
Weierstrass Institute for
Applied Analysis and Stochastics

The parabolic Anderson model on Zd with

time-dependent potential: Frank’s works

Based on Frank’s works 2006 – 2016
jointly with Dirk Erhard (Warwick), Jürgen Gärtner (Berlin), and Gregory Maillard (Marseille)

Wolfgang König
WIAS Berlin and TU Berlin

Frank’s 60th, Eindhoven, 16 December, 2016



The Parabolic Anderson Model (PAM)

We consider the Cauchy problem for the heat equation with time-dependent random

coefficients and localised initial datum:

∂

∂t
u(t, z) = κ∆du(t, z) + ξ(t, z)u(t, z), for (t, z) ∈ (0,∞)× Zd,

u(0, z) = δ0(z), for z ∈ Zd.

� ξ = (ξ(t, z) : t ∈ [0,∞), z ∈ Zd) real-valued random potential.

� ∆df(z) =
∑
y∼z
[
f(y)− f(z)

]
discrete Laplacian

� κ ∈ (0,∞) diffusion constant

� General standard assumption: ξ is space-time ergodic with moment conditions on

ξ(0, 0).

� The solution u(t, ·) is a random time-dependent field.

� Interpretation: Expected particle number in a branching random walk model in a field of

random time-dependent branching and killing rates.
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Feynman-Kac formula

Background literature and surveys:

[MOLCHANOV 1994], [CARMONA/MOLCHANOV 1994], [GÄRTNER/K. 2005],

[GÄRTNER/DH/MAILLARD 2009b], [K. 2016, Chapter 8].

Total mass of the solution: U(t) =
∑
z∈Zd

u(t, z), for t > 0.

(Alternately, take u(0, ·) ≡ 1 and consider u(t, 0) instead.)

Feynman-Kac formula:

U(t) = E0

[
exp

{∫ t

0

ξ(t− s,X(s)) ds
}]
, t > 0,

with (X(s))s∈[0,∞) a simple random walk on Zd with generator κ∆d, starting from 0.

MAIN GOAL: Describe the large-t behavior of the solution u(t, ·), also depending on κ.

Intermittency:

For large t, the main contribution to U(t) comes from a concentration behaviour, i.e., u(t, ·) is

concentrated on intermittent islands
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The intermittent islands and the Lyapounov exponent

� U(t) is the t-th exponential power of 1
t

∫ t
0
ξ(t− s,X(s)) ds, hence its large values

matter.

� The potential ξ(t− s, ·) is large in the islands, and X spends much time there.

� The islands are randomly located, (very!) t-dependent, not too remote.

� Unlike in the static case (ξ not depending on time), the islands move a lot and do not

stand still for long (=⇒ much less pronounced concentration effect).

� Easier: characterisation of intermittency in terms of the Lyapounov exponents

λp(κ) = lim
t→∞

1

t
log
[
〈U(t)p〉1/p

]
, p ∈ N.

Definition of moment intermittency

(u(t, ·))t>0 is p-intermittent :⇐⇒ λp(κ) =∞ or λp(κ) > λp−1(κ).

‘≥‘ holds always (JENSEN’s inequality).
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Heuristics and remarks

� Interpretation: Intermittency holds if Xs can follow, for many s ∈ [0, t], regions where

ξ(t− s, ·) is large, without paying too much in probability (mathematical formulations

largely unexplored).

� GÄRTNER/MOLCHANOV (1990) explained how moment intermittency implies concentration

(at least for static potentials). The islands of concentration are disjoint for different p.

� Annealed asymptotics =⇒ walk X and potential ξ ‘work together’.

� p-intermittency may depend on p. No proof for monotonicity in p, but many examples.

� Even the case κ = 0 (walk stands still) may be non-trivial and interesting.

� Explicit formulas for λp(κ) not available in general.

� If ξ is time-space ergodic, then JENSEN’s inequality implies that λp(κ) ≥ 〈ξ(0, 0)〉.
� The validity of ‘>’ means that X and ξ have a noticeable co-operation. (Settled in many

examples.)

� κ 7→ λp(κ) should be decreasing, at least for large κ. Is limκ→∞ λp(κ) = 〈ξ(0, 0)〉?
(Settled in many examples.)
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Potentials built out of particles

Main type of potentials: ξ = γξ∗ − δ, where γ, δ ∈ (0,∞) and

ξ∗(t, z) = #{Particles present at time t at site z},

for some auxiliary process of particles, the catalysts. Then X receives the interpretation of the

reactant particle. We think of branching particle systems and of simplified models of chemical

reactions between moving substances.

Three classes of such processes:

(i) Independent simple random walks (ISRW) with generator ρ∆d, starting from a Poisson

random field (that is, in every lattice point the number of catalysts at the beginning is

independently Poisson distributed).

(ii) Symmetric exclusion process (SEP): At each time, every site is either occupied by one

particle or empty. Particles jump from a site x to a neighbouring site y at rate

p(x, y) = p(y, x) ∈ (0, 1), if y is empty.

(iii) Symmetric voter model (SVM): At each time, every site is either occupied by one particle

or empty. Site x imposes its state on a particle at y at rate p(x, y) = p(y, x) ∈ (0, 1).

Starting either in the Bernoulli measure or in an equilibrium with 1-density ρ.
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Results for ISRWs

ξ can attain arbitrarily large values by letting many catalysts clump together. Put δ = 0.

[GÄRTNER/DH 2006]

(i) If λp(0) <∞, then κ 7→ λp(κ) is finite, convex and strictly decreasing.

(ii) λp(κ) <∞⇐⇒ p < 1/G(ρ)

d γ, where G(ρ)

d =
∫∞
0
p(ρ)

t (0, 0) dt.

(iii) λp(0) = 〈ξ(0, 0)〉(1− pγGd)−1.

(iv) limκ→∞ 2dκ(λp(κ)− 〈ξ(0, 0)〉) = ργ2G(ρ)

d + 1l{d=3}(2d)3(ργ2p)2P3, where P3

is the polaron variational formula.

� (ii) =⇒ p-intermittency holds for any p in d ≤ 2 and for sufficiently small p in d ≥ 3.

� The super-exponential growth is even exp-exp fast.

� (iii) and continuity =⇒ p-intermittency holds for any p for small κ.

� (iii) and continuity =⇒ p-intermittency holds in d = 3 for large κ.

� Other deep, independent investigations for δ > 0 by [KESTEN/SIDORAVICIUS (2006)].

� Conjecture: p-intermittency holds for any p in d = 3, but only in κ-dependent areas in

d ≥ 4.

� Dynamics are reversible, hence spectral methods apply.
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Results for simple exclusion processes

Here ξ(t, z) ∈ {0, 1} for any t and z.

[GÄRTNER/DH/MAILLARD 2007, 2009a]

Put δ = 0 and let p(·, ·) be the (symmetric) kernel that drives the exclusion process. Then

(i) λp(κ) exists and is non-increasing and convex in κ.

(ii) p(·, ·) recurrent =⇒ λp(κ) = λ(ξ≡1l)
p (κ) > 〈ξ(0, 0)〉

(iii) p(·, ·) transient =⇒ 〈ξ(0, 0)〉 < λp(κ) < λ(ξ≡1l)
p (κ) and λp(κ) ↓ 〈ξ(0, 0)〉 as

κ→∞.

� Interpretation: In the recurrent case, the catalysts fill a large ball completely, but in the

transient case, they only increase their density there. This effect vanishes as κ→∞.

� Asymptotics for κλp(κ) and conjectures about intermittency as in the case of ISRWs.

� Dynamics are reversible, hence spectral methods apply.
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Results for the symmetric voter model

[GÄRTNER/DH/MAILLARD 2010]

Put δ = 0 and let p(·, ·) be the (symmetric) kernel that drives the voter process. Assume that it

has zero mean and finite variance.

(i) λp(κ) exists and is continuous in κ ∈ [0,∞).

(ii) d ≤ 4 =⇒ λp(κ) = λ(ξ≡1l)
p (κ).

(iii) d > 4 =⇒ λ(ξ≡ρ)
p (κ) = 〈ξ(0, 0)〉 < λp(κ) < λ(ξ≡1l)

p (κ), and

limκ→∞ λp(κ) = 〈ξ(0, 0)〉.
(iv) d > 4 =⇒ p 7→ λp(κ) is strictly increasing for small κ.

� (iv) =⇒ p-intermittency for all p for small κ in d > 4.

� Open: convexity of κ 7→ λp(κ) in d > 4.

� Conjecture: analogous variational description in d > 4 of the asymptotics of κλp(κ)

� More difficult to analyse because of lack of reversibility (in contrast with ISRWs and SEP)

and therefore absence of spectral theoretic methods

� Dynamics are not reversible (hence spectral methods do not apply), but duality with

coalescing processes and the graphical representation help.
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Random conductances

Replace the simple random walk as the reactant by the random walk among random

conductances, that is, replace κ∆d by

∆d
ωf(z) =

∑
x∈Zd : x∼z

ωx,z(f(x)− f(z),

with symmetric random conductances ωx,z = ωz,x, assumed to be uniformly elliptic, i.e.,

ωe ∈ [ε, 1/ε] for some non-random ε > 0 and any edge e. The conductances do not have to

be i.i.d., but satisfy a certain clustering property.

[ERHARD, DH, MAILLARD 2015b]

Let ξ be either an i.i.d. field of Gaussian white noises or a field of (finitely many or infinitely

many) ISRWs, or a splin-flip system. Then, ω-almost surely, the Lyapounov exponent exists and

λp(ω) = sup{λp(κ) : κ ∈ supp(ωe)}, p ∈ N.

That is, the main mass flows through large areas with (close-to) maximal diffusivity.
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Almost-sure setting

Also the quenched Lyapounov exponent is of interest:

λ0(κ) = lim
t→∞

1

t
logU(t).

� λ0(κ) measures how well the reactant particles can follow the high peaks of the catalyst

field ξ(t− s, ·)

� Existence (in particular, finiteness) not at all clear if ξ is unbounded to∞. Better chances

if ξ is sufficiently mixing in time and space.

� Dependence on initial condition for u(0, ·) not at all clear (in particular bounded versus

unbounded support).

� Generally conjectured: if ξ is sufficiently mixing, then κ 7→ λ0(κ) starts from 〈ξ(0, 0)〉,
increases a bit and then decreases back to that number. Not yet settled in general (but

see later).

� Interpretation of limκ→∞ λ0(κ) = 〈ξ(0, 0)〉: If the reactant is forced to diffuse very

fast, then it cannot make any effort to exploit high-value areas of the catalyst field, but

sees on an time-average only its mean value, almost surely. (=⇒ asymptotic space-time

ergodicity of the reactant particles, or asymptotic absence of intermittency.)

� Efforts are made for finding the asymptotics of λ0(κ) for κ ↓ 0.
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Some quenched results

Assume that ξ is stationary and ergodic w.r.t. translations in Zd. As before, u(0, ·) = δ0(·).

[GÄRTNER, DH, MAILLARD 2012]

(i) If 〈log u(t, 0)〉 ≤ ct for all t > 0 with some suitable c > 0, then λ0(κ) exists almost

surely and in L1-sense and is finite. Furthermore, outside a neighbourhood of 0, it is

> 〈ξ(0, 0)〉, and κ 7→ λ0(κ) is Lipschitz continuous.

(ii) If ξ is bounded, under some technical assumption,

lim supκ↓0(λ0(κ)− 〈ξ(0, 0)〉) log 1
κ
/ log log 1

κ
<∞.

(iii) The above applies to the three potential examples ISRWs, SEP and SVM ([KESTEN,

SIDORAVICIUS 2003]). Here limκ→∞ λ0(κ) = 〈ξ(0, 0)〉. Furthermore, λ0 is not

Lipschitz-continuous at κ = 0. For ISRWs and SEP,

lim infκ↓0(λ0(κ)− 〈ξ(0, 0)〉) log 1
κ
> 0. For ISRWs, λ0(κ) < λ1(κ).

� See [GÄRTNER, DH, MAILLARD 2012] also for a summary of related results, in particular

asymptotics for κ ↓ 0.

� See [DREWITZ, GÄRTNER, RAMIREZ, SUN 2012] for extensions of some of these results

to the case that u(0, ·) has an unbounded support (with a small modification).
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(ii) If ξ is bounded, under some technical assumption,

lim supκ↓0(λ0(κ)− 〈ξ(0, 0)〉) log 1
κ
/ log log 1

κ
<∞.

(iii) The above applies to the three potential examples ISRWs, SEP and SVM ([KESTEN,

SIDORAVICIUS 2003]). Here limκ→∞ λ0(κ) = 〈ξ(0, 0)〉. Furthermore, λ0 is not

Lipschitz-continuous at κ = 0. For ISRWs and SEP,

lim infκ↓0(λ0(κ)− 〈ξ(0, 0)〉) log 1
κ
> 0. For ISRWs, λ0(κ) < λ1(κ).

� See [GÄRTNER, DH, MAILLARD 2012] also for a summary of related results, in particular

asymptotics for κ ↓ 0.

� See [DREWITZ, GÄRTNER, RAMIREZ, SUN 2012] for extensions of some of these results

to the case that u(0, ·) has an unbounded support (with a small modification).
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Space-time ergodicity of λ0

Assume that ξ is space-time ergodic, ξ(0, 0) is integrable, and supt∈[0,T ] ξ(t, ·) is

percolating from below for any T > 0 (i.e., each of its level sets contains an unbounded

connected set). Let u satisfy an unbounded nonnegative initial condition. Then [ERHARD, DH,

MAILLARD 2014] shows the existence of a unique solution.

Even more:

[ERHARD, DH, MAILLARD 2014]

If ξ is GÄRTNER-mixing, then λ0(κ) exists, does not depend on the initial condition, is

continuous in κ ∈ [0,∞) and Lipschitz-continuous outside any neighbourhood of the origin.

This was only a preparation for a general negative result about ‘quenched intermittency’:

[ERHARD, DH, MAILLARD 2015a]

If ξ is even GÄRTNER-hypermixing, then limκ→∞ λ0(κ) = 〈ξ(0, 0)〉.

� There are GÄRTNER-hypermixing potentials with λ1(κ) =∞ for any κ, i.e., such that

1-intermittency holds.

� Proof is lengthy and technical; it involves a microscale analysis for ξ, rearrangement

inequalities for the local times of the random walk, and spectral bounds for discrete

Schrödinger operators.
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Conclusion and outlook

What has Frank achieved (with co-authors)?

� derived methods adapted to a number of important catalyst processes ...

� ... and for general space-time mixing potentials ...

� ... also in random environment.

� derived criteria for moment intermittency ...

� ... and asymptotics for high and low diffusivity.

What is challenging in future?

� Some few cases are left open.

� Derive more geometric information about intermittent islands (number, time dependence,

size, height of potential, ...).

� ... ?

I wish you much more deep concentration properties in all kinds of
random environments, dear Frank!

Warmest congratulations for your birthday!
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