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Goal

In the ten ensembles, replace the normal variables by Brownian motions
Derive the SDE for the eigenvalue processes

|ldentify these processes in terms of Doob h-transforms (if possible)

oo 0 b0

Interpret them as systems of non-colliding random processes

The main matrix diffusions:

S = (S(1))te[0,00) € RS]\;IEN symmetric Brownian motion (GOE at time 1)
A = (A(t))tel0,00) € RYXN antisymmetric Brownian motion

antisym

S + i A Hermitian Brownian motion (GUE at time 1)
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Dyson’s Brownian motions

|7)\1(t) < A2(t) < --- < An(t) eigenvalues of (S +1 A)(t) —‘

A= (A1(t), .-, AN(t))te[0,00) €igENVAlUE process in 1%

W={zcRV:2; <z9 <--- <N} Weyl chamber (of type A)

Theorem. [DYSON 1962] A SATISFIES, FOR 3 = 2, THE SDE

p 1 .
dX;(t) =dB;(t = dt, =1,...,N.
H=dB0+ 3 2 So—ne ®

FURTHERMORE, A IS ABM IN RN, CONDITIONED ON BEING NON-COLLIDING FOR EVER.

Hence, if T = inf{t > 0: B(t) ¢ W} is the exit time of a BM B in R from W, then, formally,

L) =L(B|T = ).
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Non-colliding BM

Proper definition in terms of Doob A-transform with A = A, where
Alz)= ] (zj—zi)=det [(a:g_l)i,j:l,,_,,N)} Vandermonde determinant
1<i<j<N

A'is harmonic for £ 3" 1 92, and A > 0in W.

transition probability density of the h-transform:

A
pt(z,y) dy = Px(B(1) Edy;T>1k)M z,y € W.

A(zx)’

Lemma. [KARLIN/MCGREGOR 1958]

Py (B(t) € dy; T > t) = det [(pt(wi,yj))i,jzl,m,N)] dy.

(This is true for all diffusions with i.i.d. components in place of B, if p;(x, y) denotes their
transition probability function.)
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Some properties

Corollary.
® 7,0,y = Ct_%(N_l)e—|y|2/(2t)A(y)2 Hermite ensemble

® P (T>t)~ Ct_%(N_l)A(m) as t — oo non-colliding probability
O lim; oo Po(t"Y2B(t) €dy | T > t) = Ce W /2A(2)A(y)
9

Po(B(t) € dy | T > t) = Ce~ 17/ A(y)

Sketch of proof of the first assertion for t = 1: Observe that

A(y)

~ _ =T (N=1) —z]?/(2t) .—|y|?/(2t) x;y;/t =\
pt(z,y) = Ct™ 4 € © det {(e ’ )w] Alz)

Fort=1,asx — O,

= det [((l:;i— 1)!>@- Jaet [(071);)] = ca@aw). J
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Other values of
=

® Real variant of Dyson’s theorem: the eigenvalue process of S (GOE diffusion) satisfies
the Dyson SDE (1) with 8 = 1. This is not an h-transform of BM.

® The diffusion defined by Dyson’s SDE in (1) is well-defined and non-colliding for any
B > 0. Identification in terms of eigenvalue processes known only for 5 = 1, 2 (see
above) and 8 = 4 (see later).
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Transition from GUE to GOE
=

Lemma. [KATORI/TANEMURA 2003] Fixt > 0. LET A = (A(8))secj0,4 € Rantlsym BE AN
ANTISYMMETRIC BROWNIAN BRIDGE MATRIX DIFFUSION. THEN THE EIGENVALUE PROCESS OF S + 1 A IS IN

DISTRIBUTION EQUAL TO (B(s))sc[0,+], CONDITIONED ON {T" > t}.

Explanation: Decompose the components of S as
S S
Bi,j(s) = (Bi,j(S) — 1 Biy (t)) + 2 Bii(t)
and summarize the bridge part and the remainder, then

S +i A = Hermitian bridge diffusion + (;5@)) 0.8’
s&|0,t

which interpolates between GUE and GOE as s varies.

S +1i A is called a two-matrix model.
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More general matrix diffusions

o |

Theorem. [BRU 1991], [KATORI/TANEMURA 2004] LET £ BE A COMPLEX CONTINUOUS HERMITIAN
MATRIX-VALUED SEMIMARTINGALE, AND LET U(t) BE UNITARY WITH

U(t)*E(t)U(t) = diag[A(t)], wWITH A(t) € W.

THEN,FOR?z = 1,..., N,

()dt
— A (t

dX; (t) = dM; (t)—l—z

WHERE M; IS A MARTINGALE,

) Lex; (t2x; (0} +dO4(1),

t

L, (t)dt = (U(t)*dg(t)U(t))i,j (U(t)*df(t)U(t))j’i AND  {M;)¢ :/O I'; ;(s)ds,

AND d©; (t) IS THE FINITE-VARIATION PART OF (U(t)*d{(t)U(t))i "
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Wishart Processes

[Bru 1991], [K./O’Connell 2001], [Katori/Tanemura 2004]

Consider £ = D* D, where, with v € N a parameter,

D(t) = (Bi,j (t) + 1 Ei,j (t)) i=1,...,N4v .

j=1,..., N
Every component of ¢ is a BESQ?¥12. ¢ is called the Wishart process and has nonnegative
eigenvalues 0 < A\; < --- < An. One calculates

d@i(t) = 2(N + V) dt, Fi,j (t) = 2(>\i(t) + )\j (t)), <Mz>t = 4/0t )\7;(8) ds.

Hence:
The eigenvalue process, A, of £ satisfies, forany i =1,..., N, the SDE
Ai(t) + A ()
t) =2/ X\ (t)dB;(t) + B( N + v + J dt, ()
( Z Y (t) )\j (t))
with 38 = 2.
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Remarks

The squareroot k; = \/\; satisfies, forg=2and vy =v + % the SDE
B 1 1
dr;(t) = dB;(t — dt 3
wilt) = 4Bit) + 2 (5 2> GOm0 TmoEaE) Y @

The distribution of A(¢) is the Laguerre ensemble with density

N
y o Ot NI A2 TT (e7vi/ @0yr).
i=1
Hence, \(1) is the eigenvalue distribution of the chiral GUE, the class Alll.
Real version: if the complex part of D is dropped, then X satisfies (2) with 3 = 1. Then
ki = /A satisfies (3) with 5 = 1 and v = v, and «(t) has density

N
Z Ct_%(NJr”)A(zQ) H (e_zg/(%)zi”).
i=1

In particular, A\(1) is the eigenvalue distribution of the chiral GOE, the class BDI.

|
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_aguerre process and non-colliding BESQ

The Wishart analogon to Dyson’s theorem:

Lemma FOR3 = 2AND Yy =V + % e N+ % THE PROCESS A\ IS DISTRIBUTED AS THE DoOB

h-TRANSFORM OF N INDEPENDENT BESQ2V+2 wWITH h = A; I.LE., A\ IS NON-COLLIDING BESQ2V+2.

Hence, A is also a positive harmonic function for the generator of N independent
BESQ?¥*2-processes,

N N
Gf(x)=2) z07f(x)+v > 0if(z).
1=1 =1

The transition probability function of A may be expressed as

A(y)

pr(x,y)dy =Px(Y(t) € dy; T > t) Alz)

where T is the exit time of BESQ?*+2(R), Y, from W. The Karlin-McGregor formula
applies, and analogs of the above corollary hold.
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All and Dyson’s model with 5 =4

Let S1, S2, S5 be three independent copies of the symmetric Brownian N x N-matrix
diffusion S (GOE-diffusion), and consider the (2N x 2N)-dimensional matrix diffusion

¢ = Si+1A  So+1S3
So — 153 S1—1A .
Then £(t) is in the class All and possesses the eigenvalues A1 (t) < Ao (t) < --- < Ay (2),
each one precisely twice. Put A = (A1,...,An).

Lemma [KATORI/TANEMURA 2004] A SOLVES DYSON’s SDE IN (1) wiTH 3 = 4.

Remark. The same is true for the eigenvalue process of

‘- S — A i Ay — As
i Ao+ As S+ A |
where A1, As, A3 are three independent copies of the antisymmetric Brownian matrix

diffusion A.
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Class C and non-colliding BM with wall at O

Let S1, S2, S3 be three independent copies of the symmetric Brownian matrix diffusion S
(GOE-diffusion), and consider the (2N x 2N)-dimensional matrix diffusion

¢ = S1+i1A So — 1S53
So+1S53 —-S1+i1A .
Then £(t) is in the class C and possesses the eigenvalues

—AN(E) < S =A() S0 M) < S AN ().

Lemma [KATORI/TANEMURA 2004] A SOLVES THE SDE IN (3)WITH = 2AND Y = 1 (1LE., v =

N =
N

HENCE, IT IS IN DISTRIBUTION EQUAL TO N BMS, CONDITIONED ON NEVER LEAVING
We={zecRN:0<z21 <22<--- <2}

® WC is the Weyl chamber of type C.

® )\ is the Doob h-transform of a tuple of a BM in RN with h(z) = A(x2) [T, z:.
® )\(¢) has the density

N
y s Ot~ 2 CNTD A (y2)2 ( I1 y?)e—lyIQ/(Qt) — Ot~ 3 N+ ()2 1v17/(20)
i=1
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Class D and non-colliding reflected BMs

Let A1, As, A3 be three independent copies of the antisymmetric Brownian matrix diffusion
A, and consider the (2N x 2N )-dimensional matrix diffusion

S+1A; i Ay — Asg
1A+ A3 —S+1A,

Then £(t) is in the class D and possesses the eigenvalues

—AN(E) <o < =A(E) S0 <A (R) < - < AN (D).
Lemma [KATORI/TANEMURA 2004] A SOLVES THE SDE IN (3)WITH 3 = 2AND Y = 0 (1LE., v = — %).
HENCE, IT IS IN DISTRIBUTION EQUAL TO /N REFLECTED BMS, CONDITIONED ON NON-COLLISION,

® Equivalently, \ is a BM in R, conditioned on never leaving the Weyl chamber of type
D,WP ={z e RV : |z1| <z2 <--- < 2N}

® ) isthe Doob h-transform of a tuple of N reflected BMs in [0, 0o), with h(z) = A(z?).
® )\(¢) has the density

y Ct—%(2N—|—1)A(y2>2€—|y|2/(2t) _ Ct_%(2N+1)h(y)2e_|y|2/(2t).
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Remarks on classes C and D

® The SDE that the eigenvalue process )\ satisfies in classes C and D is the one that is
satisfied by x; = +/\; in the complex Wishart case (i.e., 3 = 2) for v € N:

2v + 1 1 1
w0 =D+ (G + > (G e ) @

(]

JFi

but now for v = 1 (class C) and v = —1 (class D).

® The process « in (4) is well-defined for any v € (—1, c0). Its transition densities are
explicit in terms of Bessel functions and determinants, using the Karlin-McGregor
1

formula. It is a Doob A-transform only in the two special cases v = % andv = —5.
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Random Matrix Day, M unster, 5 May, 2006 — p.15/17



Real versions of classes C and D

Real version of class C: If the complex part of case-C ¢ is dropped, i.e.,

S1 52
£ = :
So =51

then £ is in the class CI. Its eigenvalue process )\ solves the SDE

amm s B0 1 1
dri(t) = dBUT) + 2 (5 > oo T roTeE))

withg=1and~v =1 (i.e., v = %). However, X is not a Doob h-transform. The density of
A(t) is

N
Y — Ct—%(NJrl)A(y?) ( H yi)e—lyIQ/(%) _ Ct_%(N+1)h(y)e_|y|2/(2t).
i=1
Real version of class D: If the complex part of case-D ¢ is dropped, then the
eigenvalue process solves the above SDE with g =1and~ =0 (i.e.,v = — %). The density
of A(%) is

y o Ot T (VD A2)em WP/ = o= 5 (VD)o lvl?/ (2,
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Transitions between the classes

[Katori/Tanemura 2004]

® Analogously to the two-matrix model that interpolates from GUE to GOE in the time

o

interval [0, t] (= BMs non-colliding up to time t), there is a non-colliding family of
generalised Brownian meanders (with parameters choosen appropriately) which
interpolate between chGUE and chGOE respectively between C and CI in the interval
0, £].

Explanation: A Brownian meander is a one-dimensional BM conditioned to stay positive
up to time t. In the limit ¢ — oo, it converges to a three-dimensional Bessel process,
which is in distribution equal to a one-dimensional BM conditioned on staying positive
at all times.

A related transition is observed for non-colliding generalised Brownian meanders if the
non-colliding property collapses at time ¢ in the way that all paths collide
simultaneously or that only pairwise collisions occur. Here one has transitions from
GUE to GSE, from chGUE to chGSE, and from D to DIlI, respectively.

|
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