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The Parabolic Anderson Model

We consider the Cauchy problem for the heat equation with random coefficients and
localised initial datum:

∂

∂ t
u(t,z) = ∆

du(t,z)+ξ (z)u(t,z), for (t,z) ∈ (0,∞)×Zd , (1)

u(0,z) = δ0(z), for z ∈ Zd . (2)

� ξ = (ξ (z) : z ∈ Zd) i.i.d. random potential, [−∞,∞)-valued.

� ∆d f (z) = ∑y∼z
[

f (y)− f (z)
]

discrete Laplacian

� ∆d +ξ Anderson Hamiltonian

The solution u(t, ·) is a random time-dependent shift-invariant field.

Its a.s. existence is guaranteed under a mild moment condition on the potential.

It has all moments finite if all positive exponential moments of ξ (0) are finite.
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Motivations and Feynman-Kac formula

Interpretations / Motivations:

� Random mass transport through a random field of sinks and sources.

� Expected particle number in a branching random walk model in a field of
random branching and killing rates.

� Anderson Hamiltonian ∆d +ξ describes conductance properties of alloys of
metals, or optical properties of glasses with impurities. Many open questions
about delocalised versus extended states.

Background literature and surveys: [MOLCHANOV 1994], [CARMONA/MOLCHANOV

1994], [SZNITMAN 1998], [GÄRTNER/K. 2005].

Main tool for analysis: Feynman-Kac formula

u(t,z) = E0

[
exp
{∫ t

0
ξ (X(s))ds

}
1l{X(t) = z}

]
, z ∈ Zd , t > 0,

where (X(s))s∈[0,∞) is a simple random walk on Zd with generator ∆d, starting from z
under Pz.
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Questions and Heuristics I

MAIN GOAL: Describe the large-t behavior of the solution u(t, ·).

In particular: Where does the main bulk of the total mass stem from?

Total mass of the solution: U(t) = ∑
z∈Zd

u(t,z), for t > 0.

Much work is devoted to a thorough understanding of the effect of

Intermittency:

Asymptotically as t→ ∞, the main contribution to U(t) comes from few small remote
islands.

� These islands are randomly located, t-dependent, not too far from the origin.
� The solution u(t, ·) and the potential ξ (·) are extremely large in these islands.
� The large-t behavior is determined by the largest eigenvalue of the Anderson

Hamiltonian ∆d +ξ (i.e., by the bottom of the spectrum of −∆d−ξ ) in large
t-dependent boxes.

� This in turn is determined by the extreme values of the potential ξ .
� Hence, only the upper tails of ξ (0) matter.
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Questions and Heuristics II

If all the moments 〈U(t)p〉 of U(t) are finite for any p, t > 0, then intermittency can be
characterised by the requirement

0 < p < q =⇒ limsup
t→∞

〈U(t)p〉1/p

〈U(t)q〉1/q
= 0.

Presence of intermittency

[GÄRTNER/MOLCHANOV 1990]: In this sense, intermittency holds as soon as the
potential is not a.s. constant.

How many random potentials are interesting?

Under some mild regularity assumption, the case of finite positive exponential
moments has been classified in four universality classes ([VAN DER

HOFSTAD/K./MÖRTERS 2006]): the double-exponential distribution, a boundary
case, bounded potentials and almost bounded ones.
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Questions and Heuristics III

How large are the islands? How large are the potential and the solution there?
What do their shapes look like there?

� Strong answer in two main special cases ([GÄRTNER/K./MOLCHANOV 2007],
[SZNITMAN 1998]): the complement of certain islands is negligible.
In the islands, the potential and the solution approach the minimizer ϕ of a
characteristic formula and the eigenfunction of ∆+ϕ , respectively.

� Weakly answered in many cases ([GÄRTNER/MOLCHANOV 1998],
[BISKUP/K. 2001], [VAN DER HOFSTAD/K./MÖRTERS 2006]):
Identification of moment asymptotics and the almost sure asymptotics of U(t).

How many islands have to be taken into account?

� Rough bounds: to(1) ([SZNITMAN 1998], [GÄRTNER/K./MOLCHANOV 2007]).

� Conjecture: O(1).
Open for finite positive exponential moments (ongoing work [BISKUP/K.]).
Proved for heavy-tailed potentials ([K./LACOIN/MÖRTERS/SIDOROVA 2009]).
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Heuristics using Fourier expansion

Let λk(ξ ) be the eigenvalues of ∆d +ξ with zero boundary condition in the cube
Qt = [−t, t]d ∩Zd and corresponding eigenfunctions ϕk, forming an ONS.

Then, with some suitable H(t)� t,

〈U(t)〉 ≈
〈

∑
k

etλk(ξ )
ϕk(0)〈ϕk,1l〉

〉
≈ eH(t)〈etλ1(ξ−H(t)/t)〉

≈ eH(t) exp
{

t sup
ϕ

(
λ1(ϕ)−L (ϕ)

)}
,

where a large-deviation rate function is given by

L (ϕ) =− lim
t→∞

1
t

logProb
(
ξ (·)−H(t)/t ≈ ϕ(·)

)
.

Hence, there is a large-deviation principle at work:
On the event {ξ (·)≈ H(t)/t +ϕ(·)},
the exponential contribution to the Feynman-Kac formula is H(t)+ tλ1(ϕ),
and the probabilistic price is exp{−tL (ϕ)}.

FInally, optimise over all shapes ϕ .
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Heuristics using local times

Introducing the walker’s local times `t(z) =
∫ t

0 dsδXs(z) and the cumulant generating
function H(t) = log〈etξ (0)〉,

we have

〈U(t)〉=
〈

E0

[
exp
{

∑
z∈Zd

ξ (z)`t(z)
}]〉

= E0

〈
exp
{

∑
z∈Zd

ξ (z)`t(z)
}〉

= E0 exp
{

∑
z∈Zd

H(`t(z))
}

= eH(t)E0 exp
{

tΦt( 1
t `t)
}
,

with

Φt(ψ) = ∑
z∈Zd

H(tψ(z))−ψ(z)H(t)
t

.

Now use that Φt(ψ)→Φ(ψ) = ρ ∑z ψ(z) logψ(z), and the large-deviations principle
[DONSKER/VARADHAN ≈ ’75], [GÄRTNER ≈ ’75]

P0
( 1

t `t ≈ ψ
)
≈ exp{−tI(ψ)}, with I(ψ) = ∑x∼y

(
ψ(x)−ψ(y)

)2
,

to get that

〈U(t)〉 ≈ eH(t) exp
{

t sup
‖ψ‖1=1

(
Φ(ψ)− I(ψ)

)}
.
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The double-exponential distribution I

With ρ ∈ (0,∞), consider the upper tails

Prob(ξ (0) > r)≈ exp
{
− er/ρ

}
, r→ ∞.

Then H(t) = log〈etξ (0)〉 turns out to be H(t) = ρt log(ρt)−ρt +o(t).

Moment asymptotics.

[GÄRTNER/MOLCHANOV 1998]: For any p ∈ N, as t→ ∞,

〈U(t)p〉= eH(t p)e−t p(χ+o(1)), where χ = inf
ϕ : Zd→R

[
L (ϕ)−λ (ϕ)

]
,

and L (ϕ) = ρ

e ∑z∈Zd eϕ(z)/ρ , and λ (ϕ) is the top of the spectrum of ∆d +ϕ in Zd .

� Minimiser(s) exist. They are unique for ρ sufficiently large and rather inexplicit.
� L (ϕ) is a large-deviation rate function for the shifted potential ξt = ξ −H(t)/t.

On the event {ξt ≈ ϕ}, the contribution to the Feynman-Kac formula is
quantified by λ (ϕ). The optimal profile describes the total expected mass.

� The structure of the asymptotic optimal profile is discrete; no spatial scaling is
involved.
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The double-exponential distribution II

Almost sure asymptotics.

[GÄRTNER/MOLCHANOV 1998]: As t→ ∞,

1
t

logU(t) =
H(log t)

log t
− χ̃ +o(1), with − χ̃ = sup

{
λ (ϕ)

∣∣∣ϕ : Zd → R,L (ϕ)≤ d
}

.

� The maximiser(s) of χ and χ̃ are identical.

� A Borel-Cantelli argument shows that, with probability one, for all sufficiently
large t, every potential shape ϕ satisfying L (ϕ)≤ d appears on some island in
the cube Qt = [−t, t]d ∩Zd in the potential ξlog t = ξ −H(log t)/ log t. The
contribution to the Feynman-Kac formula coming from those paths that go
quickly there and spend most of the time there is quantified by λ (ϕ). The
optimal such profile ϕ describes the total contribution.

� Every such island with ϕ an optimal profile is potentially one of the intermittent
islands we mentioned above. The corresponding eigenfunction is localised.
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The double-exponential distribution III

Geometric characterisation of intermittency.

[GÄRTNER/K./MOLCHANOV 2007]: Almost surely, for any sufficiently large t, there is
a random set Γt ⊂ Qt such that |Γt |= to(1) and

� min
z,z̃∈Γt : z6=z̃

|z− z̃|= t1−o(1),

� lim
R→∞

liminf
t→∞

1
U(t) ∑

z∈QR(Γt )
u(t,z) = 1,

� For any z ∈ Γt and any R > 0, in the cube QR(z), the shifted potential ξlog t
resembles the maximiser ϕ of −χ̃ , and the solution u(t, ·) resembles Ct times
the principal eigenfunction of ∆d +ϕ for some suitable norming Ct > 0.

� Main tools of the proof: probabilistic cluster expansion, Borel-Cantelli
arguments, deeper analysis of the variational formula χ̃ .

This is one of the universality classes. The second one is the boundary case ρ = ∞.
The third one is introduced on the next slide, the fourth one is a kind of continuous
version of the first one.
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Potentials bounded from above

Assume esssup(ξ (0)) = 0. With γ ∈ [0,1), consider the upper-tail behavior

Prob(ξ (0) >−x)≈ exp
{
− const.x−γ/(1−γ)

}
, x ↓ 0.

� The case γ = 0 contains the case of i.i.d. Bernoulli traps, where ξ (0) ∈ {−∞,0}.
� H(t) = log〈etξ (0)〉 is roughly H(t)≈−const. tγ .

The relevant islands have diameter of the order

α(t) = tν , where ν =
1− γ

d +2−dγ
∈
(
0, 1

d+2
]
.

Moment asymptotics.

[BISKUP/K. 2001]: For any p ∈ (0,∞), as t→ ∞,

1
t p

log〈U(t)p〉=−χ +o(1)
α(pt)2 , where χ = inf

ϕ∈C (Rd→[−∞,0])

[
L (ϕ)−λ (ϕ)

]
,

and L (ϕ) = const.
∫
Rd |ϕ(x)|−γ/(1−γ) dx,

and λ (ϕ) is the top of the spectrum of ∆+ϕ in L2(Rd).

� L is a LD rate function for the rescaled potential ξt(·) = α(t)2ξ (·α(t)).
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Lifshitz tails

� νR = 1
#QR

∑k δ−λR,k
spectral measure of −∆d−ξ in the box QR.

� N(E) = limR→∞ νR([0,E]) integrated density of states (IDS).

Lifshitz tails.

[BISKUP/K. 2001]: lim
E↓0

log | logN(E)|
logE

=−1−2ν

2ν
∈
(
−∞,−d

2

]
.

Proof idea: Laplace transform

L (νR, t) =
∫

∞

0
e−Et

νR(dE) =
1

#QR
∑
k

etλR,k

=
1

#QR
∑

z∈Zd

Ez

[
exp
{∫ t

0
ξ (Xs)ds

}
1l{X[0,t] ⊂ QR}1l{Xt = z}

]
R→∞→

〈
E0

[
exp
{∫ t

0
ξ (Xs)ds

}
1l{Xt = 0}

]〉
(ergodic theorem)

t→∞≈ exp
{
− t

α(t)2 χ

}
,

according to the moment asymptotics. Now invert the Laplace transform.
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Heavy-tailed potentials I

Another potential class, the Pareto-distribution:

Prob(ξ (0) > r) = r−α , r ∈ [1,∞), (Parameter α > d).

Then the parabolic Anderson model possesses a.s. a solution u(t, ·), but U(t) has no
moments.

Weak Asymptotics for Pareto-Distributed Potentials

[VAN DER HOFSTAD/MÖRTERS/SIDOROVA 2008]. For x ∈ R,

lim
t→∞

Prob
(( t

log t

)− d
α−d 1

t
logU(t)≤ x

)
= exp

(
−µxd−α

)
,

where µ ∈ (0,∞) is some suitable, explicit constant.

� 1
t logU(t) has the same weak asymptotics as the maximum of td independent
Pareto (α−d)-distributed random variables.

� Apparantly, the potential’s random fluctuations dominate the smoothing effect of
∆d.
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Heavy-tailed potentials II

Well-known: Large values of a sum of i.i.d. heavy tailed random variables are most
easily realised by having just one of the values extremely large (and the others of
moderate size).

This principle can be translated to the solution of the parabolic Anderson model:

Complete Localisation for Pareto-Distributed Potentials

[K./LACOIN/MÖRTERS/SIDOROVA 2009]. There is a process (Zt)t>0 in Zd such that

lim
t→∞

u(t,Zt)
U(t)

= 1 in probability.

Furthermore, Zt(log t/t)α/(α−d) converges in distribution to some non-degenerate
random variable.

� Hence, there is precisely one intermittent island, a singleton.

� The localisation statement is not true in almost sure sense, since the process
(Zt)t>0 jumps.
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Open problems and further questions

� Is just one island enough for general potentials? What is the contribution from
the others? (ongoing work with MAREK BISKUP)

� Make the connection to Anderson localisation mathematically rigorous.

� Describe transition from localised solution (u(0, ·) = δ0(·)) to homogeneous
solution (u(0, ·)≡ 1) (see works by [BEN AROUS, MOLCHANOV, RAMIREZ]).

� Replace ∆d by σ∆d and let σ = σ(t) depend on time (recent thesis by SYLVIA

SCHMIDT).

� Replace ∆d by σ∆d and let σ = σ(x) depend on time and a new randomness
(randomly perturbed Laplace operator). Ongoing thesis.

� Ageing properties: asymptotics for time-correlation

〈U(t)U(t + s(t)〉√
〈U(t)2〉〈U(t + s(t))2〉

and interpretation (ongoing work [GÄRTNER/SCHNITZLER 2010]).
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