
THE LONGEST EXCURSIONOF A RANDOM INTERACTING POLYMERJanine Kö
her1 and Wolfgang König1,2(1 Mar
h, 2011)Abstra
t: We 
onsider a random N -step polymer under the in�uen
e of an at-tra
tive intera
tion with the origin and derive a limit law � after suitable shiftingand norming � for the length of the longest ex
ursion towards the Gumbel distri-bution. The embodied law of large numbers in parti
ular implies that the longestex
ursion is of order log N long. The main tools are taken from extreme valuetheory and renewal theory.MSC 2010. 60F05, 82D60.Keywords and phrases. Free energy, intera
ting polymer, longest ex
ursion, extreme value theory,renewal theory. 1. Introdu
tion and main resultsLet (Sn)n∈N0 be a random walk on the latti
e Z
d starting at the origin and having steps of meanzero. By P and E we denote the 
orresponding probability and expe
tation, respe
tively. We
on
eive the walk (n, Sn)n=0,...,N as an N -step polymer in the (d + 1)-dimensional spa
e. Weintrodu
e an attra
tive intera
tion with the origin by introdu
ing the Gibbs measure Pβ,N viathe density

dPβ,N

dP
=

eβLN

Zβ,N
with Zβ,N = E

[
eβLN

]
, (1.1)where β ∈ (0,∞) is a parameter and

LN = |{k ∈ {1, . . . ,N} : Sk = 0}| (1.2)denotes the walker's lo
al time at the origin, i.e., the number of returns to the origin. Theproperties of the polymer under Pβ,N have been studied a lot [dH09, G07℄. In parti
ular, thefree energy
F (β) = lim

N→∞

1

N
log Zβ,N ∈ (0, β) (1.3)has been shown to exist and to be positive and stri
tly in
reasing in β. Furthermore, it hasbeen shown that the polymer is lo
alised in the sense that LN is of order N under Pβ,N , and1Institute for Mathemati
s, TU Berlin, Str. des 17. Juni 136, 10623 Berlin, Germany, JanineKoe
her�aol.
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2 JANINE KÖCHER AND WOLFGANG KÖNIGthe density of the set of hits of the origin has been 
hara
terised. In parti
ular, the 
onstrainedversion, i.e., the polymer under
P

(c)

β,N (·) =
1

Z(c)

β,N

E
[
eβLN 1l{ · }1l{SN = 0}

]
, where Z(c)

β,N = E
[
eβLN 1l{SN = 0}

]
, (1.4)has been studied.In this paper, we 
onsider the length of the longest ex
ursion of the polymer under P

(c)

β,N . Tointrodu
e this obje
t, we denote by τ = {τi : i ∈ N0} the set of return times to the origin, where
τ0 = 0 and, indu
tively, τi+1 = inf{n > τi : Sn = 0}, i ∈ N0. (1.5)Then P

(c)

β,N is the 
onditional distribution of the polymer given {N ∈ τ}. The length of thelongest ex
ursion is now given as
maxexcN = max{τi − τi−1 : i ∈ N, τi ≤ N}. (1.6)A

ording to [dH09, Theorem 7.3℄, maxexcN is of order log N under P

(c)

β,N , in the sense thatthe distribution of maxexcN/ log N under P
(c)

β,N is tight in N . The proof gives the upper bound
2/F (β), whi
h is not sharp, as we will see below. It is the main goal of this note to derive notonly the law of large numbers for maxexcN , but also a non-trivial limit law for maxexcN aftersuitable shifting, in the spirit of extreme value theory.To formulate our main result, we need to �x our assumptions �rst.Assumption (τ ). There are D ∈ (0,∞) and α ∈ (1,∞) su
h that

K(n) := P(τ1 = n) ∼ Dn−α, n → ∞.This assumption is ful�lled for most of the aperiodi
 random walks (Sn)n∈N0 under 
onsid-eration in the literature. For random walks with period p ∈ N, one has to work with K(pn)instead of K(n) and with pN -step polymers and obtains analogous results. Assumption (τ) 
anbe relaxed with the help of slowly varying fun
tions, on 
ost of a more 
umbersome formulationand proof of the main result.The main result of this paper is the following.Theorem 1.1. Suppose that Assumption (τ) is satis�ed, and �x β ∈ (0,∞). Then, as N → ∞,the distribution of
F (β)maxexcN − log

N

µβ
+ α log log

N

µβ
− C (1.7)under P

(c)

β,N weakly 
onverges towards the standard Gumbel distribution, where
µβ = eβ

∑

n∈N

nK(n)e−nF (β) and C = log
(
F (β)αD

eβ−F (β)

1 − e−F (β)

)
. (1.8)Expli
itly, it is stated that, for any x ∈ R,

lim
N→∞

P
(c)

β,N

(
maxexcN ≤ γx(N/µβ)

)
= e−e−x

, where γx(N) =
x + C + log N − α log log N

F (β)
.(1.9)In parti
ular, we have the law of large numbers: maxexcN/ log N → 1/F (β) in P

(c)

β,N -probabilityas N → ∞.



THE LONGEST EXCURSION OF A RANDOM INTERACTING POLYMER 32. The proofIt is well-known that the free energy F (β) is 
hara
terised by the equation
eβ =

∑

n∈N

K(n)e−nF (β), (2.1)and that it a
tually holds that Z(c)

β,N ∼ eNF (β) 1
µβ

as N → ∞. In parti
ular, F (β) is also theexponential rate of Z(c)

β,N . The �rst step, whi
h is basi
 to all investigations of the polymer, isa 
hange of measure to the measure Qβ, under whi
h the ex
ursion lengths Tk = τk+1 − τk, arei.i.d. in k ∈ N0 with distribution
Qβ(T1 = n) = e−βK(n)e−nF (β), n ∈ N.Sin
e maxexcN is measurable with respe
t to the family of the Tk's, it is easy to see from thete
hnique explained in [G07, p. 9℄ that

P
(c)

β,N (maxexcN ≤ γN ) ∼ µβQβ(maxexcN ≤ γN ,N ∈ τ), N → ∞, (2.2)for any 
hoi
e of the sequen
e (γN )N∈N, where µβ =
∑

n∈N
nQβ(T1 = n) ∈ [1,∞) is the expe
-tation of the length of the �rst ex
ursion under Qβ. Introdu
ing

Mn =
n

max
k=1

Tk and σN = inf{k ∈ N : τk ≥ N}, (2.3)we see that maxexcN = MσN
on {N ∈ τ} for any N ∈ N. (Note that σN = LN on the event

{N ∈ τ}.) Hen
e, Theorem 1.1 is equivalent to
lim

N→∞
Qβ(MσN

≤ γx(N/µβ),N ∈ τ) =
1

µβ
e−e−x

, x ∈ R. (2.4)The proof of this 
onsist of a 
ombination of three fundamental ingredients:(1) an extreme value theorem for Mn under Qβ,(2) a law of large numbers for σN under Qβ,(3) a renewal theorem for τ under Qβ.Items (2) and (3) are immediate: We have from renewal theory that σN/N → 1/µβ in Qβ-probability and limN→∞ Qβ(N ∈ τ) = 1/µβ . The �rst item needs a bit more 
are:Lemma 2.1.
lim

N→∞
Qβ(MN ≤ γx(N)) = e−e−x

, x ∈ R.Proof. Note that MN is the maximum of N independent random variables with the samedistribution as T1 = τ1 under Qβ. Observe that the tails of this distribution are given by
Qβ(τ1 > k) = eβ

∑

n>k

K(n)e−nF (β) ∼ eβD
∑

n>k

n−αe−nF (β)

= eβDe−kF (β)k−α
∑

n∈N

(1 + n
k )−αe−nF (β)

∼ e−kF (β)k−αD
eβ−F (β)

1 − e−F (β)
, k → ∞,



4 JANINE KÖCHER AND WOLFGANG KÖNIGwhere in the last step we used the monotonous 
onvergen
e theorem and the geometri
 series.Hen
e, repla
ing k by γx(N), we see that, as N → ∞,
Qβ(τ1 > γx(N)) ∼ e−γx(N)F (β)γx(N)−αD

eβ−F (β)

1 − e−F (β)

=
1

N
e−C−x(log N)α

(x + C + log N − α log log N

F (β)

)−α
eCF (β)−α

∼
e−x

N
.From this the assertion easily follows. �Hen
e, Theorem 1.1 is easily seen to follow from the above three ingredients, as soon as oneshows that σN may asymptoti
ally be repla
ed by N/µβ and that the two events in (2.4) areasymptoti
ally independent. This is what we show now. First we show that MσN

and MN/µβhave the same limiting distribution.Lemma 2.2.
lim

N→∞
Qβ(MσN

≤ γx(N/µβ)) = e−e−x

, x ∈ R.Proof. The upper bound is proved as follows. Fix a small ε > 0, then we have, as N → ∞,
Qβ(MσN

≤ γx(N/µβ)) ≤ Qβ

(
MσN

≤ γx(N/µβ), σN ≥
N

µβ + ε

)
+ Qβ

(
σN <

N

µβ + ε

)

≤ Qβ

(
MN/(µβ+ε) ≤ γx(N/µβ)

)
+ o(1).

(2.5)Observe that, as N → ∞,
γx(N/µβ) − γx(N/(µβ + ε)) =

1

F (β)
log(1 + ε

µβ
) +

α

F (β)
log

log N − log(µβ + ε)

log N − log µβ

=
1

F (β)
log(1 + ε

µβ
) + o(1).Hen
e, we may repla
e, as an upper bound, γx(N/µβ) on the right of (2.5) by γx+Bε(N/(µβ +ε))for some suitable B ∈ R, use Lemma 2.1 for N repla
ed by N/(µβ + ε) and x repla
ed by x+Bεand make ε ↓ 0 in the end. This shows that the upper bound of the assertion holds. The lowerbound is proved in the same way. �Proof of Theorem 1.1. It is 
onvenient to introdu
e a Markov 
hain (Yn)n∈N0 with

Yn =
(
Y (1)

n , Y (2)
n

)
=

(
Tσn , τσn − n

)on the state spa
e I = {(i, j) ∈ N × N0 : j ≤ i}, where we re
all (2.3). In words, the �rst
omponent is the size of the step over n, and the last is the size of the overshoot. This Markov
hain is ergodi
 and positiv re
urrent with invariant distribution π(i, j) = Qβ(τ1 = i)/µβ for
(i, j) ∈ I. We denote by Q̃i,j the distribution of this 
hain given that it starts in Y0 = (i, j); notethat Qβ = Q̃i,0 with an unspe
i�ed value of i, whi
h we put equal to 1 by default. The event
{N ∈ τ} is identi
al to {Y (2)

N = 0} = {YN ∈ N × {0}}; by ergodi
ity, its probability under Q̃i,j
onverges, as N → ∞, to π(N × {0}) = 1
µβ
, for any (i, j) ∈ I, whi
h is one way to prove therenewal theorem.Now let ε > 0 be given. Pi
k Kε ∈ N so large that π(Ic

Kε
) < ε/2, where Ik = {(i, j) ∈ I : i ≤ k}for any k ∈ N. Furthermore, pi
k Rε ∈ N with Rε > Kε so large that Q̃i,j(Rε ∈ τ) ≤ 1

µβ
+ ε for



THE LONGEST EXCURSION OF A RANDOM INTERACTING POLYMER 5any (i, j) ∈ IKε . Now pi
k Nε ∈ N so large that Nε > Rε and Q̃1,0(YN−Rε ∈ Ic
Kε

) < π(Ic
Kε

)+ ε/2for any N ≥ Nε. The latter is possible, sin
e Q̃1,0(YN−Rε ∈ Ic
Kε

) = 1 − Q̃1,0(YN−Rε ∈ IKε)
onverges towards 1 − π(IKε) = π(Ic
Kε

) as N → ∞ by ergodi
ity.Re
all that we only have to prove (2.4). We 
al
ulate, with the help of the Markov propertyat time N − Rε, for N > Nε,
Qβ(MσN

≤ γx(N/µβ), N ∈ τ) = Q̃1,0

(
N

max
k=1

Y (1)

k ≤ γx(N/µβ), Y (2)

N = 0
)

≤ Q̃1,0

(
N−Rε
max
k=1

Y (1)

k ≤ γx(N/µβ), YN−Rε ∈ IKε , Y
(2)

N = 0
)

+ Q̃1,0(YN−Rε ∈ Ic
Kε

)

≤
∑

(i,j)∈IKε

Q̃1,0

(
N−Rε
max
k=1

Y (1)

k ≤ γx(N/µβ), YN−Rε = (i, j)
)

Q̃i,j(Y
(2)

Rε
= 0) + π(Ic

Kε
) + ε/2

≤ Q̃1,0

(
N−Rε
max
k=1

Y (1)

k ≤ γx(N/µβ)
)
( 1

µβ
+ ε) + ε

≤ Qβ

(
MσN−Rε

≤ γx(N/µβ)
)
( 1

µβ
+ ε) + ε.Now apply Lemma 2.2 for N repla
ed by N −Rε and observe that limN→∞(γx(N/µβ)−γx((N −

Rε)/µβ)) = 0. Afterwards letting ε ↓ 0 shows that the upper bound in (2.4) holds. The proof ofthe 
orresponding lower bound is similar, and we omit it. �Referen
es[G07℄ G. Gia
omin, Random Polymer Models, Imperial College Press (2007).[dH09℄ F. den Hollander, Random Polymers, Springer (2009).


