
and
@y (P) = (¥ (P), AY(P), Zy(P)) . (7.40)

In the case ¥ (A, z) = z forall (A, z) € R x R, we omit ¢ from the notation.
As functions of 6, the objects defined above enjoy the following properties:

Lemma 7.5 Forany 9 : R x RY — R and any P € Mp.y, the following hold:

@) lll(l)(P) A“)(P) and |z9("“)(77))| are non-decreasing in 6. Moreover, if 6y < 01
and r’“)(73) (6o) # ’““)(P) (61), then they are strictly smaller at 6y than at 0.
(i) Foranya € (0,00) and anyi € N, i < |supp(P)]|,

" (P) € C(la,00),R) and EJ(P) € D(la,00),R x RY).  (7.41)
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The set of discontinuities of & g) (P) is discrete and, if supp(Pﬁ) NR x{0}) =40,
then lIII;I)(P) is strictly increasing.

The proof of Lemma 7.5 is postponed to Appendix 14. It already implies the properties
claimed for ¥,*’, Z* atthe end of Sect. 4.1: indeed, they follow from the representation

@02z, 2] = P (Pe) ) 742
where
#(h,2) :=zIn] |z|, and Py := ZS(A% @,2) (7.43)
€€

Note that we have Py € .#p y a.s. by (4.6), and that |9 (A1, z1)| > |0 (Xo, z0)| implies
[z1] > lzol-

Next we consider continuity of P + @@ (P) with respect to the Skorohod topology,
i.e., specializing to the case ¥ (X, z) = z. To this end, we define the following subsets
of ./p, indexed by a € (0, o0):

supp(P) C R x RY\ (R x {0}),
(A, z) > A is injective over supp(P),

Ao =P e p: POHD <1V € {a}U(0,00NQ)neR L (744
P@OHY) <270 € (0,00), 7 €R,

|{ne]R: P(aH§)=2}|51vee(o,oo)

Then we have:

Lemma 7.6 Fixa € (0,00) and P € //Z‘,’. Let ¥y : R x RY - RY ¢ >0, satisfy

1A, 2) t—) z locally uniformly for (A, z) € R x (Rd\{O}), (7.45)
—00
(i1)J ¢y > O such that, foralln € Rand § > 0,
D (A,
liminf inf 10t > 4. (7.46)
1—00 A>n,|z|=68 |z|

Let P; € v N Mp9, such that P; = P vaguely in #p. Then also 'P,ﬁ’ — P
—00
vaguely and, for all k € N, k < | supp(P)],

(@0 P)) ., =2 (@°P) s (747)

<i<k t—>

in the Skorohod topology of D([a, 00), (R x R x RY)K). In particular, (@) <; < is
continuous at P with respect to the Skorohod topology.

Lemma 7.6 will be also proved in Appendix 14. We now use it to finish:
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Proof of Proposition 7.1 By Lemma 7.5, we may realize the processes in (7.8) as
7,0 @) SO\ &)
. Ag.Zy ) =P (Po)(®) (7.48)

where Py is a Poisson point process on R x R¢ with intensity e *dA ® dz. Note
that, for each a > 0, P € . almost surely. On the other hand, we also have the
representation

11/(1') —a )L‘é)(z(l’) ) —a Z(i) i )
or.e — 4. ot.c noZone) o (P,) ) (7.49)
drt d”t Tt '

where P; is as in (7.16) and

(7.50)

+
In |rz|l — ¢ di
Inj ¢ dr, '

(A, 2) =12 (

Note that, by (7.2), P,, € .#p,», almost surely for all # large enough. The convergence
claimed in Proposition 7.1 now follows by Proposition 7.3 and Lemma 7.6 together
with (7.48), (7.49-7.50) and the Skorohod representation theorem; in fact,

0
<73r[, (‘pﬁf (Pr')(g))ee[a,oo),lgigk)
law

= (Poos (27 (Po)(©) ety ey 1211 - (751)

—>00

The statement regarding £

b o Tollows from the distributional convergence since d;, =

d; (1 + o(1)) and, by the continuity properties of Eg) and 72),

. —(i) —(i)
—00 < inf lI/(,' < sup lI/é < 00,

Oela,b] 0ela,b]
0 < inf ‘Z(;)) < sup ‘7;”‘ < 00 (7.52)
0€la,b] 0€ela,b]

@) - A @, -, >0
hold almost surely for each i € N. The expression for the density in (7.10) follows
from an analogous computation as performed in the proof of Proposition 3.2 in [26].

m}

Next we interpret the event in Theorem 2.6 in terms of the underlying point measure,
which is still kept rather general:
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Lemma 7.7 Forany® : R x RY — R any P e Mpy andany 0 < a < b < o0,
the following statements are equivalent:

(1) A (P)a) = AY(P)(b);
(2) 8 (P)O) = & (P)(a) forall 6 € [a, b];

(7.53)
Yy L2 > Y (8 (P (@), or _
® Ploa 0D e mansr - Ay e =°
If ¥ does not depend on A, then (1)—(3) are also equivalent to:
() Zy (P)(a) = Zy (P)(b). (7.54)

Proof The implication (1) = (2) follows from Lemma 7.5(i), and (2) = (3) = (1)
are easily verified using the definition of El(;). It is clear that (2) = (4) and, when ¢

does not depend on A, (4) = (1) also follows from Lemma 7.5(i). O

The last equivalence in Lemma 7.7 can be extended to the setup of Lemma 7.6. The
following lemma will be proved in Appendix 14:

Lemma 7.8 Let a € (0, 00) and suppose that ¥;: R x R — R? and P and P; are
as in Lemma 7.6. Then, for all b € (a, 00) and all large enough t, (7.54) is equivalent
to (1)-3) in (71.53) with 0 = ¥, P = P;.

We study next continuity properties of the event in Lemma 7.7(3). To this end, we
define, for 9 :R x RY — R4, P ¢ Mpy, (A7) € R % R4 and 6 > 0,

I, ) > Yl 2), or

g e / /
Fog(P,x,z): =P {()\ ,Z)0 1//2,9()»’,1’) — wg(k’z) and A" > A

} e No. (7.55)

When 9 (X, z) = z, we again omit it from the notation. Then we have:

Lemma 7.9 Fix a € (0, 00) and take P, ¥; and P; as in Lemma 7.6. Assume that
(A, 24) € supp(P), (As, z¢) € supp(Py) are such that (As, 7:) —> (hy, Z4) ast — 00.
Then

Fa Prodaze) =2 Fa(P.hs. 20). (7.56)

The proof of Lemma 7.9 is once more deferred to Appendix 14. Together with
Lemma 7.7, it permits us to give:

Proof of Theorem 2.6 Fix 0 < a < b < oo and use the representation (7.49-7.50)
(with ¢ = 0), Lemma 7.7 and (7.55) to write (note that ¥ in (7.50) does not depend
on )

Zat =Zpt & Zoy = Zat ¥V 0 € [a, D]
& ' (Pos A5 (P @, Z5) (P)(@) = 0. (7.57)
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Since P € ,//71;4 ﬁ%?,’ a.s., the distributional convergence follows from (7.51), (7.48)
and Lemma 7.9. To show (2.13), fix u > 1 and let

Du(h, 2) = [(,v,z’) ERXRY: X = < 7] —Iz] < u(V —/\)] . (158

Note that, by the definition of 51 = 5" (Ps)(1) and the fact that Py, € /// N //7‘
almost surely, Fu(Pso, E1) = Poo(Dy (u 1)) almost surely. Moreover, conditionally
given &1 = &, D, (&) is independent of =1, and thus by Lemma 7.7,

Prob(® > u — 1) = E [exp {—u(Dy, (E1)}] (7.59)

where 11 := e *dA ® dz and E denotes expectation under the law of Ps,. We now
identify

1(Dy(n, 2)) = Qu)'e ™G (l2)), (7.60)

where i

1 S |
Gu) ;zl_u_ﬁgﬁ(;—u—d), 761
and note that u — oo asymptotic
d d 2d Inu)?
/ Hd—ZN/ o N )
R € /u® + Gy (|z|) lel<dinu €7 /ud 4+ G, (|z)) d!

Then (2.13) follows by a computation using (7.59-7.62) and (7.10). O

The last objective of the section is to prove Proposition 4.5. Our next lemma shows
that its statement holds in fact more generally:

Lemma 7.10 Forany 9 : RxRY - R, anyP € Mpy andanyQ < a < b < oo, if
g (P)(0) = 8 (P)(a) Y0 € la,b] (7.63)
then

inf {wg“(v:) ©) — ¥y (P)(6))

€la,b

= en{nn} {w"(P)©) — v (P)6)} . (7.64)

Proof For 6 € [a, bl andi € {1,2}, put (1), 25) := &5 (P)(0) and write

v, (P)(©) — ¥y (P)(©)
’ﬂ(kél), Ag))‘ ‘19()»(92)» A((92))
0

=iy — Ay - (7.65)
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If [0 (A, 200 = 195, 25, use 671 < a~! and (7.63) to obtain

vy (P)(©) — vy (P)O) = ¥ (P @) — v G 2

(1 2 (7.66)
> Wy (P)(a) — ¥y (P)(a).
If |z9():(9”, 2| < |z9(ig), 25, using 61 > b~ instead we analogously get
W (P)(O) — W) (P)(6) = Wy (P)(b) — ¥s” (P) (D). (7.67)
Now (7.64) follows from (7.66-7.67). O

We can finally conclude:

Proof of Proposition 4.5 This follows from Lemmas 7.7 and 7.10 together with the
representation (7.42-7.43). O
8 Mass decomposition

Here we prove Proposition 4.6 (Sect. 8.1), Proposition 4.7 (Sect. 8.2), Propositions 4.8—
4.9 (Sect. 8.3), and finish the proof of Theorem 2.5 (Sect. 8.4).

8.1 Lower bound for the total mass

We begin with a lower bound for the mass up to the hitting time of a point.

Lemma 8.1 Under Assumption 2.2, there exists a constant K > 1 such that, a.s.
eventually as @ — oo, for all x € Z¢ with |x| > 4d0,

Eo [efoh 5(X”)d”1{rxse}] > eXp{ x| In %} ®.1)

Proof We follow the proof of Lemma 4.3 of [13] (case of d = 1 therein). Fix a path
7 from O to x such that |7r| = |x|. Then the left-hand side of (8.1) is at least

lx|-1

Q2d) Mo | exp = Y i (m)

i=0

') 82

where (al)"o0 are i.i.d. exponential random variables with parameter 2d. We can

further bound (8.2) from below by
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2d)~"e 0P, (ai < % Vi, lx— 1)
[x]—1
el do/)x|
> Qd) M [ ——=
Lo 1HE
2lx| iy
=exp | —lx|In == — 0 — > In(l + & () (8.3)

i=0

where we used |x| > 4df and 1 —e 2" > y when0 < y < }‘. By Theorem 1.1 of

[18] and Assumption 2.2, there exists a constant cp > 0 such that, a.s. eventually as
|x] — oo,

Ix|—1
> In(l+ & (m) < colxl. (8.4)
i=0

Now (8.1) follows from (8.4) and 6 < |x|/(4d). O

We can now prove Proposition 4.6.

Proof of Proposition 4.6 For a finite connected subset A C Z4, let ¢(/;) be the ¢2-
normalized eigenfunction of H, corresponding to its largest eigenvalue k(/ll) as in
Sect. 5.4. Let xo € A be a point where ¢x) attains its maximum and note that, since
W ll¢2zay = 1. 18 (x0)[* > |A]~". By Lemma 5.12, for any s > 0,

s (1 (eY]
Ey, [efo E(Xu)du1{TAC>S}] > eSta i¢x)(x0)|2 > eSha —InlA| (8.5)

Using the Feynman—Kac formula and the strong Markov property, we get, for any
0 <s,

Txo s—r
U(s)on[exp{ /0 5<Xu)du}1{%<9}Exo el et o] ]
r=ty,

a_ _gl, T
- *a In|A] G‘AA ‘EO |:exp {/ 0 g(xu)du} 1{Tx0<9}:| . (8.6)
A <

Specializing now to A := By, (Zs), let K > 1 as in Lemma 8.1 and set 6 :=

K|x0|/)»(g(Zs). By Proposition (7.1), we may assume that & , 5 [cf. (7.6)] occurs,
and by Lemma 5.1 also that oz, < Int. Thus

Ixol _ 1Zsl+ %0 = Z| _ rigi+dlnt
s at - at

= o(d;b;&y), (8.7)
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while 2% (Z,) > " > a,, —d;g; — oo ast — oo since d;g; = o(1). Therefore,
0 < |xp|/(4d) < s for large enough ¢. On the other hand,

2(Zy) < E(Zg) < 2pIny | Z| < 2pInyt (8.8)
for large enough ¢ since r;g; = o(t). Hence

—2dInt
Gz—rtﬁzl tn — o0 ast — o0, (8.9)
pIny

and so we may apply Lemma 8.1 to (8.6) obtaining

nU
UG ez - "%z — k2 L o@be).  8.10)
N S S
Now, by (8.8),
InU — Z|InT |Z
HT(S) . |xo s' 5 1250 (n2p| +1<)|);—°' toldbie). (8.11)

The claim follows by noting that the second and third terms in (8.11) are also o(d;b; &;).
O

8.2 Macrobox truncation

Next we prove Proposition 4.7, ensuring that the Feynman—Kac formula is not affected
by restricting to random walk paths that donotleave abox of side L; = [t 1n5Ir t| around
the starting point.

Proof of Proposition 4.7 We follow the proof of Proposition 2.1 in [9]. First wewrite

Eo [efo §(Xu)du 4 {Supeelo,xHXG\ELt}]

< Z exp{s}rcré%)ié(x)}ﬂn()( sup | Xl =n>. (8.12)

L, 0€l0.5]

Denoting by J; the number of jumps of X up to time s, the fact that J; is a Poisson
random variable with parameter 2ds gives

2ds)"
o sup Xol=n) <Pyt = m < 281 (8.13)
0€[0,s] n!

By Lemma 5.1, max,ep, §(x) < 2plInpn a.s. for all n large enough. By Stirling’s
formula and s < bt, the n-th summand in (8.12) is at most

exp {Zpbt Inpn —n(lnn —Int — c)] (8.14)
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for some deterministic constant ¢ > 0. Now, when n > L, and ¢ is large enough,
Inn —Int —c¢ > %1n3 t. Since the function x — 2pbtIny x — fz“ln3 t is strictly
decreasing on [L;, 00) and negative at x = L,, a.s. for all ¢ large enough, (8.12) is
smaller than

i L
D emilml <pem i Il (8.15)
n=L;
Plugging in the definition of L; now yields (4.23). O

8.3 Negligible contributions

In this subsection we prove Propositions 4.8 and 4.9. Here and in the next subsection
we will work with Ry satisfying (5.11-5.12). It will be useful to introduce yet another
family of auxiliary cost functionals lINIZ,M, indexed by ¢, s > 0, ¢ € R, and defined on
the elements of €;, 4 as follows:

~ (In3 |z¢| — o)t
U 5.6(C) == Ay — % lzel, CeC€p,a. (8.16)

These functionals will be convenient to express bounds to the Feynman—Kac formula
obtained via Proposition 6.1. In order to compare ¥; ;. and ¥;, we will need the
following.

Lemma 8.2 Almost surely forallt,s > O, there exists a component C; s € €, 4 such
that, for all 0 < a < b < oo, the following holds with probability tending to 1 as
r— oQ.

z¢,, = Zs Vs € lat, bt]. (8.17)

Proof By Lemma 5.8, there exists a § > 0 such that, with probability tending to 1 as
t — oo, whenever | Z;|4-2doz, < L; and )L%)(ZS) > dr, — x — 8 wecan find a unique
Crs € €1, a With z¢, = Z;. Fixing Cf € €/, 4 in an arbitrary (measurable) fashion,
we define C; ; = C; when either the conclusion of Lemma 5.8 does not hold, or when
Z, does not satisfy the properties above. By Proposition 7.1, C; s satisfies (8.17) with
probability tending to 1 as r — oo. O

When r = s, we write C; instead of C; ;. The following lemma relates Gt,s,c to ¥;.

Lemma 8.3 Forall A > 0 large enough and any0 <a <b < 00,8 > 0andc € R,

Crs €€ o and |W o (Crs)— |V Juax Ty 5.0(C) — W2 | < o(dibe)
1,5

(8.18)

hold for all s € [at, bt] with probability tending to 1 as t — oo.

@ Springer



M. Biskup et al.

Proof Fix A, § > 0asin Lemma 5.8. By this lemma and Proposition 7.1, if C ¢ QZ‘L n

then lIA;[,S,C(C) < Ag) < ¢?, while, if 7 € ¥ and C € Q:i,,A are related as in
Lemma 5.8, then _
lI/t s, c(c) = WS (@) + o(dibsgy). (8.19)

By Proposition 7.1 and (5.5), the objects Zj, ZEIC and ZEZC all satisfy the conditions
of Lemma 5.8(ii) with L = L,, and thus (8.19) and Lemma 7.2 together imply (8.18),
as desired. O

We proceed to the proofs of Propositions 4.8-4.9. Recall (6.4) and consider the
following classes of paths: First set

N := {7 € 2(0,2%: supp(r) C By, supp(r) N (D} )¢ # B} (8.20)
and then let
MY = e NBi g, a(m) < )»8“?} and N2 =N NN, (8.21)

where C; s is as in Lemma 8.2. Note that, if Tppye =8 < Tge , then w(Xp) €
WS t )

J\/,(’ls) U/\/,{ZS) and hence we may bound the contribution of each class of paths separately.
This is carried out in the following lemma, using Proposition 6.1.

Lemma 8.4 Forall A > 0 large enough, there exists ¢ > 0 such that, for all0 < a <
b < o0,

In EO [ef(;f(xu)d”1 {n(XO S)GN(1~)}i| < S&I,S,C(CZ,S) — (1113(st) — C)h[|Zs| + O(Id[bl)

(8.22)
and

InEo [ef(f §(Xu)du 4 { } <s Jnax @, .c(C) + o(tdby) (8.23)

7(Xo)eN )

hold for all s € [at, bt] with probability tending to 1 as t — o0.

Proof On & 4. [cf. (7.6)], infse(ar.pr) 1Zs] > InL, and so we may apply Propo-
sition 6.1 to A} and N;%. Choose yy, z as follows. For 7 € N/}, let y; =
kg) + d;/In3 t and take z, arbitrarily in supp(r) N (D JEFED I € /\/,(?, then
supp(n) NIy, o # ¥ and we may set y, = A, a(7) + di/In3t, z; = z¢, where
Cr € €, aissuchthat Ap, 4() = A(1> Note that, by Lemma 8.3, we may assume
that Agj_s > dr, — A. Then (8.22— 8.23) follow by substituting our choice of 5, zx
in (6.7), using the definition of ¥, ., the fact that |z | > | Zs|(1 + h;) for 7 € NS
and noting that d;/ In3 t = o(d,;b;) by (4.14). m]

Proof of Proposition 4.8 This now follows from Lemmas 8.3-8.4, Proposition 7.1,
the definition of d; and r, in (2.6) and the relations between the various error scales
in (4.14). O
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Next we turn to Proposition 4.9. Note that paths avoiding B, (Z;) do not necessarily
exit an £!-ball of radius In L;, so we may not directly use Proposition 6.1. As points
in 1y, 4 are typically far away from the origin, this can be remedied by considering

NP = {n e 20,7%: supp(w) C B, \I1y, 4, }

./\/,(j‘s) = {n e 2(0,7%: supp(w) C Br,\By(Zy),supp(mw) N 11, A, # @} ,
(8.24)
where A1 > 4d is fixed as in Lemma 5.6. Since 7, (z,) Arth > s implies 7 (Xo) €

NP U J\/,(j‘;, we may again control the contribution of each set separately. For ;"
this is an easy task since, for any A, s > 0,

In Eo [eﬁf E(Xu)du g {rgz AT, 4 > s” < 5@y, — 24) (8.25)

by the definition of Iy, 4. For ./\/,(j‘;, we may again apply Proposition 6.1:

Lemma 8.5 There exist vi € N and ¢ > 0 such that, for all A > 0 large enough and
all0 < a < b < oo, the following holds with probability tending to 1 as t — oo: For
allv > vy, s € at,bt] and 6 > 0,

[0 E(X,)du
InEg |:e 0 1 {n(Xo,é))EN;(.i)

<0 (cm%" Br6.(C) v @, — 4d) + o(dtb») , (8.26)

t,s
where o(d;b;) does not depend on 6.

Proof Let 8, A1 > 4d and v be as in Lemma 5.6, and assume that ¢ is large enough
for the conclusions of this lemma to hold with L = L;. We may assume A > Aj.
We will apply Proposition 6.1 using the islands of €, 4,. We are justified to do so
because, by Lemma 5.1, IT;, A, N Binr, = ¥ almost surely when ¢ is large, and thus
allr € /\/,(4; exit a box of radius In L;. Let ¢ = ¢4, be as in (6.7). Since A > Ay,

VC € Q:Lt,AI’ 3C € Q:Lr.,A st.CcC. (8.27)

Recall the definition of Az 4 () in (6.4). For 7 € ]\/;(4; ,let z; := z¢, where C; €
€A, issuchthat t NC NI 4, # P and Ap, 4,(7) = )‘(Cly), Note that z; = z¢,
where C; C C;T € ¢, 4. When t is large enough, C; € E‘ZBL”A by Lemma 8.3; hence,
by Lemma 5.6 and the definition of J\f,(i?, Cl # C; s = ¥. From this we conclude that

0L, A, (1) = (IN3(dLy) = ©)|zz| = Ohp) — (In3(dL;) — ) |zc, |

, (8.28)
<0 sup {)»8/) — (In] |z¢/| — c)+|Z9L|: C' e, a\ {C,,S}} )
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Choosing now yy = Ar, 4, () Vv (@1, — 4d) + d;/In3 t, (8.26) follows from (6.7),
(8.28) and (4.14). O

Proof of Proposition 4.9 This follows from (8.25) with A := A; together with
Lemma 8.5 applied to &6 = s, Lemma 8.3 and the fact that, by Proposition 7.1,
v > (@, — 4d) for all s € [at, bt] with probability tending to 1 as t — oo.

O

8.4 Upper bound for the total mass and proof of Theorem 2.5
We will prove Theorem 2.5 by comparing % In U (t) to ¥" and then applying Propo-
sition 7.1. The last missing ingredient is the following upper bound for U (¢). Recall

that we assume (5.11-5.12).

Lemma 8.6 (Upper bound for the total mass) Forany 0 < a < b < oo,

sup {ln UGs) — sw;“} < o(td;by) (8.29)

s€lat,bt]
holds with probability tending to 1 as t — oo.

Proof Applying Proposition 6.1 to the set of paths
NP = [71 e 2(0,Z%: supp(r) C Bpr,,supp(w) NIy, o # QJ} (8.30)

withyy :=Ap, a(m)V (@@L, —A)+d;/Inztand z := zc, where C; € €, 4 satisfies

ApL,A(m) = )\(é) , we obtain
T

In EO |:e[(; S(X,,)du1 [JT() (X)EN(S)]i|

<s max W c(C)+ o(tdib;) < s¥" + o(td;b;) (8.31)

CE¢L,,A

with probability tending to 1 as t — oo by (6.7), (8.16), Lemma 8.3, (2.6) and (4.14).
Now (8.29) follows by (8.31) together with (8.25) and Propositions 4.7 and 7.1. O

Proof of Theorem 2.5 Proposition 4.6 and Lemma 8.6 imply that, for any 0 < a <
b < o0,
LInU@s) — v

lim sup 0 in probability. (8.32)
=0 selat, bt] d;
The claim follows from Proposition 7.1 and d,, = d;(1 + o(1)). m]
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9 Localization

In this section we prove Propositions 4.10—4.11, dealing with localization of the solu-
tion to the PAM as well as the eigenfunction ¢; ;. The proof of the former proposition
is actually quite short:

Proof of Proposition 4.10 By (4.14) and (4.17), B\ (Zs) C Dy for all s € [at, bt]
with probability tending to 1 as + — oo, and thus we may apply Lemma 5.15 to
A=D7,z=0,I = By(Zy). O

We now turn to the proof of Proposition 4.11. The first step is to obtain a spectral
gap in the inner domain Dy, which is a consequence of our choice of the scale &,
in (4.14). Recall the following useful formulas for the second largest eigenvalue of
the Anderson Hamiltonian in a subset of Z9: For A C Zd, let A(k), resp., ¢(/];) be the

eigenvalues, resp., eigenvectors of H,4 as in Sect. 5.4. Then we may write

d
A7 =sup [ (A +6)p.8): ¢ € R supp € A, 19l = 1.9 L 6]
(CAY)
A consequence of (9.1) and (5.4) is that, if Aj, Ay C Z¢ satisty dist(A}, A2) > 2,
then we have
A = a8 = max 120 ©2

In the following, we assume that the scale sequence R; obeys (5.11-5.12). Recall the
component C; s € €y, 4 from Lemma 8.2, and the notation G; 5 := (o — llls(2> >
e;d;}. We then have:

Lemma 9.1 (Spectral gap) For any A > 0 large enough and any 0 < a < b < oo, it
holds with probability tending to 1 as t — oo that, for all s € [at, bt], on G, s,

)‘(Cll); > sup A+ dier + o(drey) 9.3)
" CEQ:LI,A\{C”V}:
dist(C,Df ) <(In1)?

and
x‘,‘)},s > xg);,x +die; + o(dsey). (9.4)

Proof Let t be large enough such that the conclusion of Lemma 5.2 is in place with
L = L. Then, for any C € €, A\{C; s}, by (8.16) and Lemma 8.3, on G, ; we have

lze|In3 |z¢| = 1Z| I3 | Zs
N

)\‘gt)s — )\,(C]p) > dtet + O(dtb[) —

9.5)

with probability tending to 1 as # — oo. By Proposition 7.1 and Lemma 5.2, we may
assume that | Zs| > ¢!/? and that, for all C € ¢y, a such that dist(C, D7) < (In 12,
lzel < |1Zs|(1 +hy) + (Int)?> + naRy, < t. With the help of (2.6), (4.14) and (5.11),
we can see that the right-hand side of (9.5) is at least
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Zs|h Int)?
¢@+ow¢o—2muoLiL§}9ll

h In1)? 9.6
> die; + o(d;by) — 2(ms ) “E LN ©0)

=die; + o(dse;),

thus proving (9.3).

To show (9.4), we may assume A"

Do > )»(l'))o
t,s t,s
satisfied. For A > x + 1 large enough, take § € (0, 1) asin Lemma 5.3. By Lemma 5.2,

Proposition 4.4 and Lemma 8.3, we may assume that C;; C D/ and C; 5 € Q‘L’A.
Thus, by (9.3), Ag}is —A> ’\2:,5 — A >dy, — 2A. Applying Theorem 2.1 of [7] to
D := Dy together with (5.6) and (9.2), we obtain

— A /4 since otherwise (9.4) is trivially

A < ( sup ,\8)) VG +2dma)Rh, ©-D
LS C#Cy s CﬂDﬁ_; ad V

where 74 := (1 4+ )", Now, by Lemma 5.3(i), (9.3) and (9.7),
H S 1 B X,
Mpe = kpe > {dier +o(die)} A 3pIn2 = 2d(na)™, 9.8)

which proves (9.4) since (nA)Rf = o(d;e;) by (2.6), (4.14) and (5.11). O
We are now in position to finish the proof.

Proof of Proposition 4.11(i) We can use the proof of Theorem 1.4 in [7] with the
following three main modifications:

1. In the part of the proof dealing with large distances, Theorem 2.5 of [7] is invoked,
with the generic component C appearing in its statement now set to C; ¢ (which we
may and do assume to be contained in D;i ¢)- For that we need to show that, with
probability tending to 1 as t — oo,

|, > % Vs € [at, bt]. (9.9)

|| ¢;},S 1 cl.s

The proof of Theorem 2.5 then shows that this inequality characterizes C.

2. Still in the part dealing with large distances, we use the bound (9.4) instead of
Lemma 8.1 of [7].

3. In the second part of the proof dealing with short distances, use (5.20) instead of
Lemma 4.8 of [7].

With these modifications, the proof goes through in our case.
In order to complete the proof, it thus remains to establish (9.9). Let D := D7 \Cy ;.
We first claim that, with probability tending to 1 as t — oo,

Mp < kg —dier +o(dier). (9.10)
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Indeed, take A > x + §. By Lemma 8.3, we may assume that C; ; € €‘zt,A, and

thus we may also assume that A(['; > dr, — A since otherwise (9.10) is satisfied. By
Theorem 2.1 of [7] and (5.6),

Ay <sup{ag’: C e € a\{Crs}.CN DY # B} +2d(na)Re (9.11)

where n4 = (1 + A/(4d))_1, 50 (9.10) follows by Lemma 9.1, (2.6), (4.14) and
(5.11). Now, for x € D, the eigenfunction ¢2 ¢ satisfies the equation

(<Hp =25 Yoo = > 4,0 ©.12)

y€dD,|y—x|=1

where Hp is the Anderson operator in D with Dirichlet boundary conditions and
0D :={x e Dy \D: 3y € D, |y —x|=1}. By Lemma 4.2 of [7],

1675100 | o g0y = (1 +A/Qd)) 1 < (o). (9.13)

Using (9.12-9.13) together with the operator norm of the resolvent of —Hp and the
Cauchy-Schwarz inequality, we obtain

107510 2 ) < distxy: , Spec(—Hp)) ™' 2d (na)

< (nr)*(na)®e = o(1), (9.14)

where the last line holds by (9.10), A}, > ,\g:s, (2.6), (4.14) and (5.11). In light of
62 s ll¢2(ze) = 1, this implies (9.9) as desired. O

Proof of Proposition 4.11(ii) To prove (4.31), we will use (4.30), the representa-
tion (5.47) and Lemma 5.7. Let c1, ¢ as in (4.30). Since ¢y is normalized in €2(Z%),
there exists vy = vg(cy, ¢2) such that, for all v > vy,

1
o > ° > Q2|B, )"z =: 0. 9.15
yergfés)¢t,s(y)_ egﬁjﬁizj)qﬁ,,s(y)_( | By, ) g0 > (9.15)

Fix v > vp and let A*, § and A be as in Lemma 5.7. When ¢ is large, the conclusion
of this lemma holds with L := L,. By Lemma 8.3, we may assume that C; ; € Q‘ZhA,
and thus (5.29) holds for C; 5. On the other hand, by (5.5), (4.17) and Lemma 5.1, we
have
A < max £(x) < max £(x) <a, + 1, (9.16)
1,s xeDy B

t.s xe Ly

with probability tending to 1 as t — oo. Since Z; = z¢, , for any z € By (Z),
A(l‘)}x —E(z) <2A%+1=:4A. (9.17)
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Let x € By (Z;) with ¢; ((X) = maxyep, (z,) ¢ (). For y € B, (Zy), fix a shortest-
distance path 7 from y to x inside B, (Z;). Then

Ey[exp{/o X(g(xs) — 2 )ds]1{rx < T2, )C}}

Tin
>E, [exp {/0 I7| (S(Xs) — )‘(L])),‘i) ds} 1" (X) = n}i|

|| -1

= ]‘[ 0 >Q2d+ AN =61 >0
2d + M. —E(m)

(9.18)
by Lemma 6.3 and (9.17). To conclude, invoke (5.47) to write

¢
975 () = 67, (OE, [exp { /0 (x0 2 ) ds} 1o < rwmc]} > eoe1
(9.19)
by (9.15) and (9.18). The claim now follows with €, := gpe1 > 0. m]

10 Path localization

In this section, we prove Propositions 4.12 and 4.13; these proofs come in Sects. 10.1
and 10.2, respectively. We assume throughout that A > 0 and v € N have been
fixed at sufficiently large values to satisfy the hypotheses of all previous results. We
also assume that Ry obeys (5.11-5.12). In order to avoid repetition, statements inside
proofs are tacitly assumed to hold with probability tending to 1 as t — oo.

10.1 Fast approach to the localization center

Recall the component C; = C;; € €, 4 from Lemma 8.2. We first show that,
under Q;E), the random walk exits a box of radius In L; by time &,t, at least on the
event that a neighborhood of the localization center Z; is hit by time 7.

Lemma 10.1 In probability under the law of &,

- f £(X,)du o v
U(t)EO [e 0 1 {r(D Y > 1> T (Z) B, > stt}] = 0. (10.1)

Proof Note that, by Proposition 7.1, B,,(Z;) C Bfln L, @) for any x € B|nr,. For
such x, we may apply Proposition 6.1 to the set of paths

J\/}‘G; = {n € P(x,7%: supp(n) C Dy, supp() N By (Z;) # @} (10.2)

with y, = A(') +d;/Inzt and z; € B, (Z;) arbitrary, which is justified with the help
of Lemma 9. 1 Lemma 8.3, (5.11) and (2.6). Since |z — x| > |Z;| —dv —d|In L, ],
we obtain
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(1—ep)t
InE, [e o 7 E(Xuduy {‘E(D,OJ)C > —e)t > TBV(Zz)”

= (1= ethg) = 1Z:1In3 | Zy| + o(tdbr) (10.3)
by (2.6) and (4.14). On the other hand, by Lemma 5.1, a.s. eventually as t — oo,

InEq [efosé(x“)d“ [ch > s]] <s max &(x) <s2plnzt Vs >0. (10.4)
[InLy) x€BlnL,)
Now use the Markov property at time &7, (10.3-10.4) and Proposition 4.6 to obtain
1
—Ey I:ef(; S(X“)du‘I {T(Df,)c > 1= 7TB,(Z), TB® > 8tt}]

U) lnL¢)
< exp {t(lf/t(l) — o) — et (A~ 2pIn30) + o(rd,b,)} (10.5)

which goes to 0 as t — oo by Lemma 8.3, (4.13) and &; > (In3 H~L O

The following result can be seen as an alternative version of Lemma 8.5.

Lemma 10.2 There exists a constant ¢ > 0 such that, with probability tending to one
ast — oo,

et
In ]EO |:ef0 S(Xu)d”‘| {TBV(Zt) AN t(D[OJ)C > gt > thlnL,J’ Xatt = x”

< gt gn;g A’ — (In3(dLy) — ¢) |x| 4 o(etd;by) (10.6)
t

forall x € Z2, and o(e,td;b,) in (10.6) does not depend on x.

Proof Let A > A where A| > 4d is as in Lemma 5.6, and define the set of paths

J\/,(Q = {n e Z(0,x): Di, D supp(w) € BiinL,, supp(w) N By (Z;) = (/)}.

(10.7)
We wish to apply Proposition 6.1 to J\/,G; using theislands of &€, 4, (i.e.,withL = L;,
A = Aj therein), similarly as in the proof of Lemma 8.5. To this end, we take,
formr € ./\/;(7; Yr = Maxc.c, Ag) + d;/Inzt (where the maximum is taken over
C € €1, 4\Cy), and z; := x.Letus check that y;; satisfies (6.5). Indeed, by Lemma 8.3
we may assume that maxc.c, A(cl) > dr, — A1. Reasoning as in the arguments leading
to (8.27-8.28), we obtain Ar, 4, (;r) < maxcc, A(cl) forall w € /\/,(,7;, so (6.5) fol-
lows. Inserting our choice of yy, zr in (6.7) and using (4.14), we obtain (10.6) with
C = CAy. O

We can now finish the proof of Proposition 4.12.
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Proof of Proposition 4.12 The key point is to show that, for some constant ¢ > 0 and
uniformly in x € Z4,

¢
E()|:ef0 §(Xy)duq {T(Df,)c > 1> T (z,) > &t > TBEI L Xglt = x}:|
\ L

<exp {8,1‘ gug A+ (1 — a,)mgj — (n3(dL;) — )| Z| + o(sttd,bt)} )
#C

(10.8)

Indeed, assuming (10.8), Proposition 4.6, Lemma 8.3 and (4.17) allow us to write

U gy efs stoduq
Ut) {T(D;,)C ZIZTBy(z) > eI 2TRe }
D? '
t,t
< | | sup Eg eJo §(Xu)du
U(t) xezd {T(Df.[)c >t2rBV(ZI)>8’tZTBflnL,J ,Xstt:x}

< exp {—8[1‘()\83 — gfé )‘(Cl)) + o(s,td,b,)} =2 0 in probability

(10.9)
by Lemma 9.1 and (4.14). This and Lemma 10.1 yield (4.39).
In order to prove (10.8), suppose first that dist(x, B,(Z;)) > In L;. Then we may
apply Proposition 6.1 to the set of paths

NS = [n’ € P(x,Z%: supp(w) C Dy,,supp(r) N B,(Z,) # @} (10.10)

with yr = Agl’ +d,/Inzt and z; € B,(Z,) N supp() arbitrary, obtaining

InE, [eh " EXudug
{T(Df.t)c >(1_5t)IZTBv(Z[)}

< (I =eNtrg = (n3(dLy) = ca)lZ; — x| +o(etdiby) — (10.11)

since |z; — x| > |Z; — x| — dv. Noting that both (10.11) and (10.6) remain true if we
substitute ¢ and c4 by ¢ V ¢4, (10.8) follows by applying the Markov property at time
&t and then using (10.11), Lemma 10.2 and the triangle inequality.

If instead dist(x, B,(Z;)) < In L;, we may bound using Lemma 5.12

E, [efél’g’” ECdug,

T(th)c >(1_5t)12TB,,(Z,)}:|

_ ) 3
<C(l Et)t)LD?,t Dtot|§ (10.12)

< exp {(1 — 8z)l)»(Dl)§t + 0(8ttdtbt)}
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by (4.17) and (4.13). By Theorem 2.1 of [7] together with Lemma 9.1, (5.6) and (5.11),
,\g)it < ,\g: + o(g,d;by). (10.13)

Since |x| > |Z;|—dv—In L, (10.8) again follows using the Markov property together
with (10.12-10.13) and Lemma 10.2. O

10.2 Local concentration

In this section, we address the principal ingredient needed for the proof of path local-
ization, culminating in the proof of Proposition 4.13.
For L € N, let€ :=inf{e;: s > 0, Ly = L} and note that sy, < &. Using (4.22)

and lim;_, & In3 t = o0, it is straightforward to show that also limy_ o, 27 In3 L =

00. Define N
R, = | LIk (10.14)
P L2ea ] '

Note that RL satisfies (5.11) but not (5.12). Furthermore, (n4 + l)RLt < s, Int.

Let €L 4 be the analogue of €1 4 using the radius R L, and let C, € QL A such that
Z; € C, N Iy, 4. This is well-defined with probability tending to 1 as t — oo since,
by (5.5) and Proposition 7.1, we may assume that Z; € I, 4. Note that, without
assuming (5.12), we cannot use Lemma 5.8; in particular, it may be that Z; # G-
Nonetheless, we still have the following.

Lemma 10.3 With probability tending to 1 ast — oo,

G c D, My = Mci: >ar, — x +o(l) (10.15)
and
AY > sup MCD +die; + o(dser). (10.16)

EeEL,,A\{CN,}: CnDE £
In particular, )%: = max{)»%): Ce EL,,Ay cn DE, # 0}

Proof Let us start with (10.15). Note that, by (4.14) and (4.17), h¢|Z;| > hy firy >
EL,, implying the containment; the inequality between eigenvalues then follows by
(5.5). Now fix Ry, < RL satistying (5.11-5.12) and let C; = C;; € €, 4 as in
Lemma 8.2. Then C; C C; and thus A<1) > )\(1) In particular, the remaining inequality

in (10.15) follows byLemma8.3.M0v1ngt0(10.16), fixC e €Lt’A\{C,},CﬂD ' E Y.
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Applying Theorem 2.1 of [7] to D := C and then (5.6) and Lemma 5.2, we get

)\%) < sup Ag) +2d(na) R0
CECL[_AZ CNC#P
< sup )"(Cl) +2d(77A)RLt (1017)
Celpr, A\Ci}:

dist(C, Dy ) <(Int)>

where n4 := (1 + A/(4d))_1. Hence (10.16) follows from Lemma 9.1. O

We can now give the proof of Proposition 4.13.

Proof of Proposition 4.13 Letn, € NbeasinLemma5.2. Fix x € B, (Z;) and define

NO = {J‘[ € P(x,7%: supp(rw) C D;,, 1Hz1a)|( | e — x| > (ng + l)ﬁL[ .
’ TIULw

(10.18)
Let 97 :=3(na + 1)[8; "] and note that

¥, <InsL as L — oo and ﬁLl?L > InL forall L large enough. (10.19)

Choosing y = )‘(CD +2/t,by Lemma 10.3 and (10.19), we may apply Proposition 6.2

(using the islands of &L,, A)to J\/',(f);, obtaining, forall0 <s <7,

E, [efg §(Xu)duq

1
{T(Dlol)c >S5, SUPg<y <y | Xu—x|> & In z}:|

<eZexp {skg—) — 1R, Ing Lt} (10.20)

since %8, Int > (ng + l)ﬁLr. Now we note that, by Lemma 5.12 and Proposi-
tion 4.11(ii),

E, [efg S(Xu)du]

> E, [ef(fé(xu)dlm {‘L’Dir >5, X; = x” > 85 exp {s)»%)to } . (10.21)

Noting that EL In3 L > In L, (4.40) follows from (10.20-10.21), (10.15) and the fact
that L; > t. O

11 Local profiles

In this section, we prove Propositions 4.14—4.15 dealing with the local “shapes” of the
solution to the PAM and of the potential configuration in the vicinity of the localization
center, starting with the latter. In the following we will assume that A > O and v € N
have been taken large enough so as to satisfy the hypotheses of all previous results.
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Proof of Proposition 4.15 Fix 0 < a < b < oo. Let d(-, -) be a metric under which
[—o0, O]Zd is compact and has the topology of pointwise convergence. Since for each
R e N the principal Dirichlet eigenvalue of A + V, in By is simple, there exists
gr > 0 such that

1
<, (11.1)

d(V, V) <er = sup |[V@) = V)| v ”v‘lf—vR -

P
x€BR

where v‘lf, resp., v [’f are the principal Dirichlet eigenfunctions of A+ V,resp., A4V,

in Bg, both normalized in ¢!. Under Assumption 2.8, Lemma 3.2(i) in [12] shows that
the quantity

(11.2)

Zd
F(g) := —x —sup {/\("(V): Ve [-00,01", L(V) =1, }

0 € argmax(V), d(V,V,) > ¢

is strictly positive for ¢ > 0. By Lemmas 5.1, 5.5 and 8.3, there exists a deterministic
non-increasing function §; > 0 such that §; — 0 as t — oo and the following holds
with probability tending to 1 as t — oo:

a 8¢, inf AY >ap —x -39
xrgg);, E(x) <ar, + 6 selonbe] Crs L — X t (11.3)
and
sup L¢, (§ —ar, —&) < 1. (11.4)
s€lat,bt]

Letting tg > 0 with g — oo be such that §; < %f(eR) for all + > tg, we define
w :=1inf {R € N: tpy > t}. (11.5)

Then u; — o0, and we can take 1, < (In#)“ by making tg grow sufficiently fast
with R. By (5.11), (4.17) and Lemma 5.2, we may assume that B,,, (Z,) C C; s C By,.
Defining

(x+Zy) —ar, — & ifx+Zs € C s,

—00 otherwise, (11.6)

V¥(x) = {

we have V* € [—o0, O]Zd, LV*) = Le, (¢ —dr, — &) < 1and 0 € argmax(V*).

Furthermore, we also have AV (V*) = AS:S —ar, — 8 > —x — Fl(ey,). Since also

V() = o8+ Zy),

1
sup [£(x + Zo) = @1, = Vo) v [[675(Ze 4+ = v Oy < - +8 (A1)
t

XEUL

by (11.1) and the definition of F(¢). To conclude, we observe that ay, = a, + o(1)
and that, by Lemma 3.3(iii) of [12], lim;_ ||v’,f’ — Vgl =0. m|
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Next we prove Proposition 4.14 by adapting the strategy of Section 8.2 of [12].
The proof is based on two lemmas whose proofs will be postponed to subsequent
subsections. Fix u; € N, 1 « u; <« Ry, which is enough by (5.11). We will again
decompose the solution with the help of the Feynman—Kac representation, which states
that, for a function f : 74 — [0, 00), f = 0, the function

(x.1) > E, [ef(;S(XS)de(X[)] (11.8)

is the unique positive solution of the equation (1.1) with initial condition f.

Fix an auxiliary function ¢ — T; € N such that \/u; < T; < . For nota-
tional convenience we set By ; := B, (Z). Using (11.8), we may write u(x, s) =
uV(x,s;t) +u®(x, s; t) where

0) Cp) e Jo €(Xu)du
u'’(x,s;1) = Ey |:e 0 1{X.c=0‘TBtCS>Tr}i| (11.9)

and u® is defined by replacing tge, > T by the complementary inequality. The first
lemma shows that the contribution of u® is negligible.

Lemma 11.1 Forany0 <a < b < oo,

@) - ¢
lim sup 1g, Z M =0 in probability. (11.10)

1—00 U(s
selat,br] ot (s)

Finally, the second lemma controls the distance between u‘" and ¢; .

Lemma 11.2 Forany0 <a < b < oo,

(1) -t
lim sup 1g,. WIS e ()| =0 in probability. (1111
1=00 scrarbr] g’ U(s) '
x€Z
Proof of Proposition 4.14 Follows directly from Lemmas 11.1-11.2. O

The remainder of this section is devoted to the proofs of Lemmas 11.1-11.2. In
order to avoid repetition, we fix here 0 < a < b < oo, and all statements made in
what follows are assumed to hold for all s € [a?, bt] with probability tending to 1 as
t — oo.

11.1 Contribution of u®

Proof of Lemma 11.1 Recallthat B, ; = B, (Z).Sinceu® (x, s; 1) < u(x, s), (4.32)
implies

2) -t
lim sup 1g, Y. MZCNSD o probability, (11.12)
1=0 selat,bt] X€B, U(s)
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so we only need to control the sum over x € B; ;. By the strong Markov property,

B
u®x,s:t) =E, |:exp {/ é(Xg)d@} u(XthC , S — 1355)1{)(‘?:0,%? ST,}:| .
0 Ny N iy

(11.13)
Consider the event
RYsai={twp e = 02 w0} (11.14)
introduce the functions
w1 (x, 0) = By [l €000 0 g ] (11.15)

Uy (x, 0) ==, [efo g(x“)d”{Xg:O}m(R;’sg)c] = u(x,0) —ui(x,6),  (11.16)

and define u{” (x, s; 1), i = 1, 2, by substituting u; for u in (11.13). Then, clearly, we
have u®(x, s;t) = u, Dx,s; 1) + u(2) (x,s;1). Our strategy is to separately estimate
the contribution of u(z) and u(2> Starting with u , we claim that, forall 0 < s,

ur(x,s —0) < eg(Zd_g(O))uz(x, s). (11.17)

Indeed, (11.17) can be obtained from (11.16) with & = s by intersecting with the

event (R )N {Xy =0Yu € [s — 0, s]} and applying the Markov property. The
inequality (11.17) in turn shows

(2) .
) Uy 830 |B,, | eTC+HEOR2o 120§ u2x, 5). (11.18)
U(s) U(s)

XEB[J xezd

where we bound £(Xy) < 2pIny ¢ by Lemma 5.1 noting that B, ; C B;. By (4.33—
4.34) (and invariance under time-reversal of the law of X), on G, ; we can bound
(11.18) by

|B,,,| exp {—t(lm)—2 + T,2d + [E(0)] +2pIns t)} , (11.19)
which tends to 0 as t — oo.
Thus we are left with controlling u<12) . To this end, recall the setting of Lemma 5.15

and note that, taking z = 0, A = D7  and I" = B, (Z), we have u; (x, 0) = w(x, 0)
with w as defined in (5.49). Then Corollary 1 and Proposition 4.11 give, on G, ,

-5
ui(x,s —0) < e s (mf ¢,S(y)> ¢7 () > ui(y.s)
ver (11.20)

< e Mg ¢ (DU (),
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where Af’ ¢ 1s the largest Dirichlet eigenvalue of H D, and ¢, is asin Proposition4.11(ii).
Inserting (11.20) in the definition of u(lz), we obtain, for some constant cg > 0,

Z u(lz)(x, s, 1)
X€By g U(s)

<coud sup ¢ (x) sup Ey

X¢B; g X€B; ¢

"Bf o
[efo E(Xu)—2,)du g }] 121

{rsg, <7

Since By s C Dy, (5.5) shows that max,ep, , §(x) — A7 < 2d. Applying Proposi-

1,5

tion 4.11(i), on G; ¢ we may further bound (11.21) by
cocipudecarmt2dTy (11.22)
By our choice of T;, the quantity (11.22) tends to 0 as t — oo, concluding the proof

of Lemma 11.1. O

11.2 Contribution of u®

Let A;’f;, resp., ¢;k§ be the ordered Dirichlet eigenvalues, resp., the corresponding

orthonormal eigenfunctions of the Anderson operator in B; ;. We extend the eigen-
functions to be 0 outside of B; ; = B, (Z). In our previous notation,

Ay =2 and ¢ =65/ 65z, (11.23)

We start with the following important fact.

Lemma 11.3 For any 0 < a < b < oo, with probability tending to 1 as t — oo,

Se[i[gfht] M >ar, — x +o(D), (11.24)
and
se[if,fb,] A =A% = $pn2. (11.25)

Proof By Lemma 8.3, may assume )Lgt)v >ar, — x + o(1). Thus, by Lemma 5.3(i),
he), —He > zpIn2. (11.26)

Since B; s C Ci, A?; < )‘(Cz,) by the minimax formula (see e.g. the proof of [7,
Lemma 4.3]). Furthermore, by Lemma 5.6 together with [7, Theorem 2.1] (note that
he! = A1 >ar, —2A)),

(11.27)

A 1=2(p—v1)
4d

A > A0 24 (1 A
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Now (11.24-11.25) follow from (11.26-11.27). O

Lemma 11.3 will allow us to prove the following localization property for ¢; ;.

Lemma 11.4 There exist c1, c2 € (0, 00) and, for R € N, ¢ > 0 such that, for all
0 < a < b < oo, the following holds with probability tending to 1 ast — oo: For all
s € |at, bt],

D) < crem AL vy e 7, (11.28)

and

D) = ey Yy e Br(Zy). (11.29)

Proof Fix Ay, vi asin Lemma 5.6 and take » > v;. By Lemma 4.2 of [7] and (11.24),
W 5 Ay —2(r—vy)

Z [prs)|" < ( 1+ 2 , (11.30)

XE€B; s\Br(Zs)

proving (11.28). The bound (11.29) is obtained using (11.28) and Lemma 5.7 as in
the proof of Proposition 4.11(ii). O

We can now finish the proof of Lemma 11.2.

Proof of Lemma 11.2 Using the Markov property, we can write

T;
u®(x,5;1) = E, [efo’f(xﬂduu(xr,, s = T ey ,m] . (11.31)
Since
T
x,T)—E [efo §Xduy (x5 — T)1 } (11.32)
i {res, 7}
solves the parabolic equation (5.42) with A := B, and initial condition u(-, s —

T;)13, . an eigenvalue expansion as (5.44) gives

|Bt,s|
(k)
uO(x,si0) =Y el () (g ul s — T)), (11.33)
k=1

where (-, -) is the canonical inner product in 2(29).
Set UV (s; 1) == ) cza uV(x,s; 1) and note that, by Lemma 11.1,

lim sup 1g,,

téoose[at,bt]

'U“)(s; 1)

U6) - 1‘ =0 in probability. (11.34)

It is thus enough to show (11.11) with U (s) substituted by U (s; ). Using (11.33),

write "
u®(x,s51) 15 (X) + Er5(x)

UM (s; r) B ||¢t(f; ”ZI(Z‘{) + erZd Et,s(x)

(11.35)
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where 5
(Grs ut.s — 1)

O, ® Py
E;s(x) = e IO =M ) () =L ) (11.36)
Y ,; e u s — )

Once we show that

lim  sup 1, [[Ers] e =0 inprobability, (11.37)

=00 s€lat,bt]
the desired conclusion will follow by the bound (recall ¢7 ; = ¢>,(1§ / ||¢,(f§ lg1)
2| Eis ]y

u (-, s;1)

UD(sit) ¢rs()

@ (11.38)

o@y V= |Eislpga,

where we used that ||¢;(,1; o1 (zay = ||¢l(f; ”132(211) = 1. To prove (11.37), we first use the

Cauchy-Schwarz inequality and Parseval’s identity to obtain

TNy (1Bl . 2 (|Bus X 2
i ' 6] *)
|Ers()] < —75 D (i 1) D (b uCs = 1))
(. uC.s —T) \ & —

u(-,s — Ty 2
— T2 lueC, Dlle (Bis) 4

' 11.39
{ t(l)vv u(-,s —Ty)) s (X) ( )

Now it suffices to show that, for some positive constants cp, ¢, on Gy ¢

lu,s = Tl 2czay < coe” s Us), (11.40)

and
(B uC,s —T)) = cre s U(s); (11.41)

indeed, using (11.39-11.41) and (11.25), we can bound

sup 1 Grs

co _pi2
Esllyige = —Qui+ Dl 5T (11.42)
s€lat,bt] Cl

which tends to 0 as + — oo by our choice of 7;. Thus it only remains to prove
(11.40-11.41). We start with (11.40). By the triangle inequality,

luCy s — Toll gy < lurCos — Tl + luaCos = Tl (11.43)

where u1, us are defined as in (11.15-11.16). Reasoning as in (11.17-11.19), we can
see that, on G; s,

luaCys — Tt)||e2(zd) - lua (s s — Tt)”el(zd)
U(s) B U(s)
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< exp [T:2d + EO)]) — 1(n) 2} < e (11.44)

L]
since A7 ¢ <

< maxyep, , §(x) < 2pIny ¢ by Lemma 5.1. Using (11.20) we get, on G, s,

°s - T .
hur .5 = Tleay < 7% T < =S~ T (11.45)
U(s)

since A7 ¢ > A7 . This shows (11.40). For (11.41), letu'”, u® be as in (11.9) and write

Cs), ¢r3) = W Cosi0), ¢3) + W Cosin), ¢1))
=M Uy s = T), ¢13) + (P (5100, d1h) (11.46)

(where we used the spectral representation (11.33)) to obtain
(WCs =T, dily) = e {uC,9), ¢1) — @@ Coss0, )} (11.47)

Fix R € N such that (4.32) holds with § < % and, for this R, take ¢ > Oasin (11.29).
Then on G; ¢ we can estimate

WG ¢ = Y Ph@ux,s) = ex(1 = )U(s) > 3exU(s).  (11.48)

Xe€BR(Zy)

On the other hand, by Lemma 11.1, the second term inside the brackets in (11.47) mul-
tiplied by 1 gt is smaller than e U (s) /4 with probability tending to 1, proving (11.41)
with ¢; = 45 %- This concludes the proof of Lemma 11.2. O
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12 Appendix: A tail estimate
In this section, we prove (7.18) for Y, given by (7.21) using an approach from [7]. We

will strongly rely on Assumption 2.1. The first step concerns the asymptotic for the
upper tail of &.

Lemma 12.1 For any ¢ > 0, there exists to > 0 such that, for all t > t,
19 Prob (£(0) > @ + sdy) < e™*179 Vs > 0. (12.1)

Proof Recall the definition of F in (2.1). Note that ¢ = exp(el @)) to write
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“In thProb EO0) > a +sd,)}
_ oF@) (eF@+sd,)—F@) _ 1)

> " @ (F (@, + sd;) — F@)}. (12.2)

where in the last inequality we used e* — 1 > x. Using (2.2) and the Mean Value
Theorem, we obtain F (a; +sd;) — F(a;) > sd;(1 —g)/p forall s > 0 if 7 is large
enough. Since d; = pe~F@) (12.1) follows from (12.2). o

Lemma 12.1 will allow us to reduce the sum in (7.18) to |x| < 6d6t/d;.

Corollary 2 Foranyn € R, 6 € (0, 00),

. = x|
Jlim Z Prob <Y,(0) > 5 +n) =0 (12.3)
xe2N,+1)z2¢
|x|>6d0t/d;

Proof Recall that maxyeBy, E(x) > Ag% by (5.5). Using a; = a; — x + o(1) and
X < 2d, we obtain, for each L € N,

. = x|

lim su Prob ( Y; (0 —

t— P Z : < t( ) - Ot o
x€@N;+1)24
|x|>6d0t /d;

d,
< lim sup Z | By, |[Prob <§(0) >0+ — (m + 217))
r—

< 2 \ 0t
xe@N;+1)24

|x|>6d6t/d, (12.4)
|Bg,| X|2N; + 1)
<l L === )
sims Y Siee |- (MG )]
xeZ

|x|>Lt/2N,+1)

=/ ei‘l‘(%brzn)dz
lzI=L

by Lemma 12.1 and (2.6). Since the last integral converges to 0 as L — oo, the
claim (12.3) follows. O

To control the sum in (7.18) with |x| < 16d6/d;, we will use the following lemma.

Lemma 12.2 There exist co, € > 0 such that, for all large enough t and all s > 0,
4 ~
———Prob (Y;(0) > s) < 4e 05 7%, 12.5
a0 > ) < (12.5)

Before we prove Lemma 12.2, let us finish the proof of (7.18).
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Proof of (7.18) By Corollary 2, we may restrict the sum over |x| < t6d6/d;. Fix
n € R. Taking n > 0|n|, if |x| > nt then |x|/(6t) + n > 0. Thus we may bound, by
Lemma 12.2,

Z Prob <? 0) > Ix + n)
! ot

xe@N;+1)74
nt<|x|<16d6/d,

ey (Inr)? 2N,)? Ix|2N; + 1)
=s—p  t > aAep | gt
xezd
nt<|x|(2N;+1)<t6d6 /d;

(12.6)

foraconstantc, > 0andall large enough ¢. To conclude (7.17), note that the right-hand
side of (12.6) converges as t — 00 to

_en( 2l
4 / (i) g, (12.7)
lz|=n

which converges itself to 0 as n — oo. O

The remainder of this section is dedicated to the proof of Lemma 12.2. Note that,
by Assumption 2.1, £(0) has a density f with respect to Lebesgue measure given by

F'(r)exp {F(r) — eF(’)} , r > essinf £(0),

fir) = {0 otherwise. (12.8)

The following bound holds for f.

Lemma 12.3 Fix afinite A C 74 and two functions a, ¢ : A — R. Then, ast — o0,

I1 f@ + o) +ax)d)
f@ +o(x)

xeA

[1€3)
<expi—(l+o(1) Y aler +o(1)Lal9) (12.9)

xeA

where L (@) is as in (5.9). If a(x) > 0 and |p(x)| < M, then o(1) only depends
on M. If |a(x)| V |o(x)| < M, then equality holds in (12.9) with o(1) only depending
on M.

Proof This follows by the arguments in the proof of [7, Lemma 7.5]. O

Fixnow ¢g := %e‘ﬂdH)/p ; this will the constant appearing in (12.2). The following
corollary is a convenient rephrasing of (12.9):
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Corollary 3 There exists to > 0 such that, for allt > t9, s > 0, A C 74 and all
a,9: A— Rwitha(x) >0, =2(d +1) < ¢(x) <1,

1—[ f@ + o(x) + sa(x)d;)

(@ + o(x) < exp | —2cos Z a(x) + LA(gp)} . (12.10)

xeA xeA

We can now prove Lemma 12.2:

Proof of Lemma 12.2 For t > 0 such that a; > essinf £(0) + 1, define the continu-
ous map

r ifr <a; —1,
Fis)y:=3r—sd; ifr>a;+sd;, (12.11)
linear, otherwise.

Then F; s is bijective with inverse

r ifr <a;—1,
Flo)y = r+sd ifr=a, (12.12)
linear, otherwise.

Let & s (x) := F; 5(5(x)). Then & ,(x) has a density with respect to &£(x) given by

. 12.13
dE() FFL ) ( )

détv(x)()_ 1 iftr <a, —1,
(1 4 sdy)r=al I o otherwise.

Recalling that A%)R (&) denotes the principal Dirichlet eigenvalue of A+£ in By, define

Gy = {s: Mgy (§) > ar +5dp, Lpg (6 —a) <In2, max &(x) fa,+1}.
Ry ! XEBR;

(12.14)
Since £(x) — sd; < & 5(x) < &(x),& € G, implies & 5 € G; 9. Write
Prob (&5 € Gy0)
Cu FFLE)
—E 1 1+ d |{X€BRt. ag 1<§(X)<a;}| I,S—
Gz,o(é)( sdy) xl_B[R f(?(x))
S(x)>a,’—1

(12.15)

where E denotes expectation with respect to environment law Prob. Bound the middle
term in (12.15) by

(1 + sdp)|Bre] < s @R+DT  gsco (12.16)
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for large ¢ by (5.11). For the product term, define ¢(x) := £(x) —a, < 1 on G; o, and
a(x) € [0, 1] by the equation &(x) + sdya(x) = ]—";;1 (£(x)). Note that, if a(x) # 0,
then ¢(x) > a; — 1 —a; > —2(d + 1) for large t; thus, by Corollary 3,

—1
1 %Szm —2cos > alx)t (12.17)

X€EBR,: §(x)>a;— XEBR,: §(x)>a;—1

since ,CBR, (¢) < In2on G, 0. Moreover, by (5.5), on G; o we have £(x) > a, for some
X € Bpg, and thus also a(x) = 1. Noting now that, by (12.1) and Lemma 6.4 of [7],

Prob (Af, (6) > a; +5d;) < Prob (§ € Grg) + 0™+ (12.18)
Ry
for some g9 > 0, we obtain by (12.14-12.18)
Prob ()‘(I;)R, &) >a + Sdz) < 2e~“%Prob ()L(I;)Rt &) > at> + o(t—(d+so)). (12.19)

To pass the estimate to A(l) (5 ), note first that, by Lemma 7.6 of [7],

d
t
lim sup 7~ Prob (M” ) > at) <1, (12.20)
t

—00

and thus for large ¢ the right-hand side of (12.19) is at most 3¢~ (2R, /)¢ +
o(t_(d+80)). Moreover, by Lemma 7.7 of [7] applied to t; := a; — ap + sdp and
R} = (Inp L)?,

d
t ~ -
R (,\“) &) > a + sd,) < N74 4 46705 4 o(10) (12.21)

t

for ¢ large enough, noting that o(L~%) and o(1) in equation (7.27) of [7] are uniform
on the sequence 7. Note that the factor 2 multiplying R, and N; here and not in
[7] appears since our boxes have side-length 2R + 1 while theirs R. Recalling that
N, > 1P for some B > 0 and taking ¢ := ¢g A (Bd), the lemma is proved. O

13 Appendix: Compactification

Let ¢ := (R x RY) U [0, 00) be equipped with a metric d defined by setting, for
0,0" € [0,00) and (A, 2), (M, 2)) e R x R,

d@, 9’) = d©, (1, 2) = e—k + ‘ﬂ _9l,
1va
| 2 (13.1)
d((h,2), (V. 7)) = e W (1 — e IAMI=le=2] B '
(O Gzi=e ( © )+lvk 1V
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One may verify that d is indeed a metric under which € is separable, complete and
locally compact. Moreover:

Lemma 13.1 For any (6,n) € (0,00) x R, the set Hg C €& defined in (7.15) is
relatively compact.

Proof Note that the closure of Hz in € is given by
H_,ﬁ;:{(x,z)eRde:)\—%'zn}um,e]. (13.2)

Fix a sequence (Z);),eN in H_?} and consider the following three cases:

1. &, € [0, 8] for infinitely many n;

2. Thereis aninfinite subsequence &y; = (4, zj) € Rx R? and (Aj) jenis bounded,
implying that {&),;: j € N} is contained in a compact subset of R x RY;

3. There is an infinite subsequence Z,; = (4, z;) € R x R9 and lim; o Aj = 00.
Note that limsup;_, o, |z;|/A; < 6.

As is directly checked, in each case there exists a subsequence converging in € to a

point of H_27 thus proving the claim. O

We finish the section with the following important property of €.

Lemma 13.2 For any compact set K C €, there exist 0 € (0, 00) and n € R such
that K N (R x RY) € HY.

Proof Cover each x € K with an open set H?,j_ U [0, 6,) for some 6, > 0,n, € R.
Use compactness to extract a finite subcover corresponding to xp, ..., xy and set
0 = mava:1 0y, n :=min’_| 1y, to obtain the result. O

14 Appendix: Properties of the cost functional

In this section we prove Lemmas 7.5, 7.6, 7.8 and 7.9.

Proof of Lemma 7.5(i) Fix 6y < 6 and set (A;, z;) = &3 (P)(6;), i = 0, 1. Then
Oo(A1 — Ao) < |9 (A1, zD)| — [P (X0, 20)| < O1(A1 — Ao) (14.1)

by the definition of lI/I;”(P), so that all three functions are non-decreasing. Now,
if (Ao, z0) # (A1, z1), then one of the inequalities above is strict, since otherwise
A= Xo, 190, 20| = (o, 20)| and we would have (A;, z;) € &Y (P)(;) for
all i, j € {0, 1}, implying that (A1, z1) = (Ao, z0) by the definition of Z}"(P). This
concludes the proof. O

Proof of Lemma 7.5(ii) We will first consider the case |supp(P)| < oo. We may
assume | supp(P)| > 2 since otherwise there is nothing to prove.
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Consider first the case i = 1. lI/(” (P) is continuous as the pointwise maximum of
finitely many continuous functlons Lemma 7.5(i) implies that & )(P) jumps finitely
many times, and thus has left limits; let us to show that it is cadlag Fix 90 > 0 and
let (Ao, 20) := Ej(P)(0p). Note first that, if (1, z) € &Y (P)(6o), then ) (A, z) <
1119 (X0, zo) for all & > 6y because L < Ag by definition. On the other hand, if (A, z) ¢
6(')(77)(90) then there exists 8, ; > 0 such that ‘ﬁe A, z2) < 1// (X0, zo) for all
0 € [60, 6o + 81 ;1. Setting § > 0O to be the smallest among these, we can see that

(h0, 20) € &Y (P)(©O) C &Y (P)(6y) Y6 € [6o, b + 8] (14.2)

implying "'“)(77)(9) = "'“)(77)(90) for all 6 € [6y, 6y + 5], i.e., Sf})(P) is right-
continuous.

Assume now by induction that the statement of Lemma 7.5(ii) has been proved in
the case | supp(P)| < oo foralli < k — 1, k > 2. Note that, by the definition of @,

PP = Y 1{El;l)m)(g):g}qﬁf,k‘”(Pg)(e) (14.3)
& esupp(P)

where Pz (-) := P(-\{&}). Since ’"“)(P) is cadlag, it follows from the induction
hypothesis that q§(k) (P) is also cadlag. To prove in addition that 'Jf(k) (P) is continu-
ous, we only need to show that, if 59 := 25" (P)(0—) # ’““)(73)(0) =: F, then
llllgk I>(77&0)(9) = lIII;k Y(P£)(0); but this follows from the definition of lll(k " since,
by the continuity of ¥,"(P), ¥/ (Z9) = ¥} (&). This finishes the proof in the case
| supp(P)| < oc.

The case | supp(P)| = oo can be reduced to the previous one as follows. First note
that we may substitute (0, 0o) by [a, b] with 0 < a < b < oo arbitrary. Fix i € N.
Since Hg TR x RY as n — —oo, Hf; is relatively compact and P e p, there
exists an € R such that i < |supp(P?) N Hyl < Pﬁ(H’;) < oo. Noting that, on
la, b], @5 (P) = @ (P) where P'(-) := P(-N{(%,2): (h, ¥(%, 2)) € HL}), we fall
into the previous case.

For the last statements, note that the proof above shows that "'<')(79) jumps finitely
many times in each compact interval [61,6;] C (0, 00). Moreover, if we have
V(& 2" (P)(61)) # Oand & ’““) (P)isconstantin [61, 6>], then lI/“) (P) is strictly increas-
ing m [61,6-]. 0O

Proof of Lemma 7.6 We first consider the case 1 < |supp(P)| < oo. By Proposi-
tion 3.13 of [24], for ¢ large enough there exist bijections 7; : supp(P) — supp(P;)
such that

lim sup dist(T3(&), &) =0. (14.4)

=00

E esupp(P)
Letting 7, (%, 2) := (A, % (A, 2)), by (7.45) and supp(P) N R x {0} = @ we also have

lim sup dist(Z; 0 T,(&), &) =0, (14.5)
170 Zesupp(P)
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and 7; o Ty is a bijection onto supp(P;?’). In particular, 73;9 " — P.
To characterize the jump times of our processes, the following definition will be
useful: For 9 : R x R4, 5, = (Ai,zi) e Rx RY,i=0,1,and 0 > 0, let

PEDI=IP(EDL ¢ a2 2o and P (& Y (5
F(E1, Bo) ::{ Lo if A > o and Y (B1) < vy (Bo).

) (14.6)
o0 otherwise.

When ¥ (A, z) = z, we omit it from the notation.
We now proceed with the proof. Let ap := a and, recursively for £ € N,

ag:==inf {0 > ap_1: 31 <i < |supp(P)|, 5 (P)(0) # &3 (P)(ae-1)}. (14.7)

Note that &@(P) jumps finitely many times. Indeed, for i = 1 this follows by
Lemma 7.5(i), and for i > 2, by induction using (14.3). Thus £, = {.(a,P) :=
inf{¢ > 0: agq4) = 00} < 0.

We proceed by induction on ., starting with £, = 0. Since P € ///E?, the values
i = Y (ED(P)(a)) are all distinct, which together with (14.4-14.5) implies that
"(')(P;)(a) = T,(ED(P)(a)) for all i when ¢ is large enough. In particular, (14.4)
1mphes the result in the case ¢, = 0 Assume by induction that for some L € N, the
statement has been proved for all @’ € (0, 00) and P’ € ///}? satisfying | supp(P")| <
oo and £y (a’,P’) < L — 1, and suppose that £, = £,(a, P) = L (in which case
necessarily |supp(P)| > 2).

Note now that, because P € ///P , there exists a unique i| such that both = “(P) and
E @D (P)jumpata; while @ (P)is continuous ata; foralli ¢ {i1, i;+1}. Moreover,
Z(P)(ay) is the point & € supp(P) minimizing F, (&, W (P)(a)) [cf. (14.6)],
while a1 = F4 (8 (P)(a1), EV(P)(a)) and "(‘1“)(7’)@1) = 7"“(7’)(61)

Let ae, £ be the analogues of ay, £, for Sg)(P,) and fix a’ € (a1,a2) N Q.

By (14.4-14.5) and the previous discussion, when ¢ is large enough, ué)(P,) does
not jump in [a,a'] for all i ¢ {i1, i1 + 1}, 85" (P)(a}) = T(EW(P)(ar)), and
Egrlﬂ)(ﬂ)(aﬁ) = Sgtl)(P,)(a) = T;(EW(P)(a)). Moreover, a} > a’ > a and

= FJ(&," (P (a}). By ) (a))
= Fo(T; o T(EWV(P)(a1)), T; o T,(EW(P)(a))), (14.8)

allowing us to conclude, by (14.5),

lay —aj| < max _ |Fa(&1, &2) — Fa(T; 0 T1(E1), Ts 0 Ty (E2))| —> 0.
&1 .:zesupp ) t—00
Fa(E1,82)<00

(14.9)

Define now a time change o; : [a, a’] — [a, a’] by setting
oi(a) =a, oi(a1) =aj, o) =ad andlinear otherwise. (14.10)
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Then, by the previous discussion together with (14.4), (14.5) and (14.9),

lim  sup sup oy (0) — 0] v |@) (P)(0:(0)) — @“(P)(©)| = 0.
1730 | i <|supp(P)| Oela,a’] !
. (14.11)
Since £, (a’,P) =L —1and P € ///}?/, by the induction hypothesis we can extend o,
to [a, 00) in such a way that (14.11) holds with [a, a’] substituted by [a, 00), finishing
the proof in the case | supp(P)| < oo.

Consider now the case | supp(P)| = co. We may assume without loss of generality
that c, in (7.46) is not larger than 1. Let us first show (7.47). Fix k € N and a point
b € (a, 00) N Q. Note that, since P € ., b is a continuity point of @ (P) for all
1 <i <k.Letn € R be negative enough such that, for all # large enough,

< |supp(P) Ny

= ‘supp(Pz) NHI| < Pi(HP ) = P(HP) < oo, (14.12)

which is possible because P € .#p and P; — P.Moreover, since supp(P)NR x {0} =
@, by (7.45-7.46) we may also assume that

k < ‘supp(P;’f) NHS (14.13)

and
supp(Py) NHY € T; (supp(P )N H”’/‘*) , (14.14)

where 7; is defined right before (14.5). Now (14.12-14.14) imply that, on [a, b],
®(P) = @V(P') and G (P;) = @) (P)) forall 1 < i < k, where P'()) :=
PN H,,h/ “*) and analogously for /. Since P, — P’, (7.47) follows by the previous

case and Theorem 16.2 of [4]. The convergence Pt — P follows from (14.14), (7.45)
and P; — P (note that b, n above can be taken arbitrarily large, respec. negative). O

Proof of Lemma 7.8 By Lemma 7.7, it suffices to show (4) = (1). Arguing as
at the end of the proof of Lemma 7.6, we reduce to the case |supp(P)| < oo.
Denote by 7: R x RY — R the projection on the second coordinate, i.e., the
map 7 (A,z) := z. Forz € 7 (supp(P)), set A, := max{r: (A,z) € stlpp(P)} and
define P := Zzeﬂ(supp(p)) 3(x,,z)- Note that 7 is injective over supp(P), and that
EV(P) = "'“)(79) By (14 4-14.5), when ¢ is large enough, 7 is injective over the
support ofPt = PoT ! and moreover ué)(Pt)(e) = Sl(;)(P,)(O) forall @ € [a, b].
This concludes the proof. O

Proof of Lemma 7.9 For (A, 7) € R x (R?\{0}), let

Ya ',z > Ya(A, z) or

L ror d.
Ak, 2) .—{()»,Z)GRX}R eV, Z) = Ye(A, z)and A > A

} . (14.15)
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By the definition of P?, .7:(? (P, A, z) = PP {AM, 9 (X, 2))}. Since & (s, 1) — 2«
by (7.45) and 7?;9’ — P by Lemma 7.6, we may assume that 9;(A, z) = z for all
(A, z) € R x R4,

Now, since P € //?];’?, Fa(P,hy,24) =P {H(&fa(x*,z*)} and there exists a § > 0
such that
P s | =1+ P Mo ea) - (14.16)
On the other hand, since P; — P and (A, z;) — (A4, 24), When ¢ is large we also
have
PTG e | =P s | (14.17)
and
(e 20) € My, 20—\ Mz 400 (14.18)

In particular, for all # large enough,

Pl AGa 20} =P HG o)
=P {Ha'/fa()»*,z*)+8} =P {Haw(x*,z*)} ’

concluding the proof. O

(14.19)
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