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Goal

In the ten ensembles, replace the normal variables by Brownian motions

Derive the SDE for the eigenvalue processes

Identify these processes in terms of Doob h-transforms (if possible)

Interpret them as systems of non-colliding random processes

The main matrix diffusions:

S = (S(t))t∈[0,∞) ∈ R
N×N
sym symmetric Brownian motion (GOE at time 1)

A = (A(t))t∈[0,∞) ∈ R
N×N
antisym antisymmetric Brownian motion

S + i A Hermitian Brownian motion (GUE at time 1)
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Dyson’s Brownian motions

λ1(t) ≤ λ2(t) ≤ · · · ≤ λN (t) eigenvalues of (S + i A)(t)

λ = (λ1(t), . . . , λN (t))t∈[0,∞) eigenvalue process in W

W = {x ∈ RN : x1 < x2 < · · · < xN} Weyl chamber (of type A)

Theorem. [DYSON 1962] λ SATISFIES, FOR β = 2, THE SDE

dλi(t) = dBi(t) +
β

2

X

j 6=i

1

λi(t) − λj(t)
dt, i = 1, . . . , N. (1)

FURTHERMORE, λ IS A BM IN R
N , CONDITIONED ON BEING NON-COLLIDING FOR EVER.

Hence, if T = inf{t > 0: B(t) /∈ W} is the exit time of a BM B in R
N from W , then, formally,

L(λ) = L(B | T = ∞).
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Non-colliding BM

Proper definition in terms of Doob h-transform with h = ∆, where

∆(x) =
Q

1≤i<j≤N

(xj − xi) = det
h`

xj−1
i )i,j=1,...,N

´i
Vandermonde determinant

∆ is harmonic for 1
2

PN
i=1 ∂2

i , and ∆ > 0 in W .

transition probability density of the h-transform:

bpt(x, y) dy = Px(B(t) ∈ dy; T > t)
∆(y)

∆(x)
, x, y ∈ W.

Lemma. [KARLIN/MCGREGOR 1958]

Px(B(t) ∈ dy; T > t) = det
h`

pt(xi, yj)
´
i,j=1,...,N

´i
dy.

(This is true for all diffusions with i.i.d. components in place of B, if pt(x, y) denotes their
transition probability function.)
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Some properties

Corollary.

bpt(0, y) = Ct−
N
2

(N−1)e−|y|2/(2t)∆(y)2 Hermite ensemble

Px(T > t) ∼ Ct−
N
4

(N−1)∆(x) as t → ∞ non-colliding probability

limt→∞ Px(t−1/2B(t) ∈ dy | T > t) = Ce−|y|2/2∆(x)∆(y)

P0(B(t) ∈ dy | T > t) = Ce−|y|2/(2t)∆(y)

Sketch of proof of the first assertion for t = 1: Observe that

bpt(x, y) = Ct−
N
4

(N−1)e−|x|2/(2t)e−|y|2/(2t) det
h`

exiyj/t
´
i,j

i ∆(y)

∆(x)
.

For t = 1, as x → 0,

det
h`

exiyj
´
i,j

i
∼ det

h“ NX

k=1

xk−1
i

(k − 1)!
yk−1

j

”
i,j

i

= det
h“ xk−1

i

(k − 1)!

”
i,k

i
det

h`
yk−1

j

´
j,k

´i
= C∆(x)∆(y).
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Other values of β

Real variant of Dyson’s theorem: the eigenvalue process of S (GOE diffusion) satisfies
the Dyson SDE (1) with β = 1. This is not an h-transform of BM.

The diffusion defined by Dyson’s SDE in (1) is well-defined and non-colliding for any
β > 0. Identification in terms of eigenvalue processes known only for β = 1, 2 (see
above) and β = 4 (see later).
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Transition from GUE to GOE

Lemma. [KATORI/TANEMURA 2003] FIX t > 0. LET eA = ( eA(s))s∈[0,t] ∈ R
N×N
antisym BE AN

ANTISYMMETRIC BROWNIAN BRIDGE MATRIX DIFFUSION. THEN THE EIGENVALUE PROCESS OF S + i eA IS IN

DISTRIBUTION EQUAL TO (B(s))s∈[0,t] , CONDITIONED ON {T > t}.

Explanation: Decompose the components of S as

Bi,j(s) =
“
Bi,j(s) −

s

t
Bi,j(t)

”
+

s

t
Bi,j(t)

and summarize the bridge part and the remainder, then

S + i eA = Hermitian bridge diffusion +
“ s

t
S(t)

”
s∈[0,t]

,

which interpolates between GUE and GOE as s varies.

S + i eA is called a two-matrix model.
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More general matrix diffusions

Theorem. [BRU 1991], [KATORI/TANEMURA 2004] LET ξ BE A COMPLEX CONTINUOUS HERMITIAN

MATRIX-VALUED SEMIMARTINGALE, AND LET U(t) BE UNITARY WITH

U(t)∗ξ(t)U(t) = diag[λ(t)], WITH λ(t) ∈ W.

THEN, FOR i = 1, . . . , N ,

dλi(t) = dMi(t) +
NX

j=1

Γi,j(t) dt

λi(t) − λj(t)
1l{λi(t)6=λj(t)} + dΘi(t),

WHERE Mi IS A MARTINGALE,

Γi,j(t) dt =
`
U(t)∗dξ(t)U(t)

´
i,j

`
U(t)∗dξ(t)U(t)

´
j,i

AND 〈Mi〉t =

Z t

0
Γi,j(s) ds,

AND dΘi(t) IS THE FINITE-VARIATION PART OF
`
U(t)∗dξ(t)U(t)

´
i,i

.
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Wishart Processes
[Bru 1991], [K./O’Connell 2001], [Katori/Tanemura 2004]

Consider ξ = D∗D, where, with ν ∈ N a parameter,

D(t) =
`
Bi,j(t) + i eBi,j(t)

´
i=1,...,N+ν

j=1,...,N

.

Every component of ξ is a BESQ2ν+2. ξ is called the Wishart process and has nonnegative
eigenvalues 0 ≤ λ1 ≤ · · · ≤ λN . One calculates

dΘi(t) = 2(N + ν) dt, Γi,j(t) = 2(λi(t) + λj(t)), 〈Mi〉t = 4

Z t

0
λi(s) ds.

Hence:

The eigenvalue process, λ, of ξ satisfies, for any i = 1, . . . , N , the SDE

dλi(t) = 2
p

λi(t) dBi(t) + β
“
N + ν +

X

j 6=i

λi(t) + λj(t)

λi(t) − λj(t)

”
dt, (2)

with β = 2.
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Remarks

The squareroot κi =
√

λi satisfies, for β = 2 and γ = ν + 1
2

, the SDE

dκi(t) = dBi(t) +
β

2

“ γ

κi(t)
+

X

j 6=i

“ 1

κi(t) − κj(t)
+

1

κi(t) + κj(t)

””
dt (3)

The distribution of λ(t) is the Laguerre ensemble with density

y 7→ Ct−N(N+ν)∆(y)2
NY

i=1

`
e−yi/(2t)yν

i

´
.

Hence, λ(1) is the eigenvalue distribution of the chiral GUE, the class AIII.

Real version: if the complex part of D is dropped, then λ satisfies (2) with β = 1. Then
κi =

√
λi satisfies (3) with β = 1 and γ = ν, and κ(t) has density

z 7→ Ct−
N
2

(N+ν)∆(z2)
NY

i=1

`
e−z2

i /(2t)zν
i

´
.

In particular, λ(1) is the eigenvalue distribution of the chiral GOE, the class BDI.
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Laguerre process and non-colliding BESQ

The Wishart analogon to Dyson’s theorem:

Lemma FOR β = 2 AND γ = ν + 1
2
∈ N + 1

2
, THE PROCESS λ IS DISTRIBUTED AS THE DOOB

h-TRANSFORM OF N INDEPENDENT BESQ2ν+2 WITH h = ∆; I.E., λ IS NON-COLLIDING BESQ2ν+2 .

Hence, ∆ is also a positive harmonic function for the generator of N independent
BESQ2ν+2-processes,

Gf(x) = 2
NX

i=1

xi∂
2
i f(x) + ν

NX

i=1

∂if(x).

The transition probability function of λ may be expressed as

bpt(x, y) dy = Px(Y (t) ∈ dy; T > t)
∆(y)

∆(x)
,

where T is the exit time of BESQ2ν+2(RN ), Y , from W . The Karlin-McGregor formula
applies, and analogs of the above corollary hold.
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AII and Dyson’s model with β = 4

Let S1, S2, S3 be three independent copies of the symmetric Brownian N × N -matrix
diffusion S (GOE-diffusion), and consider the (2N × 2N)-dimensional matrix diffusion

ξ =

0
@ S1 + i A S2 + i S3

S2 − i S3 S1 − i A

1
A .

Then ξ(t) is in the class AII and possesses the eigenvalues λ1(t) ≤ λ2(t) ≤ · · · ≤ λN (t),
each one precisely twice. Put λ = (λ1, . . . , λN ).

Lemma [KATORI/TANEMURA 2004] λ SOLVES DYSON’S SDE IN (1) WITH β = 4.

Remark. The same is true for the eigenvalue process of

ξ =

0
@ S − A1 i A2 − A3

i A2 + A3 S + A1

1
A ,

where A1, A2, A3 are three independent copies of the antisymmetric Brownian matrix
diffusion A.
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Class C and non-colliding BM with wall at 0
Let S1, S2, S3 be three independent copies of the symmetric Brownian matrix diffusion S

(GOE-diffusion), and consider the (2N × 2N)-dimensional matrix diffusion

ξ =

0
@ S1 + i A S2 − i S3

S2 + i S3 −S1 + i A

1
A .

Then ξ(t) is in the class C and possesses the eigenvalues

−λN (t) ≤ · · · ≤ −λ1(t) ≤ 0 ≤ λ1(t) ≤ · · · ≤ λN (t).

Lemma [KATORI/TANEMURA 2004] λ SOLVES THE SDE IN (3) WITH β = 2 AND γ = 1 (I.E., ν = 1
2

).

HENCE, IT IS IN DISTRIBUTION EQUAL TO N BMS, CONDITIONED ON NEVER LEAVING

WC = {x ∈ R
N : 0 < x1 < x2 < · · · < xn}.

WC is the Weyl chamber of type C.

λ is the Doob h-transform of a tuple of a BM in R
N with h(x) = ∆(x2)

QN
i=1 xi.

λ(t) has the density

y 7→ Ct−
N
2

(2N+1)∆(y2)2
“ NY

i=1

y2
i

”
e−|y|2/(2t) = Ct−

N
2

(2N+1)h(y)2e−|y|2/(2t).
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Class D and non-colliding reflected BMs

Let A1, A2, A3 be three independent copies of the antisymmetric Brownian matrix diffusion
A, and consider the (2N × 2N)-dimensional matrix diffusion

ξ =

0
@ S + i A1 i A2 − A3

i A2 + A3 −S + i A1

1
A .

Then ξ(t) is in the class D and possesses the eigenvalues

−λN (t) ≤ · · · ≤ −λ1(t) ≤ 0 ≤ λ1(t) ≤ · · · ≤ λN (t).

Lemma [KATORI/TANEMURA 2004] λ SOLVES THE SDE IN (3) WITH β = 2 AND γ = 0 (I.E., ν = − 1
2

).

HENCE, IT IS IN DISTRIBUTION EQUAL TO N REFLECTED BMS, CONDITIONED ON NON-COLLISION.

Equivalently, λ is a BM in R
N , conditioned on never leaving the Weyl chamber of type

D, WD = {x ∈ R
N : |x1| < x2 < · · · < xN}.

λ is the Doob h-transform of a tuple of N reflected BMs in [0,∞), with h(x) = ∆(x2).

λ(t) has the density

y 7→ Ct−
N
2

(2N+1)∆(y2)2e−|y|2/(2t) = Ct−
N
2

(2N+1)h(y)2e−|y|2/(2t).
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Remarks on classes C and D

The SDE that the eigenvalue process λ satisfies in classes C and D is the one that is
satisfied by κi =

√
λi in the complex Wishart case (i.e., β = 2) for ν ∈ N:

dκi(t) = dBi(T ) +
“ 2ν + 1

2κi(t)
+

X

j 6=i

“ 1

κi(t) − κj(t)
+

1

κi(t) + κj(t)

””
dt, (4)

but now for ν = 1
2

(class C) and ν = − 1
2

(class D).

The process κ in (4) is well-defined for any ν ∈ (−1,∞). Its transition densities are
explicit in terms of Bessel functions and determinants, using the Karlin-McGregor
formula. It is a Doob h-transform only in the two special cases ν = 1

2
and ν = − 1

2
.
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Real versions of classes C and D
Real version of class C: If the complex part of case-C ξ is dropped, i.e.,

ξ =

0
@ S1 S2

S2 −S1

1
A ,

then ξ is in the class CI. Its eigenvalue process λ solves the SDE

dκi(t) = dBi(T ) +
β

2

“ γ

κi(t)
+

X

j 6=i

“ 1

κi(t) − κj(t)
+

1

κi(t) + κj(t)

””
dt,

with β = 1 and γ = 1 (i.e., ν = 1
2

). However, λ is not a Doob h-transform. The density of
λ(t) is

y 7→ Ct−
N
2

(N+1)∆(y2)
“ NY

i=1

yi

”
e−|y|2/(2t) = Ct−

N
2

(N+1)h(y)e−|y|2/(2t).

Real version of class D: If the complex part of case-D ξ is dropped, then the
eigenvalue process solves the above SDE with β = 1 and γ = 0 (i.e., ν = − 1

2
). The density

of λ(t) is

y 7→ Ct−
N
2

(N−1)∆(y2)e−|y|2/(2t) = Ct−
N
2

(N−1)h(y)e−|y|2/(2t).
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Transitions between the classes

[Katori/Tanemura 2004]

Analogously to the two-matrix model that interpolates from GUE to GOE in the time
interval [0, t] (=⇒ BMs non-colliding up to time t), there is a non-colliding family of
generalised Brownian meanders (with parameters choosen appropriately) which
interpolate between chGUE and chGOE respectively between C and CI in the interval
[0, t].

Explanation: A Brownian meander is a one-dimensional BM conditioned to stay positive
up to time t. In the limit t → ∞, it converges to a three-dimensional Bessel process,
which is in distribution equal to a one-dimensional BM conditioned on staying positive
at all times.

A related transition is observed for non-colliding generalised Brownian meanders if the
non-colliding property collapses at time t in the way that all paths collide
simultaneously or that only pairwise collisions occur. Here one has transitions from
GUE to GSE, from chGUE to chGSE, and from D to DIII, respectively.
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