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The Parabolic Anderson Model

Cauchy problem for the heat equation with random coefficients and localised initial datum:

∂

∂t
u(t, z) = ∆u(t, z) + ξ(z)u(t, z), for (t, z) ∈ (0,∞)× Z

d, (1)

u(0, z) = 1l0(z), for z ∈ Z
d. (2)
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The Parabolic Anderson Model

Cauchy problem for the heat equation with random coefficients and localised initial datum:

∂

∂t
u(t, z) = ∆u(t, z) + ξ(z)u(t, z), for (t, z) ∈ (0,∞)× Z

d, (1)

u(0, z) = 1l0(z), for z ∈ Z
d. (2)

� ξ = (ξ(z) : z ∈ Z
d) i.i.d. random potential, [−∞,∞)-valued.

� ∆f(z) =
∑

y∼z

[

f(y)− f(z)
]

discrete Laplacian

� ∆+ ξ Anderson Hamiltonian
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Cauchy problem for the heat equation with random coefficients and localised initial datum:

∂

∂t
u(t, z) = ∆u(t, z) + ξ(z)u(t, z), for (t, z) ∈ (0,∞)× Z

d, (1)

u(0, z) = 1l0(z), for z ∈ Z
d. (2)

� ξ = (ξ(z) : z ∈ Z
d) i.i.d. random potential, [−∞,∞)-valued.

� ∆f(z) =
∑

y∼z

[

f(y)− f(z)
]

discrete Laplacian

� ∆+ ξ Anderson Hamiltonian

Interpretations / Motivations:

� Random mass transport through a random field of sinks and sources.

� Expected particle number in a branching random walk model in a field of random

branching and killing rates.

� Anderson Hamiltonian ∆+ ξ describes conductance properties of alloys of metals, or

optical properties of glasses with impurities. Many open questions about delocalised

versus extended states.
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Main tools

Feynman-Kac formula

u(t, z) = E0

[

exp
{

∫ t

0

ξ(X(s)) ds
}

1l{X(t) = z}
]

, z ∈ Z
d, t > 0,

where (X(s))s∈[0,∞) is the simple random walk on Z
d with generator ∆, starting from z

under Pz .
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{
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0

ξ(X(s)) ds
}

1l{X(t) = z}
]

, z ∈ Z
d, t > 0,

where (X(s))s∈[0,∞) is the simple random walk on Z
d with generator ∆, starting from z

under Pz .

Eigenvalue expansion

u(t, z) ≈ E0

[

exp
{

∫ t

0

ξ(X(s)) ds
}

1l{X(t) = z}1l{X[0,t] ⊂ B(2)(t)}
]

=
∑

k

etλk(ξ,B
(2)(t)) ϕk(0)ϕk(z),

where (λk(ξ,B
(2)(t)), ϕk)k is a sequence of eigenvalues λ1 > λ2 ≥ λ3 ≥ . . . and

L2-orthonormal eigenfunctions ϕ1, ϕ2, ϕ3 . . . of ∆+ ξ in some box

B(2)(t) = t log2 t× [−1, 1]d with zero boundary condition.
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Main objectives

• Mass concentration: The total mass U(t) =
∑

z∈Zd u(t, z) comes in probability from

just one island (strong form of intermittency).

• Eigenvalue order statistics: The top eigenvalues and the concentration centres of the

corresponding eigenfunctions (after rescaling and shifting) form a Poisson point process.
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Main objectives

• Mass concentration: The total mass U(t) =
∑

z∈Zd u(t, z) comes in probability from

just one island (strong form of intermittency).

• Eigenvalue order statistics: The top eigenvalues and the concentration centres of the

corresponding eigenfunctions (after rescaling and shifting) form a Poisson point process.

Explanation

� The top eigenvalues satisfy an order statistics in some box B(1)(t) ⊂ B(2)(t). In

particular, we have control on their differences, i.e., the spectral gaps.

� The corresponding eigenfunctions are exponentially localised in islands Brt(zk) whose

locations zk form a Poisson point process.

� The main contribution to U(t) inside B(1)

t comes from precisely that summand k which

maximises etλk(ξ,B
(1)
t ) |ϕk(0)|.

� The contribution to U(t) from the outside of the a priori box B(2)(t) is negligible.

� The contribution to U(t) from B(2)(t) \B(1)(t) is negligible since the values of

etλk(ξ,B
(2)(t)) ϕk(0)〈ϕk, 1l〉 are substantially worse.
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Earlier results

� [SZNITMAN 98] (Brownian motion among Poisson obstacles) and

[GÄRTNER/K./MOLCHANOV 07] (double-exponential distribution):

mass concentration a.s. in to(1) islands.

� [K./LACOIN/MÖRTERS/SIDOROVA 09] (Pareto distribution):

mass concentration in one site in probability, and in two sites a.s.

� [KILLIP/NAKANO 07], [GERMINET/KLOPP 10] (bounded distributions with smooth density):

Poisson process convergence for rescaled eigenvalues and localisation centers of

eigenfunctions in large boxes in the localised regime
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mass concentration a.s. in to(1) islands.

� [K./LACOIN/MÖRTERS/SIDOROVA 09] (Pareto distribution):

mass concentration in one site in probability, and in two sites a.s.

� [KILLIP/NAKANO 07], [GERMINET/KLOPP 10] (bounded distributions with smooth density):

Poisson process convergence for rescaled eigenvalues and localisation centers of

eigenfunctions in large boxes in the localised regime

We are working here for ξ double-exponentially distributed, i.e., for some ̺ ∈ (0,∞),

Prob(ξ(0) > r) = exp
{

− er/̺
}

, r ∈ R.

Earlier papers:

[GÄRTNER/MOLCHANOV 98], [GÄRTNER/DEN HOLLANDER 99], [GÄRTNER/K./MOLCHANOV 07].

The potential is unbounded to +∞. The islands are of bounded size. The potential and of the

solution approach (after shifting and normalization) certain shapes, which are given by a

characteristic variational formula.

Eigenvalue order statistics and mass concentration in the P AM · Hagen, 17 May 2013 · Page 5 (15)



First result: Eigenvalue order statistics

Abbreviate BL = L× [− 1
2
, 1
2
]d.

Theorem 1

There is a number χ = χ̺ ∈ (0, 2d) and a sequence (aL)L∈N with

aL = ρ log log |BL| − χ+ o(1) as L→ ∞ and, for any L ∈ N, a sequence (X(L)

k )k in

BL such that, in probability,

lim
L→∞

∑

z : |z−X
(L)
k

|≤logL

ϕk(z)
2 = 1, k ∈ N,

and the law of
∑

k∈N

δ
(

X
(L)
k
L

,(λk(ξ,BL)−aL) logL
)

converges weakly to a Poisson process on B1 × R with intensity measure dx⊗ e−λ dλ.
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Abbreviate BL = L× [− 1
2
, 1
2
]d.

Theorem 1

There is a number χ = χ̺ ∈ (0, 2d) and a sequence (aL)L∈N with

aL = ρ log log |BL| − χ+ o(1) as L→ ∞ and, for any L ∈ N, a sequence (X(L)

k )k in

BL such that, in probability,

lim
L→∞

∑

z : |z−X
(L)
k

|≤logL

ϕk(z)
2 = 1, k ∈ N,

and the law of
∑

k∈N

δ
(

X
(L)
k
L

,(λk(ξ,BL)−aL) logL
)

converges weakly to a Poisson process on B1 × R with intensity measure dx⊗ e−λ dλ.

Hence, the top eigenvalues in BL are of order log logL, leave gaps of order 1/ logL, are in

the max-domain of attraction of the Gumbel distribution, and the localisation centres are

separated by a distance of order L and are uniformly distributed.
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Second result: Mass concentration

Theorem 2

Put rL = L logL log log logL and

ΨL,t(z, λ) =
t

rL
(λ− aL) logL−

|z|

L
,

and pick k such that ΨL,t(X
(L)

k , λk(ξ,BL)) is maximal, and put ZL,t = X(L)

k /L. Then,

with Lt defined by rLt = t,

lim
t→∞

1

U(t)

∑

z : |z−LtZLt,t
|≤Rt

u(t, z) = 1 in probability,

for any Rt ≫ log t.

Hence, the total mass essentially comes from a single ≫ log t-island in the centred box

B(1)(t) with radius ≈ t/(log t log log log t)
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Ageing

A system is said to age if its significant changes come after longer and longer (or shorter and

shorter) time lags, such that one can see from the frequency of changes how much time has

elapsed.

Ageing properties of the PAM can now be studied in terms of the time lags between jumps of

the concentration site.

These ones, in turn, may be described as follows.

Theorem 3: Scaling limit of concentration location

As L→ ∞, the process (ZL,trL)t∈[0,∞) converges in distribution to the process of

maximizers of z 7→ tλ− |z| over the points (z, λ) of a Poisson process on [− 1
2
, 1
2
]d × R

with intensity measure dx⊗ e−λ dλ.
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Comments

� The rescaled and shifted eigenvalues (λk(ξ,BL)− aL) logL are asymptotically

independent and lie in the max-domain of attraction of the Gumbel distribution.
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Comments

� The rescaled and shifted eigenvalues (λk(ξ,BL)− aL) logL are asymptotically

independent and lie in the max-domain of attraction of the Gumbel distribution.

� The gaps between subsequent eigenvalues in BL at the edge of the spectrum are of

order 1/ logL, rather than 1/|BL| as in the bulk of the spectrum.
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� The gaps between subsequent eigenvalues in BL at the edge of the spectrum are of

order 1/ logL, rather than 1/|BL| as in the bulk of the spectrum.

� We have in particular Anderson localisation at the edge of the spectrum.

� The control from Poisson process convergence holds only in the box B(1)(t) of radius

≍ t/ log t log log log t, and the contribution from the outside of the box B(2)(t) of

radius t log2 t is easily seen to be negligible. The treatment of the region

B(2)(t) \ B(1)(t) is delicate and requires a comparison of the two eigenvalue

expansions.
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� The gaps between subsequent eigenvalues in BL at the edge of the spectrum are of

order 1/ logL, rather than 1/|BL| as in the bulk of the spectrum.

� We have in particular Anderson localisation at the edge of the spectrum.

� The control from Poisson process convergence holds only in the box B(1)(t) of radius

≍ t/ log t log log log t, and the contribution from the outside of the box B(2)(t) of

radius t log2 t is easily seen to be negligible. The treatment of the region

B(2)(t) \ B(1)(t) is delicate and requires a comparison of the two eigenvalue

expansions.

� The two terms in the optimized functional ΨL,t come from the eigenvalue and the

probabilistic cost for the random walk in the Feynman-Kac formula to reach the island. The

latter term can also be seen as describing the decay of the eigenfunction term ϕk(0).
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Some elements of the proof of Theorem 1 (I)

The top eigenvalues in B = BL remain the top eigenvalues after discarding potential values

significantly less than the eigenvalues. Put εR = 2d
(

1 + A
2d

)1−2R

.

Proposition 1

Fix A > 0 and R ∈ N and put U =
⋃

z∈B : ξ(z)≥λ1(ξ,B) BR(z). Then

λk(ξ,B) ≥ λ1(ξ,B)−A/2 =⇒ |λk(ξ,B)− λk(ξ, U)| ≤ εR.

� Any ℓ2-normalized eigenvector v = vk,ξ with eigenvalue λ = λk(ξ,B) ≥ λ1 −A/2

decays rapidly away from U .

� Proof uses the martingale (v(Yn)
∏n−1

k=0
2d

2d+λ−ξ(Yk)
)n∈N (with (Yn)n an SRW).
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(
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)1−2R
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z∈B : ξ(z)≥λ1(ξ,B) BR(z). Then

λk(ξ,B) ≥ λ1(ξ,B)−A/2 =⇒ |λk(ξ,B)− λk(ξ, U)| ≤ εR.

� Any ℓ2-normalized eigenvector v = vk,ξ with eigenvalue λ = λk(ξ,B) ≥ λ1 −A/2

decays rapidly away from U .

� Proof uses the martingale (v(Yn)
∏n−1

k=0
2d

2d+λ−ξ(Yk)
)n∈N (with (Yn)n an SRW).

� Furthermore, we use that ∂ξ(z)λk(ξ,B) = v(z)2.

� Introduce ξs = ξ − s1lB\U for s ∈ [0,∞]. Then

|∂sλk(ξs, B)| =
∑

z∈B\U

vk,ξs (z)
2,

which is very small. Integrating over s ∈ [0,∞] gives the estimate.
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Some elements of the proof of Theorem 1 (II)

The top eigenvalues are the principal eigenvalues in local r egions, and the

corresponding eigenfunctions are exponentially localise d.

A bit more precisely, with the help of the variational characterisation of the asymptotics of the

PAM [GÄRTNER/K./MOLCHANOV 07], one proves the following.

� U consists of connected components of bounded size, which are far away from each

other.
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bounded away from λ2(ξ, C).

Eigenvalue order statistics and mass concentration in the P AM · Hagen, 17 May 2013 · Page 11 (15)



Some elements of the proof of Theorem 1 (II)

The top eigenvalues are the principal eigenvalues in local r egions, and the

corresponding eigenfunctions are exponentially localise d.

A bit more precisely, with the help of the variational characterisation of the asymptotics of the

PAM [GÄRTNER/K./MOLCHANOV 07], one proves the following.

� U consists of connected components of bounded size, which are far away from each

other.

� For any component C, if λ1(ξ, C) is close to aL ≈ ρ log logL, then λ1(ξ, C) is

bounded away from λ2(ξ, C).

� If λ is an eigenvalue of ∆+ ξ larger than λ1(ξ,BL)− A/2 and v a corresponding

ℓ2-normalised eigenfunction such that the distance of λ to the nearest eigenvalue

(spectral gap) is larger than 3εR, then v decays exponentially away from one of the

components of U .
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PAM [GÄRTNER/K./MOLCHANOV 07], one proves the following.

� U consists of connected components of bounded size, which are far away from each

other.

� For any component C, if λ1(ξ, C) is close to aL ≈ ρ log logL, then λ1(ξ, C) is

bounded away from λ2(ξ, C).

� If λ is an eigenvalue of ∆+ ξ larger than λ1(ξ,BL)− A/2 and v a corresponding

ℓ2-normalised eigenfunction such that the distance of λ to the nearest eigenvalue

(spectral gap) is larger than 3εR, then v decays exponentially away from one of the

components of U .

� The proof uses that the path [0,∞] ∋ s 7→ λk(ξs, BL) (with ξs = ξ − s1lBL\U ) does

not cross other eigenvalues and therefore admits a continuous choice of corresponding

eigenfunctions. The one for s = ∞ puts all its mass in one component, and the one for

s = 0 is uniformly close.
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Some elements of the proof of Theorem 1 (III)

The scale aL satisfies Prob(λ1(ξ,BR) > aL) = 1/|BL|, hence we may expect finitely

many sites in BL where the local eigenvalue is ≈ aL. Then the random variable λ1(ξ,BR)

lies in the max-domain of a Gumbel random variable:

Proposition 2

As L→ ∞, for any s ∈ R,

Prob(λ1(ξ,BR) > aL + s/ logL) = e−s 1

|BL|
(1 + o(1)).

� The event {λ1(ξ,BR) > a} is more or less the same as the event that some shift of the

potential ξ(·) is larger than a+ χ+ ψ(·) for some well-chosen function ψ.
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lies in the max-domain of a Gumbel random variable:

Proposition 2

As L→ ∞, for any s ∈ R,

Prob(λ1(ξ,BR) > aL + s/ logL) = e−s 1

|BL|
(1 + o(1)).

� The event {λ1(ξ,BR) > a} is more or less the same as the event that some shift of the

potential ξ(·) is larger than a+ χ+ ψ(·) for some well-chosen function ψ.

� Shifting ξ by an amount of s/ logL yields an additional factor of e−s, using properties of

ψ and of the distribution of ξ and some information from the variational characterisation.
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Some elements of the proof of Theorem 2 (I)

Consider boxes B(1)(t) = B
L

(1)
t

and B(2)(t) = B
L

(2)
t

with

L(1)

t = const.×
t

log t log log log t
and L(2)

t = t log2 t.

� Inside B(1)(t), we have the Poisson process convergence.

� Outside B(2)(t), the contribution is negligible.

Why is the contribution from B(2)(t) \ B(1)(t) negligible?

Our Strategy:

� Consider the eigenvalue expansion in B(2)(t). A version of Minami’s estimate gives that

each spectral gap close to the top is ≥ εR, with high probability.

� This enables us to prove exponential localisation of the top eigenfunctions in B(2)(t).

This makes the top eigenvalues in B(2)(t) essentially independent.
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Some elements of the proof of Theorem 2 (II)

Our Strategy (continued):

� The top eigenvalues of B(1)(t) are also top eigenvalues in B(2)(t).

But the B(2)(t)-eigenfunctions are located much further away (if ‘const’ is large).

Hence their contributions in the eigenvalue expansion are negligible w.r.t. the optimizer of

Ψ
L

(1)
t ,t

in B(1)(t).

� For N large enough, the eigenvalues λk(ξ,B
(2)(t)) for k > N are negligible w.r.t. the

optimizer of Ψ
L

(1)
t ,t

in B(1)(t) and hence their contribution to the eigenvalue expansion.

� The remaining N eigenvalues can be ordered with gaps ≍ 1/ logL(1)

t ≈ 1/ log t

between them, and the optimizer is among them.
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Future directions

� Presumably, the mass concentration property of the PAM also holds in almost sure sense,

but the assertion must be adapted.

� Control on the process of localisation centres, (ZLt,trLt
)t∈[0,∞), opens up the

possibility to study the time-evolution of the PAM, e.g. in terms of ageing properties.

� Replacing double-exponential distribution by bounded distributions will lead to the same

max-domains of attractions for the top eigenvalues, but other rescalings of the gaps.
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