
IDEAL MIXTURE APPROXIMATIONOF CLUSTER SIZE DISTRIBUTIONS AT LOW DENSITYSabine Jansen1, Wolfgang König1,2WIAS Berlin and TU Berlin(18 April, 2012)We 
onsider an intera
ting parti
le system in 
ontinuous 
on�guration spa
e. The pairintera
tion has an attra
tive part. We show that, at low density, the system behavesapproximately like an ideal mixture of 
lusters (droplets): we prove rigorous bounds(a) for the 
onstrained free energy asso
iated with a given 
luster size distribution,
onsidered as an order parameter, (b) for the free energy, obtained by minimising overthe order parameter, and (
) for the minimising 
luster size distributions. It is knownthat, under suitable assumptions, the ideal mixture has a transition from a gas phaseto a 
ondensed phase as the density is varied; our bounds hold both in the gas phaseand in the 
oexisten
e region of the ideal mixture. The present paper improves ourearlier results by taking into a

ount the mixing entropy.MSC 2010. Primary 82B21, Se
ondary 60F10; 82B31; 82B05.Keywords and phrases. Classi
al parti
le system, 
anoni
al ensemble, equilibrium statisti
al me
hani
s,dilute system, large deviations.1. Introdu
tion and main resultsThe idea to treat an intera
ting parti
le gas as an approximately ideal mixture of droplets (
lusters)is 
lassi
al and of wide-spread use in statisti
al me
hani
s, thermodynami
s, and physi
al 
hemistry.It goes sometimes under the name of Frenkel-Band theory of asso
iation equilibrium, see the text-book [H56℄. From a more mathemati
al perspe
tive, this droplet pi
ture has been used in investigationsof per
olation properties for latti
e and 
ontinuum systems [LP77, M75, GHM01℄.This arti
le's main 
on
ern is to make this droplet pi
ture rigorous. To the best of our knowledge,all existing results work in the grand-
anoni
al ensemble at su�
iently negative values of the 
hemi
alpotential, for whi
h one expe
ts that all 
lusters are �nite. In 
ontrast, we work in the 
anoni
alensemble. This allows us to give results that hold also in a regime where there might be in�nite
lusters.In this work, we 
onsider the free energies, the 
onstrained free energies with �xed 
luster sizedistributions, and the optimal distribution itself and derive bounds for the deviation from the idealmodel. These bounds de
ay exponentially fast as a fun
tion of the inverse temperature at low densities,respe
tively they de
ay as a power of the density.1Weierstrass Institute Berlin, Mohrenstr. 39, 10117 Berlin, jansen�wias-berlin.de, koenig�wias-berlin.de2Te
hnis
he Universität Berlin, Str. des 17. Juni 136, 10623 Berlin



2 SABINE JANSEN AND WOLFGANG KÖNIG1.1. The model. We 
onsider a system x = (x1, . . . , xN ) of N parti
les in a box Λ = [0, L]d withintera
tion given by
UN (x) = UN (x1, . . . , xN ) =

∑

1≤i<j≤N

v(|xi − xj |), (1.1)where v : [0,∞) → R ∪ {∞} is a Lennard-Jones-type potential. Our pre
ise assumptions, whi
h arethe same as in [JKM11℄, are as follows.Assumption (V). The fun
tion v : [0,∞) → R ∪ {∞} satis�es the following.(1) v is �nite ex
ept possibly for a hard 
ore: there is a rhc ≥ 0 su
h that
∀r < rhc : v(r) = ∞, ∀r > rhc : v(r) ∈ R.(2) v is stable.(3) The support of v is 
ompa
t, more pre
isely, b := sup supp v < ∞.(4) v has an attra
tive tail: there is a δ > 0 su
h that v(r) < 0 for all r ∈ (b − δ, b).(5) v is 
ontinuous in [rhc,∞) ∩ (0,∞).Throughout this paper, Assumption (V) will be in for
e without further mentioning. We 
onsiderthe thermodynami
 limit N,L → ∞ su
h that |Λ| = Ld = N/ρ for some parti
le density ρ ∈ (0,∞) atpositive and �nite inverse temperature β ∈ (0,∞). The existen
e of the free energy per unit volume iswell-known: there is a ρcp ∈ (0,∞], the 
lose-pa
king density, su
h that for all ρ ∈ (0, ρcp), the limit

f(β, ρ) := −
1

β
lim

N,L→∞,Ld=N/ρ

1

|Λ|
log
( 1

N !

∫

ΛN

e−βUN (x) dx
)

, β ∈ (0,∞) (1.2)exists in R. In the following, we always assume that β ∈ (0,∞) and ρ ∈ (0, ρcp).Our main 
on
ern is the 
luster size distribution that is indu
ed by the Gibbs measure as a randomsequen
e. Fix R ∈ (b,∞). For a given 
on�guration x = (x1, . . . , xN ) ∈ ΛN , 
onne
t two points xi and
xj if their distan
e |xi − xj | is ≤ R. In this way, the 
on�guration splits into 
onne
ted 
omponents(maximal 
onne
ted subsets), whi
h we 
all 
lusters. Let Nk(x) be the number of k-
lusters, i.e.,
omponents with k parti
les, and let

ρk,Λ(x) :=
Nk(x)

|Λ|be the number of k-
lusters per unit volume (whi
h is zero for any su�
iently large k, of 
ourse). We
onsider the 
luster size distribution ρΛ = (ρk,Λ)k∈N as a random variable in the set of all sequen
es
ρ = (ρk)k∈N ∈ [0,∞)N, whi
h is naturally 
on
eived as a produ
t probability spa
e. One of the mainresults of [JKM11℄ is the existen
e of a rate fun
tion f(β, ρ, ·) : [0,∞)N → R ∪ {∞} su
h that, in theabove thermodynami
 limit,

−
1

β

1

|Λ|
log
( 1

N !

∫

ΛN

e−βUN (x)1l
{

ρΛ(x) ∈ ·
}

dx
)

=⇒ inf
ρ∈·

f(β, ρ,ρ), (1.3)in the sense of a large-deviation prin
iple. That is, the limit in (1.3) holds in the weak sense, and thelevel sets of the rate fun
tion f(β, ρ, ·) are 
ompa
t; in parti
ular, f(β, ρ, ·) is lower semi-
ontinuous.Furthermore, f(β, ρ, ·) is 
onvex. Moreover, if f(β, ρ,ρ) is �nite, then ne
essarily ∑∞
k=1 kρk ≤ ρ. Atlow density ρ, the 
onverse is also true, i.e., f(β, ρ,ρ) < ∞ for any ρ su
h that ∑∞

k=1 kρk ≤ ρ. Therelation with the free energy given in (1.2) is
f(β, ρ) = min

{

f
(

β, ρ,ρ
)

∣

∣

∣
ρ ∈ [0,∞)N,

∑

k∈N

kρk ≤ ρ
}

.Hen
e, the minimiser(s) of f(β, ρ, ·) play an important role as the optimal 
on�guration(s) of thesystem. Note that the rate fun
tion and all other related obje
ts studied in the present paper dependon the parameter R, but we will not elaborate on this dependen
e. Note that this dependen
e on R



IDEAL MIXTURE APPROXIMATION OF CLUSTER SIZE DISTRIBUTIONS AT LOW DENSITY 3vanishes in the low temperature, low density approximation that we studied in [JKM11℄, but not inthe one presented here.1.2. The ideal-mixture model. We now introdu
e the main obje
t in terms of whi
h we will ap-proximate the above model. The 
luster partition fun
tion of a k-
luster is introdu
ed as
Zcl

k (β) :=
1

k!

∫

(Rd)k−1

e−βUk(0,x2,...,xk)1l
{

{0, x2, . . . , xk} 
onne
ted}dx2 · · · dxk, (1.4)and the asso
iated 
luster free energy per parti
le is f cl
k (β) := − 1

βk log Zcl
k (β). It is known that itsthermodynami
 limit,

f cl
∞(β) = lim

k→∞
f cl

k (β), (1.5)exists in R. Indeed, this was proved in [DS84℄, given that (f cl
k (β))k∈N is bounded, and the boundednessof (f cl

k (β))k∈N was derived in [DS84℄ in dimension d = 2 and d = 3 and in [JKM11, Lemma 4.3 and4.5℄ in all dimensions.For ρ = (ρk)k∈N, let
f ideal(β, ρ,ρ) :=

∑

k∈N

kρkf
cl
k (β) +

(

ρ −
∑

k∈N

kρk

)

f cl
∞(β) +

1

β

∑

k∈N

ρk(log ρk − 1). (1.6)This rate fun
tion des
ribes the large deviations of the 
luster size distribution in an idealised modelthat negle
ts the ex
luded-volume e�e
t: the �rst term des
ribes the internal free energy 
oming fromthe 
lusters of �nite size, the se
ond term the analogous 
ontribution from 
lusters of in�nite size, andthe last term des
ribes the entropy of pla
ing all these 
lusters into the volume, not taking 
are ofbeing separated from ea
h other. See Se
tion 1.5 for an integer partition model that has f ideal(β, ρ, ·)as a rate fun
tion.We are going to 
ompare f(β, ρ,ρ) with f ideal(β, ρ,ρ) for small densities ρ and low temperatures
1/β. That these two should be 
lose to ea
h other is intuitively 
lear, sin
e low temperature shouldensure that 
lusters assume a 
ompa
t shape, and low density should give enough spa
e to pla
e the
lusters at positive mutual distan
e. The main purpose of this paper is to make this reasoning rigorous.1.3. Our hypotheses. We need further assumptions about ground states and the 
luster partitionfun
tions. Roughly speaking, we need to assume some Hölder 
ontinuity of the energy Uk(·) 
lose to theground states and that the relevant 
lusters at zero and low temperature, respe
tively, have a 
ompa
tshape, i.e., o

upy at most a box with volume of order of the number of parti
les. These hypothesesare believed to be true for many potentials of the type in Assumption (V), and they 
an be seen to besatis�ed for the ground states. However, for positive temperatures, their rigorous understanding hasnot yet been 
ompleted.The purpose of the hypothesis of bounded density is the following. As we indi
ated above, thefundamental idea is to split the 
on�guration into its 
lusters and to 
olle
t the internal free energiesof all the 
lusters. However, one also needs to des
ribe the entropy of a 
on�guration, that is, the
ombinatorial 
omplexity for the pla
ement of all the 
lusters into some 
ube. This task is very hardwithout further information. In the low-density approximation, we will solve this task by negle
tingthe ex
luded-volume e�e
t, whi
h makes it mu
h easier. For this, we need to know that the 
lustersdo not require a large diameter. Our se
ond hypothesis ensure this for the ground states, and the lasttwo hypotheses ensure this for positive low temperature.First we formulate our hypothesis about uniform Hölder 
ontinuity of the energy around the groundstates and a strong form of stability. Re
all that the pair potential v is 
alled stable if 1

k inf
x∈(Rd)k Uk(x)is bounded from below in k, whi
h means that the ground states do not 
lump too strongly.



4 SABINE JANSEN AND WOLFGANG KÖNIGHypothesis 1. There is a rmin ∈ (rhc,∞) su
h that v is uniformly Hölder 
ontinuous in [rmin,∞)and, for all k ∈ N, every minimiser (x1, . . . , xk) ∈ (Rd)k of the energy Uk has interparti
le distan
elower bounded as |xi − xj | ≥ rmin for any i 6= j.This hypothesis 
an be seen to be satis�ed under some mild additional assumptions on v relatingthe negative part of v to its behaviour at zero; see [CKMS10, Proof of Lemma 3.1℄ or [Th06, Lemma2.2℄. The Hölder 
ontinuity allows us to give low-temperature estimates of the form
−

1

βk
log

1

k!

∫

(Rd)k

e−βU(x) dx =
1

k
inf

x∈(Rd)k
U(x) + O

( log β

β

) as β → ∞,uniformly in k ∈ N.Our next hypothesis says that the minimising 
on�gurations (the ground states) do not o

upy morespa
e than a box with volume of order of the number of parti
les.Hypothesis 2 (Ground states have a 
ompa
t shape). There is a 
onstant c > 0 su
h that for all
k ∈ N every minimiser (x1, . . . , xk) ∈ (Rd)k of the energy Uk has interparti
le distan
e upper boundedby |xi − xj | ≤ ck1/d for any i 6= j.This hypothesis is known to be satis�ed for some 
lasses of potentials having a large interse
tionwith those satisfying Assumption (V), however, only in dimension one and two. See [R81℄ and [AFS12℄.Now we pro
eed with two more restri
tive hypotheses, whose validity has a
tually not been 
lari�edfor all interesting potentials of the type that we 
onsider. They 
on
ern, at positive su�
iently lowtemperature, the diameter of the relevant 
lusters.An important obje
t is the internal 
luster energy 
oming from a box of volume ad:

Zcl,A
k (β) :=

1

k!Ad

∫

([0,A]d)k

e−βUk(x)1l{x 
onne
ted}dx1 · · · dxk. (1.7)The reader may 
he
k that limA→∞ Zcl,A
k (β) = Zcl

k (β) holds for every �xed k and β. The 
orrespondingfree energy is de�ned as f cl,A
k (β) := − 1

βk log Zcl,A
k (β). It is tempting to believe (and this is the 
ontentof our next hypothesis) that, at least at su�
iently low temperature, a box of volume of order k should
apture almost all the internal free energy of a 
luster:Hypothesis 3 (Clusters have a 
ompa
t shape). For some c ∈ (0,∞) and every su�
iently large β,

lim
k→∞

1

k
log Zcl,ck1/d

k (β) = lim
k→∞

1

k
log Zcl

k (β). (1.8)However, this hypothesis has not even been proved for the relatively simple 
ase of the two-dimensional Ising model, see the dis
ussion in [DS86℄. It is 
ommonly believed that (1.8) is truefor low temperature and wrong for high temperature, sin
e the 
luster is believed to assume a tree-likestru
ture and to o

upy therefore a mu
h larger portion of spa
e. This phenomenon is often 
alleda 
ollapse transition: as the temperature de
reases below a 
riti
al value, the volume per parti
le
ollapses to some �nite value.The following hypothesis is in the spirit of Hypothesis 3 and goes mu
h beyond it: if, for large β, therelevant 
on�gurations for f cl
k (β) have a 
ompa
t shape, then the number of parti
les that have notthe optimal number of neighbours should be of surfa
e order. Therefore the 
orre
tion to the large-kasymptoti
s should be of surfa
e order of a ball with volume ≈ k:Hypothesis 4. For some C > 0 and all su�
iently large β,

kf cl
k (β) − kf cl

∞(β) ≥ Ck1−1/d, k ∈ N. (1.9)



IDEAL MIXTURE APPROXIMATION OF CLUSTER SIZE DISTRIBUTIONS AT LOW DENSITY 5To the best of our knowledge, su
h a deep statement has not been proved for any interesting potentialsatisfying Assumption (V). A
tually for our proofs we only need a lower bound against Ckε for some
ε > 0 instead of Ck1−1/d.1.4. Our results. Our �rst main result applies to all 
luster size distributions ρ, not only minimisersof the rate fun
tions, and is therefore possibly of interest for non-equilibrium thermodynami
 models.Theorem 1.1 (Comparison of f(β, ρ, ·) and f ideal(β, ρ, ·)). Let the pair potential v satisfy Hypotheses1 and 2. Then there are ρ, β and C > 0 su
h that for all β ∈ [β,∞), ρ ∈ (0, ρ), and K ∈ N with
K < (ρ/3)−1/(d+1), and all ρ = (ρk)k∈N ∈ [0,∞)N satisfying ∑k∈N

kρk ≤ ρ,
f ideal(β, ρ,ρ) ≤ f(β, ρ,ρ) ≤ f ideal(β, ρ,ρ) +

C

β
εK(β, ρ,ρ), (1.10)where

εK(β, ρ,ρ) = ρ
(d+2)/(d+1)
≤K + (ρ − ρ≤K) log β − m>K log m>K (1.11)and we abbreviated ρ≤K :=

∑K
k=1 kρk and m>K :=

∑∞
k=K+1 ρk. If in addition Hypothesis 3 holds, thenin (1.11) we 
an repla
e (ρ − ρ≤K) with ∑∞

k=K+1 kρk.Theorem 1.1 is proved in Se
tion 2. Next, we 
ompare the minimimum and the minimisers underthe two stronger hypotheses on the 
ompa
t shape of the relevant 
lusters at positive temperature andthe �nite size 
orre
tion of the 
luster free energy. Let
f ideal(β, ρ) := inf

{

f ideal(β, ρ,ρ)
∣

∣

∣
ρ ∈ [0,∞)N,

∑

k∈N

kρk ≤ ρ
}

. (1.12)It is not di�
ult to see that there is a unique minimiser ρideal(β, ρ) = (ρideal
k (β, ρ))k∈N. We set

mideal(β, ρ) :=
∑∞

k=1 ρideal
k (β, ρ) ∈ [0, ρ].Theorem 1.2. Suppose that Hypotheses 1, 3 and 4 hold, and assume that d ≥ 2. Then there are

β, ρ,C,C ′ > 0 su
h that, for all β ∈ [β,∞) and ρ ∈ (0, ρ), the following holds.(1) Free energy:
0 ≤ f(β, ρ) − f ideal(β, ρ) ≤

C

β
mideal(β, ρ)ρ1/(d+1) . (1.13)(2) Let ρ = ρ(β,ρ) = (ρk)k∈N be a minimiser of f(β, ρ, ·), and put m :=

∑

k∈N
ρk. Then

∣

∣

∣

∣

m

mideal(β, ρ)
− 1

∣

∣

∣

∣

2

≤ C ′ρ1/(d+1) and 1

2
H
( ρ

m
;

ρideal(β, ρ)

mideal(β, ρ)

)

≤ C ′ρ1/(d+1). (1.14)Here
H(a; b) =

∑

k∈N

(

bk − ak + ak log
ak

bk

)is the relative entropy between two �nite measures a and b on N, and we re
all Pinsker's inequality:when a and b are probability measures, then 1
2H(a; b) ≥ ||a − b||2var. The proof of Theorem 1.2 is inSe
tion 3.2.As we explained in more detail in [JKM11, Se
tion 1.6℄, our results do not imply a transitionfrom non-existen
e to existen
e of unbounded 
lusters at any �xed temperature, but only indi
ate theo

urren
e of su
h a transition in a 
ertain limiting sense as the temperature and the parti
le densityboth vanish.



6 SABINE JANSEN AND WOLFGANG KÖNIGIf we do not assume that Hypotheses 3 and 4 are true, our rigorous bounds hold in the temperature-density plane only in a region away from the 
riti
al line given by ρ = exp(−βν∗) with ν∗ ∈ (0,∞)de�ned as follows. Introdu
e the ground-state energy,
Ek := inf

x∈(Rd)k
Uk(x). (1.15)Then e∞ := limk→∞ Ek/k exists in (−∞, 0), and ν∗ := infk∈N(Ek−ke∞) is positive [CKMS10, JKM11℄;note that Assumption (V)(4) is needed for proving the positivity of ν∗.Theorem 1.3. Let v satisfy Hypotheses 1 and 2. Then, for any ε > 0 there are βε, Cε, C

′
ε > 0 su
hthat for all β ∈ [βε,∞) and ρ ∈ (0,∞) satisfying −β−1 log ρ > ν∗ + ε, (1.13) and (1.14) hold with Cand C ′ repla
ed by Cε and C ′

ε, respe
tively.The proof of Theorem 1.3 is in Se
tion 3.3. We would like to note that our 
ondition R > b is neededin the preparatorial Se
tion 3.1.1.5. Dis
ussion. Let us explain in more detail the signi�
an
e of Theorems 1.2 and 1.3, and in whi
hway they improve results of [JKM11℄.We start by re
alling the properties of the idealised problem; see also [BCP86, Se
t. 4℄. As mentionedabove, for all β and ρ, f ideal(β, ρ, ·) has a unique minimiser (ρideal
k (β, ρ))k∈N, whi
h 
an be 
hara
terisedas follows. Let

ρideal
sat (β) :=

∑

k∈N

k eβk[fcl
∞

(β)−fcl
k (β)] ∈ (0,∞] (1.16)be the saturation density of the ideal mixture. If Hypothesis 4 holds (a
tually also under mu
h weakerbounds than the one in (1.9)), at low temperature, ρideal

sat (β) is �nite. In general, however, it 
an bein�nite. For ρ < ρideal
sat (β), let µideal(β, ρ) ∈ (−∞, f cl

∞(β)) be the unique solution of
∞
∑

k=1

k eβk[µideal(β,ρ)−fcl
k (β)] = ρ, (1.17)and for ρ ≥ ρideal

sat (β), let µideal(β, ρ) := f cl
∞(β). Then, as follows from (3.27) below, the minimiser

(ρideal
k (β, ρ))k is given by

ρideal
k (β, ρ) = eβk[µideal(β,ρ)−fcl

k (β)], (1.18)and the ideal free energy from (1.12) is given by
f ideal(β, ρ) = ρµideal(β, ρ) −

1

β
mideal(β, ρ). (1.19)Moreover, ρ 7→ f ideal(β, ρ) is analyti
 and stri
tly 
onvex in (0, ρideal

sat (β)), and linear with slope f cl
∞(β)in [ρideal

sat (β),∞). In parti
ular, the ideal mixture undergoes a phase transition as the density is variedif and only if the saturation density of the ideal mixture is �nite. The transition is from a gas phasewhere all parti
les are in �nite-size 
lusters, to a 
ondensed phase where a positive fra
tion goesinto unboundedly large 
lusters: for all ρ < ρideal
sat (β, ρ), we have ∑∞

k=1 kρideal
k (β, ρ) = ρ, while for

ρ > ρideal
sat (β), ∑∞

k=1 kρideal
k (β) = ρideal

sat (β) < ρ.Armed with this knowledge, we 
an 
ompare our results with those of [JKM11℄. In [JKM11℄, we ap-proximated the rate fun
tion f(β, ρ, ·), more pre
isely the fun
tion q = (qk)k∈N 7→ 1
ρf(β, ρ, (kqk)k∈N/ρ),with

gν(q) =
(

1 −
∞
∑

k=1

qk

)

e∞ +
∞
∑

k=1

qk
Ek − ν

k
, ν := −

1

β
log ρ. (1.20)This fun
tion is easier to formulate, but involves more approximations, and has some rather unphysi
alproperties. This approximation was proved in the so-
alled Saha regime, where large β and small ρ are
oupled with ea
h other via the equation ρ = e−βν for some parameter ν ∈ (0,∞), and the limiting



IDEAL MIXTURE APPROXIMATION OF CLUSTER SIZE DISTRIBUTIONS AT LOW DENSITY 7rate fun
tion gν turned out to be pie
ewise linear with at least one kink, but also possibly more. Ea
hkink represents a phase transition, and the minimiser in the kinks is not unique. This is in strong
ontrast with the approximate rate fun
tion f ideal(β, ρ, ·) studied in this paper, whi
h possesses onlyone minimiser and only (at most) one phase transition. As we make expli
it in the next paragraph,
f ideal(β, ρ, ·) 
an itself be approximated by gν , in parti
ular by negle
ting an entropy term. It is thesmoothing e�e
t of this term that gets lost in that approximation, and possibly a lot of new kinksappear in this way. We know that these additional kinks 
orrespond to 
ross-overs inside the gas phase,but not to sharp phase transitions (see [J11℄ for a dis
ussion of this). Hen
e, the full ideal mixture
aptures the behaviour of the physi
al system mu
h better than the fun
tion studied in [JKM11℄.We note that both f ideal(β, ρ, ·) and gν 
onsidered in [CKMS10, JKM11℄ appear as exa
t largedeviations rate fun
tions for simple random partitions models. We 
onsider ve
tors (Nk)1≤k≤N ∈ N

N
0with ∑N

k=1 kNk = N as integer partitions, and look at the (not normalised) measures on partitionsgiven by
µideal

β,N,Λ({(N1, . . . , NN )}) :=

N
∏

k=1

(|Λ|Zcl
k (β))Nk

Nk!
=

(

M

N1, . . . ,NN

)

×
|Λ|M

M !

N
∏

k=1

(Zcl
k (β))Nk ,

µCKMS
β,N,Λ({N1, . . . , NN}) :=

|Λ|M

M !

N
∏

k=1

(e−βEk)Nk ,

(1.21)where M :=
∑N

k=1 Nk. In the thermodynami
 limit N, |Λ| → ∞ su
h that N/|Λ| → ρ, under µideal
β,N,Λ, theve
tor (Nk/|Λ|)k∈N satis�es a large deviations prin
iple with speed β|Λ| and rate fun
tion f ideal(β, ρ, ·).On the other hand, under µCKMS

β,N,Λ , the ve
tor (kNk/N)k∈N satis�es a large deviations prin
iple withspeed βN and rate fun
tion q 7→ gν(q) − 1
β

∑

k∈N

qk
k , whi
h di�ers from the approximate fun
tional

gν from [CKMS10, JKM11℄ only by a vanishing term. Hen
e, from (1.21) we see that gν(·) arisesfrom f ideal(β, ρ, ·) by two simpli�
ations: Zcl
k (β) ≈ exp(−βEk) and the omission of the multinomial
oe�
ient, that is, the 
luster free energy is approximated by the ground state energy, and the mixingentropy is negle
ted.The se
ond main di�eren
e with [JKM11℄ is that our error bounds are mu
h better. In [JKM11℄, thefree energy per parti
le f(β, ρ)/ρ is approximated up to errors of the order (log β)/β. In 
ontrast, when

ρ = e−βν for �xed ν > 0, as β → ∞, the error in (1.13) vanishes exponentially fast in β. Moreover,(1.13) may be written as
f(β, ρ) = ρµideal(β, ρ) −

1

β
mideal(β, ρ)

(

1 + O(ρ1/(d+1))
)

.This is interesting be
ause for ρ > ρideal
sat (β), we have mideal(β, ρ) ≤ ρideal

sat (β). Thus the free energyequals the ideal free energy plus an error whi
h is small 
ompared to the smallest of the two termsin (1.19), 1
β mideal.For 
ompleteness and for the reader's 
onvenien
e, in Se
tion A, we provide approximations of theidealised mixture model in terms of gν in the Saha regime with exponentially small errors.2. Proof of Theorem 1.1In this se
tion, we prove Theorem 1.1. We will use a 
onvexity argument and split an arbitrary sequen
e

ρ into its 
omponents on the �rst K entries and the ones on the remainder. Hen
e, we 
onsider thesetwo parts separately.



8 SABINE JANSEN AND WOLFGANG KÖNIG2.1. Case 1: all 
lusters have size ≤ K. Here we 
onsider ρ satisfying ρk = 0 for k > K withsome K ∈ N. Re
all from Assumption (V) that b is the intera
tion range and R ∈ (b,∞) determinesthe notion of 
onne
tedness.Lemma 2.1. Let β > 0, k ∈ N. Set C := sup|x|≤2/3 |x
−1 log(1 − x)|. Then(i) For all A > 0, f cl

k (β) ≤ f cl,A
k (β).(ii) For all A > 3kR,

f cl,A
k (β) ≤ f cl

k (β) +
CdR

βA
.Proof. (i) For all β, k,A, we have Zcl,A

k (β) ≤ Zcl
k (β). Indeed, for any x1 ∈ R

d, we obviously have
1

k!

∫

([0,A]d)k−1

e−βUk(x1,x2,...,xk)1l{(x1, x2, . . . , xk) 
onne
ted}dx2 · · · dxk ≤ Zcl
k (β).Integrating over x1 ∈ [0, a]d and dividing by ad shows that Zcl,A

k (β) ≤ Zcl
k (β). This implies that

f cl,A
k (β) ≥ f cl

k (β).(ii) Let k ∈ N and A > 2kR. Let x1 ∈ [0, A]d have distan
e ≥ kR to the boundary of the 
ube.Then, writing x = (x1, . . . , xk),
1

k!

∫

([0,A]d)k−1

e−βUk(x)1l{x 
onne
ted}dx2 · · · dxk =
1

k!

∫

(Rd)k−1

e−βUk(x)1l{x 
onne
ted}dx2 · · · dxk

= Zcl
k (β).Thus, integrating over x1 and re
alling the de�nition of Zcl,A

k (β) in (1.7),
Zcl,A

k (β) ≥
(A − 2kR)d

Ad
Zcl

k (β).Therefore, when A > 3kR, we take − 1
βk log and dedu
e

f cl,A
k (β) ≤ f cl

k (β) −
1

βk
log
[

(1 − 2kR
A )d

]

≤ f cl
k (β) + CdR

βA .

�Lemma 2.2. Fix β, ρ > 0. Let K ∈ N and A > 0 su
h that (A + R)d < ρ−1. Then for all ρ su
h that
∑K

k=1 kρk = ρ,
f(β, ρ,ρ) ≤

K
∑

k=1

kρkf
cl,A
k (β) +

1

β

K
∑

k=1

ρk(log ρk − 1)

+
1

β

(

K
∑

k=1

ρk

)(

− log
(

1 − (A + R)d
K
∑

k=1

ρk

)

+ log
(

1 + R
A

)d
)

.

(2.22)Proof. Let Λ = [0, L]d. For 2 ≤ k ≤ K, set Nk := ⌊|Λ|ρk⌋. Set N1 := N −
∑K

k=2 kNk, and M :=
∑K

k=1 Nk. Divide Λ into 
ubes of side-length A, at mutual distan
e R. We 
all these 
ubes �
ells�. Thenumber D of 
ubes that 
an be pla
ed in this way is D ≥ ⌊L/(A + R)⌋d. Let
ZΛ(β,N,N1, . . . , NK) :=

1

N !

∫

ΛN

e−βUN (x)1l
{

∀k ∈ {1, . . . ,K} : Nk(x) = Nk

}

dx.We 
an lower bound this 
onstrained partition fun
tion by integrating only over 
on�gurations su
hthat: (a) there is at most one 
luster per 
ell, and (b) ea
h 
luster is 
ontained in one of the 
ells. Thenumber of partitions of the parti
le label set {1, . . . ,N} into N1 sets of size 1, N2 sets of size 2, et
.,
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∏K

k=1 k!Nk!). For a given set partition, the number of ways to assign distin
t 
ells tothe sets is D(D − 1) · · · (D − M + 1). Thus we �nd
ZΛ(β,N,N1, . . . , NK) ≥ D(D − 1) · · · (D − M + 1)

K
∏

k=1

(

AdZcl,A
k (β)

)Nk

Nk!
.We observe that

D(D − 1) · · · (D − M + 1)(Ad)M ≥
(

(

L
A+R − 1

)d
− M

)M
(Ad)M

= |Λ|M
( A

A + R

)dM(
(

1 − A+R
L

)d
− M(A+R)d

|Λ|

)M
.It follows that in the limit N,L → ∞, N/Ld → ρ, − lim inf 1

β|Λ| log ZΛ(β,N,N1, . . . ,NK) is not largerthan the right-hand side of (2.22). The proof of the lemma is then 
on
luded as in the proof of [JKM11,Proposition 3.2℄. �Proposition 2.3. Fix β > 0, ρ ≤ (2d+1/3)1+1/d, and K ∈ N with K < ρ−1/(d+1). Then, for suitable
C ′ > 0 and all ρ with ∑K

k=1 kρk = ρ and ρk = 0 for k ≥ K + 1,
f(β, ρ,ρ) ≤ f ideal(β, ρ,ρ) + C ′ ρ

β
ρ1/(d+1).Proof. Let C > 0 be as in Lemma 2.1 and set m :=

∑K
k=1 ρk. Then by Lemmas 2.1 and 2.2,

f(β, ρ,ρ) − f ideal(β, ρ,ρ) ≤
CdR

βA
ρ +

Cm

β

(

(A + R)dm +
dR

A

)

,provided A > 3KR and (A + R)dm ≤ 2/3. Set A = ρ−1/(d+1)/(3R). Then A > 3KR be
ause byassumption K < ρ−1/(d+1), and (A + R)dm ≤ 2dAdρ = 2dρd/(d+1) ≤ 2/3 be
ause we have assumed
ρ ≤ (2d+1/3)1+1/d. Thus we have

f(β, ρ,ρ) − f ideal(β, ρ,ρ) ≤ C ′ ρ

β
ρ1/(d+1), where C ′ := C

( 2d

(3R)d
+ 6dR2

)

. �2.2. Case 2: all 
lusters have size ≥ K + 1.Proposition 2.4. Suppose that v satis�es Hypotheses 1 and 2. Then there are ρ, β,C ′′ > 0 su
h thatfor all β ∈ [β,∞), ρ ∈ (0, ρ), for all K ∈ N0 and all ρ su
h that ∑∞
k=K+1 kρk ≤ ρ and ρk = 0 for

k ≤ K,
f(β, ρ,ρ) ≤ f ideal(β, ρ,ρ) +

C ′′ρ

β
log β −

m

β
log

m

ρ e
. (2.23)If in addition Hypothesis 3 holds, we 
an repla
e ρβ−1 log β with (

∑∞
k=K+1 ρk)β

−1 log β.Proof. By [JKM11, Theorem 1.8℄, there are ρ, β,C ′′ > 0 su
h that for all β ≥ β and ρ ≤ ρ ,
f(β, ρ,ρ) ≤

∞
∑

k=K+1

ρk

(

Ek +
log ρ

β

)

+
(

ρ −
∞
∑

k=K+1

kρk

)

e∞ +
C ′′ρ

β
log β. (2.24)Be
ause of [JKM11, Lemma 4.3℄, we 
an further in
rease C ′′ and β so that for all k ∈ N and β ≥ β,

Ek

k
≤ f cl

k (β) +
C ′′

β
log β and e∞ ≤ f cl

∞(β) +
C ′′

β
log β.Moreover, setting m :=

∑∞
k=K+1 ρk,

∞
∑

k=K+1

ρk
log ρ

β
−

1

β

∞
∑

k=K+1

ρk(log ρk − 1) ≤
m

β

(

2 + log
ρ

m
+ log

∑∞
k=K+1 kρk

m

)

.



10 SABINE JANSEN AND WOLFGANG KÖNIGHere we have used that
−

∞
∑

k=K+1

ρk log
ρk

m
≤ m

(

1 + log

∑∞
k=K+1 kρk

m

)

,see [JKM11, Lemma 4.1℄. The inequality (2.23) follows.If in addition Hypothesis 3 holds we remark, �rst, that for all ρ ≤ 1/c and all su�
iently large β,with c as in Hypothesis 3, f(β, ρ,0) ≤ f cl
∞(β) = f ideal(β, ρ,0). Be
ause of the 
onvexity of f(β, ρ, ·),

f(β, ρ,ρ) ≤

∑∞
k=1 kρk

ρ
f(β, ρ, ρ̃) +

ρ −
∑∞

k=K+1 kρk

ρ
f(β, ρ,0), ρ̃ :=

(

∑∞
k=1 kρk

ρ

)−1
ρ.We dedu
e that in (2.24) we 
an repla
e e∞ with f cl

∞(β), and the 
laim follows. �2.3. General 
ase.Proof of Theorem 1.1. We already know that f(β, ρ,ρ) ≥ f ideal(β, ρ,ρ) [JKM11, Lemma 3.1℄, so weneed only prove the upper bound for f(β, ρ,ρ). Let K ∈ N and ρ su
h that ∑∞
k=1 kρk ≤ ρ. The 
ases

∑k
k=1 kρk = ρ and = 0 were treated in Propositions 2.3 and 2.4, thus we may assume 0 <

∑K
k=1 kρk < ρ.Set ρ≤K :=

∑K
k=1 kρk. Let ρ be as in Proposition 2.4 and suppose that ρ ≤ ρ. Set

ρ :=
ρ≤K

1 − ρ≤K/ρand
ρsmallk :=

{

ρk/(1 − ρ≤K/ρ) if 1 ≤ k ≤ K,

0, if k ≥ K + 1,
and ρlargek :=

{

0 if 1 ≤ k ≤ K,

ρk/[ρ≤K/ρ], if k ≥ K + 1.It was shown in [JKM11, Se
tion 2.5℄ that the map (ρ,ρ) 7→ f(β, ρ,ρ) is a supremum of 
onvexfun
tions and hen
e is itself 
onvex. Thus we 
an write
f(β, ρ,ρ) ≤

(

1 −
ρ≤K

ρ

)

f
(

β, ρ,ρsmall)+
ρ≤K

ρ
f
(

β, ρ,ρlarge). (2.25)Propositions 2.3 and 2.4 yield
f(β, ρ,ρ) − f ideal(β, ρ,ρ) ≤ C ′ρ≤K

β

(

K
∑

k=1

ρsmallk

)1/(d+1)
−

m≤K

β
log
(

1 −
ρ≤K

ρ

)

+
C ′′

β
(ρ − ρ≤K) log β − 2

m>K

β
log

m>K

ρ e
,provided β ≥ β, ρ ≤ (2d+1/3)1+1/d, and K < ρ−1/(d+1). The 
onditions on ρ and K are 
ertainlysatis�ed if we assume that ρ ≤ 2

3 min(1, ρ) and K ≤ (ρ/3)−1/(d+1) . If this is the 
ase, we 
an furtherbound the right-hand side of (2.3) as
C ′31/(d+1) + C

β

(

ρ≤K

)(d+2)/(d+1)
+

C ′′

β
(ρ − ρ≤K) log β − 2

m>K

β
log

m>K

ρ e
.Sin
e m>K ≤ ρ ≤ 2/3 , we 
an upper bound |1 + log ρ| ≤ −D(ρ) log m>K for some suitable 
onstant

C(ρ) > 0. We obtain the bound of Theorem 1.1. The improved bound under Hypothesis 3 is dedu
edfrom the 
orresponding statement in Proposition 2.4. �3. Proof of Theorems 1.2 and 1.3We prove Theorems 1.2 and 1.3 in Se
tions 3.2 and 3.3 below, respe
tively, after providing somepreparations in Se
tion 3.1.



IDEAL MIXTURE APPROXIMATION OF CLUSTER SIZE DISTRIBUTIONS AT LOW DENSITY 113.1. Tail estimates. The main idea for the proof of Theorems 1.2 and 1.3 is to apply Theorem 1.1 tothe minimiser ρideal(β, ρ) of the ideal rate fun
tion. Therefore we will need estimates on the tails of theideal minimiser, see Lemmas 3.2 and 3.3 below. First we re
all a statement about the low-temperaturebehaviour of the 
luster free energy. Re
all the ground-state energy Ek de�ned in (1.15).Lemma 3.1 (Cluster free energy at low temperature). There are β0 > 0 and C > 0 su
h that for
β ≥ β0,

∀k ∈ N : f cl
k (β) ≥

Ek

k
−

C

β
, and f cl

∞(β) ≥ e∞ −
C

β
.Moreover, for ea
h �xed k ∈ N, limβ→∞ f cl

k (β) = Ek/k. If in addition the pair potential satis�esHypothesis 1, then for β ≥ β0,
∀k ∈ N : f cl

k (β) ≤
Ek

k
+

C

β
log β, and f cl

∞(β) ≤ e∞ +
C

β
log β.and limβ→∞ f cl

∞(β) = e∞.Proof. The limit statement for f cl
k (β) as β → ∞ follows by a standard argument for exponentialintegrals. The lower bounds for f cl
k (β) and f cl

∞(β) have been proven in [JKM11, Lemma 4.3℄. Theupper bounds follow from [JKM11, Lemma 4.5℄ and the observation that for all β,A > 0 and k ∈ N,
f cl

k (β) ≤ f cl,A
k (β), see Lemma 2.1. �Note that our 
ondition R > b is needed in the proof of [JKM11, Lemma 4.5℄ and hen
e in the aboveproof.In the following, we omit the arguments (β, ρ) of the obje
ts ρideal and mideal for brevity. Re
allthat ρideal is given in (1.18) and that mideal =

∑

k∈N
ρideal

k and mideal
>K =

∑∞
k=K+1 ρideal

k .Lemma 3.2. Suppose that Hypothesis 4 is true, and assume that d ≥ 2. Then there are C, c, β > 0,
K0 ∈ N su
h that for all K ≥ K0, β ∈ [β,∞), and ρ > 0,

∑

k∈N
kρideal

k
∑

k∈N
ρideal

k

≤ C, and mideal
>K

mideal
≤

∑∞
k=K+1 kρideal

k

mideal
≤ e−βcK1−1/d

. (3.26)Proof. A

ording to Hypothesis 4, we 
an 
hoose c > 0, K0 ∈ N, and β su
h that for β ≥ β and
K ≥ K0,

∞
∑

k=K+1

k exp(βk[f cl
∞(β) − f cl

k (β)]) ≤ e−βcK1−1/d
.Let k(ν∗) be su
h that Ek(ν∗) − k(ν∗)e∞ = ν∗. Re
all from (1.18) that ρideal
k (β, ρ) ≤ exp(βk[f cl

∞(β) −

f cl
k (β)]). Then, for K ≥ max{K0, k(ν∗)}, we have, also using Lemma 3.1,

∑∞
k=K+1 kρideal

k
∑∞

k=1 ρideal
k

≤
e−βcK1−1/d

ρideal
k(ν∗)

=
e−βcK1−1/d

e−β(ν∗+O(β−1 log β))
≤ e−β(cK1−1/d−2ν∗),where the last inequality holds for su�
iently large β. For K su�
iently large, this last expressionis smaller than e−βcK1−1/d/2. Writing c/2 instead of c, this shows the se
ond assertion in (3.26).Furthermore, for these K,

∑

k∈N
kρideal

k

mideal
≤

∑K
k=1 kρideal

k
∑K

k=1 ρideal
k

+ e−βcK1−1/d/2 ≤ K + 1.Using this for K = K0, this also shows the �rst assertion in (3.26). �If we do not assume that Hypothesis 4 is true, we have an analogue of Lemma 3.2 for densities mu
hsmaller than exp(−βν∗), valid for all d ∈ N.



12 SABINE JANSEN AND WOLFGANG KÖNIGLemma 3.3. Let v satisfy Hypothesis 1. Fix ε > 0. Then there are βε,Kε, δε > 0 su
h that for all
β ∈ [βε,∞), ρ ≤ exp(−β(ν∗ + ε)) and K ≥ Kε,

ρ

mideal
≤ Cε, and mideal

>K

mideal
≤

∑∞
k=K+1 kρideal

k

mideal
≤ e−βKδε .For the proof, we give �rst a lower bound for the saturation density of the ideal mixture, whi
h isof interest in itself. Under additional hypotheses, a stronger statement holds, see Prop. A.1.Lemma 3.4.

lim inf
β→∞

1

β
log ρideal

sat (β) ≥ −ν∗.Proof. Let k ∈ N. We pi
k, as a lower bound, only the k-th summand in (1.16). Then, as β → ∞,a

ording to Lemma 3.1,
1

β
log ρideal

sat (β) ≥
1

β
log k + k(f cl

∞(β) − f cl
k (β)) = −(Ek − ke∞) + o(1).Letting β → ∞ and taking the supremum over k of the right-hand side yields the desired result. �Proof of Lemma 3.3. Fix ε > 0. By Lemma 3.4, there is a β0 > 0 su
h that for all β ≥ β0, e−β(ν∗+ε) <

ρideal
sat (β). Thus for β ≥ β0 and ρ ≤ e−β(ν∗+ε), we have ρ < ρideal

sat (β, ρ), and µideal(β, ρ) solves (1.17).Let µε := infk∈N(Ek − ν∗ − ε)/k. Then µε < e∞. Indeed, by de�nition of ν∗, there is a k ∈ N su
hthat Ek − ke∞ ≤ ν∗ + ε/2, and for this k, µε ≤ (Ek − ν∗− ε)/k ≤ e∞− ε/(2k) < e∞. Choosing k0 ∈ Nsu
h that µε = (Ek0 − ν∗ − ε)/k0, we �nd
µideal(β, ρ) ≤ f cl

k0
(β) +

β−1 log ρ

k0
≤

Ek0 − (ν∗ + ε)

k0
+ O(β−1 log β) = µε + O(β−1 log β).Sin
e µε < e∞ and [Ek − (ν∗ + ε)]/k → e∞ as k → ∞, there are kε ∈ N, ∆ε > 0 su
h that

k ≥ kε =⇒
Ek − (ν∗ + ε)

k
≥ µ(ν∗ + ε) + ∆ε.It follows that for k ≥ kε,

ρideal
k (β, ρ)

ρ
≤ exp(−βk(∆ε + O(β−1 log β))).Choose βε ≥ β0 large enough so that the O(β−1 log β) term is ≤ ∆ε/2, then we �nd for β ≥ βε and

k ≥ kε,
ρideal

k (β, ρ)

ρ
≤ exp(−βk∆ε/2).Noting that for z < 1, as K → ∞, ∑k≥K kzk = O(zK), we dedu
e that for su�
iently large K,

∑∞
k=K+1 kρideal

k (β, ρ)

ρ
≤ exp(−βKδε).Now �x K1 ≥ Kε large enough so that exp(−βεδεK1) ≤ 1/2. Then

ρ =

K1
∑

k=1

kρideal
k +

∞
∑

k=K1+1

kρideal
k (β, ρ) ≤ K1m

ideal + ρ/2when
e ρ ≤ 2K1m
ideal and, for su�
iently large K,

∑∞
k=K+1 kρideal

k

mideal
≤ 2K1 exp(−βKδε). �3.2. Proof of Theorem 1.2.



IDEAL MIXTURE APPROXIMATION OF CLUSTER SIZE DISTRIBUTIONS AT LOW DENSITY 133.2.1. Free energy f(β, ρ). By Theorem 1.1, for all β and ρ,
f(β, ρ) = inf

ρ

f(β, ρ,ρ) ≥ inf
ρ

f ideal(β, ρ,ρ) = f ideal(β, ρ).Thus we need only prove the upper bound to f(β, ρ). To this aim we note that
f(β, ρ) ≤ f(β, ρ,ρideal(β, ρ)) = f ideal(β, ρ) +

(

f(β, ρ,ρideal(β, ρ)) − f ideal(β, ρ,ρideal(β, ρ))
)

.where we re
all that ρideal(β, ρ) is the unique minimiser of f ideal(β, ρ, ·). To lighten notation, we willdrop the (β, ρ)-dependen
e in the notation and write ρideal, mideal, instead of ρideal(β, ρ), mideal(β, ρ),et
. Theorem 1.1 yields
f(β, ρ,ρideal) − f ideal(β, ρ,ρideal) ≤

C

β

(

(ρideal
≤K )(d+2)/(d+1) +

∞
∑

k=K+1

kρideal
k log β − mideal

>K log mideal
>K

)

,provided β ≥ β, ρ < ρ, and K < (ρ/3)−1/(d+1). By Lemma 3.2, if we assume β ≥ β0 and K ≥ K0, theterm in the big parenthesis is bounded above by a 
onstant times
mideal

(

ρ1/(d+1) + e−βcK1−1/d
log β + βcK1−1/de−βcK1−1/d

)

.Choosing K as a 
onstant times ρ−1/(d+1), we see that the se
ond and third summands are boundedby the �rst. This gives the desired bound on the free energy. �3.2.2. Minimisers. Every minimiser ρ of f(β, ρ, ·) satis�es f(β, ρ) = f(β, ρ,ρ) ≥ f ideal(β, ρ,ρ). There-fore, a

ording to part (1),
0 ≤ f ideal(β, ρ,ρ) − f ideal(β, ρ) ≤ f(β, ρ) − f ideal(β, ρ) ≤

C

β
midealρ1/(d+1).Now by an expli
it 
omputation,

βf ideal(β, ρ,ρ) − βf ideal(β, ρ) = H(ρ;ρideal) + ρ∞(f cl
∞(β) − µideal), (3.27)where ρ∞ := ρ −

∑∞
k=1 kρk. Let pk := ρk/m and pideal

k := ρideal
k /mideal. Then

H(ρ;ρideal) = midealg
(

m
mideal

)

+ mH(p;pideal),where g(x) := 1 − x + x log x. Note that g(x) ≥ 0 for all x > 0. Summarizing the last three displays,we �nd,
midealg

(

m
mideal

)

+ mH(p;pideal) + ρ∞(f cl
∞(β) − µideal) ≤ Cmidealρ1/(d+1).Sin
e ea
h of the three terms on the left-hand side is nonnegative, we obtain that ea
h of them is notlarger than the right-hand side, and this implies

g
(

m
mideal

)

≤ Cρ1/(d+1) and H(p;pideal) ≤ C mideal

m ρ1/(d+1).Sin
e g(x) → 0 implies x → 1 and g(x) ∼ (1 − x)2/2 as x → 1, we dedu
e that for ρ su�
iently smalland some suitable 
onstant C ′ > 0, |1−m/mideal| ≤ C ′ρ1/(2d+2), and the 
orresponding bound for therelative entropy easily follows. �3.3. Proof of Theorem 1.3. The argument is exa
tly the same as for Theorem 1.2. In Theorem 1.1applied to ρideal, we note that for ρ ≤ ρideal
sat , we have ∑∞

1 kρideal
k = ρ; this observation repla
es the useof Hypothesis 3. Later we use Lemma 3.3 instead of Lemma 3.2.



14 SABINE JANSEN AND WOLFGANG KÖNIGAppendix A. The idealised model in the Saha regimeIn this se
tion, we provide expli
it bounds for the approximation of the minima and the minimisersof the idealised rate fun
tion f ideal by the ones of the fun
tion gν that we introdu
ed in (1.20) andanalysed in [CKMS10℄ and [JKM11℄. We work in the Saha regime, where ρ = e−βν for some ν ∈ (0,∞).Re
all that the intera
tion potential v is always supposed to satisfy Assumption (V). Let us �rst re
allthe relevant notation.The ground state energy Ek was de�ned in (1.15) and the quantities e∞ = limk→∞ Ek/k and
ν∗ = infk∈N(Ek − ke∞) were de�ned after (1.15). Set µ(ν) := infk∈N[Ek − ν]/k. From [JKM11,Lemma 1.3℄ we know that the map ν 7→ µ(ν) is pie
ewise a�ne. It is 
onstant with value µ(ν) = e∞for ν ∈ (0, ν∗], and stri
tly de
reasing in [ν∗,∞). The set N ⊂ [ν∗,∞) of points at whi
h µ 
hangesits slope is bounded and either in�nite, with the unique a

umulation point ν∗, or �nite. Furthermore,for ν ∈ (ν∗,∞) \ N , we have µ(ν) = [Ekν − ν]/kν for a unique kν ∈ N, and

∆(ν) := inf
{Ek − ν

k
− µ(ν)

∣

∣

∣
k ∈ N, k 6= kν

} (A.28)is stri
tly positive [JKM11, Theorem 1.8℄.A �rst qui
k 
onsisten
y 
he
k 
on
erns the 
omparison of the 
riti
al line ρ = exp(−βν∗)from [CKMS10, JKM11℄ with the saturation density of the ideal mixture; this strengthens Lemma 3.4.Proposition A.1 (Saturation density). Suppose that v satis�es Hypotheses 1, 2 and 4 and d ≥ 2.Then, as β → ∞, ρideal
sat (β) = exp(−βν∗ + O(log β)).Next, we investigate the low-temperature asymptoti
s of f ideal(β, ρ). Re
all that the free energy is asum of two terms, see (1.19). We analyse them separately and shall see that the dominant 
ontribution
omes from the term ρµideal(β, ρ), whi
h behaves like ρµ(ν). Observe that ρµ(ν) is pre
isely theapproximation to the free energy f(β, ρ) proven in [JKM11℄.Proposition A.2 (Chemi
al potential). Suppose that v satis�es Hypotheses 1 and 2. Let ν > 0 andput ρ = exp(−βν). Then, as β → ∞,

• if ν ∈ (ν∗,∞) \ N ,
µideal(β, ρ) = f cl

kν
(β) −

ν

kν
−

log kν

β
+ O(β−1e−β∆(ν)/2) = µ(ν) + O

( log β

β

)

, (A.29)
• if ν < ν∗ and v also satis�es Hypothesis 4, and d ≥ 2, then

µideal(β, ρ) = f cl
∞(β) = e∞ + O

( log β

β

)

= µ(ν) + O
( log β

β

)

. (A.30)Next we state the behaviour of mideal(β, ρ) =
∑

k∈N
ρideal

k (β, ρ), the number of 
lusters per unitvolume. Note that for an ideal mixture, this is essentially the same as the pressure, βpideal(β, ρ) =

mideal(β, ρ) [H56℄.Proposition A.3 (Number of 
lusters (pressure)). Suppose that v satis�es Hypotheses 1 and 2. Fix
ν > 0 and put ρ = exp(−βν). Then, as β → ∞,

• if ν ∈ (ν∗,∞) \ N , mideal(β, ρ) =
(

1 + O(e−β∆(ν)/2)
)

ρ/kν ,

• if ν < ν∗ and in addition v satis�es Hypothesis 4, and d ≥ 2, then mideal(β, ρ) = exp(−βν∗ +

O(log β)) = o(ρ).Finally, we analyse the behaviour of the minimiser of f ideal(β, ρ, ·).



IDEAL MIXTURE APPROXIMATION OF CLUSTER SIZE DISTRIBUTIONS AT LOW DENSITY 15Proposition A.4 (Cluster size distribution). Suppose that v satis�es Hypotheses 1 and 2. Fix ν > 0and put ρ = exp(−βν). Then, as β → ∞,
• if ν ∈ (ν∗,∞) \ N ,

kνρ
ideal
kν

(β, ρ)

ρ
= 1 + O(e−β∆(ν)/2), (A.31)

• if ν < ν∗ and in addition v satis�es Hypothesis 4, and d ≥ 2,
∞
∑

k=1

kρideal
k (β, ρ)

ρ
= O(e−β(ν∗−ν)+O(log β))). (A.32)The interpretation of (A.31) is that all but an exponentially small fra
tion of parti
les are in 
lustersof size kν , while the one of (A.32) is that the fra
tion of parti
le in �nite-size 
lusters goes to 0exponentially fast.Proof of Proposition A.1. Be
ause of Lemma 3.2, for suitable c > 0 and all su�
iently large K ∈ Nand su�
iently large β,

K
∑

k=1

kZcl
k (β)eβkfcl

∞
(β) ≤ ρideal

sat (β) ≤
K
∑

k=1

kZcl
k (β)eβkfcl

∞
(β) + ρideal

sat (β)e−βcK1−1/d
,when
e we see that

ρideal
sat (β) =

(

1 + O(e−βcK1−1/d
)
)

K
∑

k=1

kZcl
k (β)eβkfcl

∞
(β).The proof is 
on
luded by 
hoosing K large enough so that every minimiser of Ek − ke∞ is smaller orequal to K, sin
e for su
h a K, the sum on the right-hand side of the previous equation is exp(−βν∗ +

O(log β)). �Proof of Proposition A.2. Consider �rst the 
ase ν ∈ (ν∗,∞) \ N . Hen
e, µ(ν) = (Ekν − ν)/kν for aunique kν ∈ N and (Ek − ν)/k − µ(ν) ≥ ∆(ν) > 0 for all k 6= kν . For su�
iently large β, we will have
ρ < ρideal

sat (β) and therefore the 
hemi
al potential is stri
tly smaller than f cl
∞(β) and is given by theunique solution of equation (1.17) whi
h we rewrite as

1 =

∞
∑

k=1

k zk exp

(

−βk

[

f cl
k (β) −

ν

k
− f cl

kν
(β) +

ν

kν

]) (A.33)with the auxiliary variable
z = z(β, ρ, ν) := exp(βµideal(β, ρ)) exp

(

−β
[

f cl
kν

(β) −
ν

kν

])

. (A.34)We bound the sum in equation (A.33) from below by the summand for k = kν . This gives 1 ≥ kνzkνand thus z ≤ 1. Next, we 
hoose β0 su
h that for all β ≥ β0 and all k 6= kν , the term in square bra
ketsin (A.33) is larger than β∆(ν)/2. Then
1 ≤ kνz

kν +
∑

k 6=kν

ke−βk∆(ν)/2 ≤ kνz
kν +

exp(−β∆(ν)/2)

(1 − exp(−β∆(ν)/2))2
.Thus we get kνz

kν = 1 + O(exp(−β∆(ν)/2)) and (A.29) follows from (A.34).Now let us 
ome to the 
ase ν < ν∗. Be
ause of Proposition A.1, for su�
iently large β, we willhave ρ > ρideal
sat (β) and hen
e by de�nition µideal(β, ρ) = f cl

∞(β). Equation A.30 is then a 
onsequen
eof Lemma 3.1. �



16 SABINE JANSEN AND WOLFGANG KÖNIGProof of Proposition A.3. First we 
onsider the 
ase ν ∈ (ν∗,∞)\N . With z = z(β, ρ, ν) from (A.34),by an argument similar to the proof of Proposition A.2, mideal(β, ρ)/ρ = zkν + O(exp(−β∆(ν)). Sin
ewe saw that kνz
kν = 1 + O(exp(−β∆(ν))), we are done.For the 
ase ν < ν∗, we note that for su�
iently large β, ρ > ρideal

sat (β), hen
e mideal(β, ρ) =
∑∞

k=1 Zcl
k (β) exp(−βkf cl

k (β)) and the 
laim follows by an argument similar to the proof of Prop. A.1.
�Proof of Proposition A.4. The 
ase ν ∈ (ν∗,∞) \N is a 
onsequen
e of the identity kνρideal

kν
(β, ρ)/ρ =

kνzkν and the argument in the proof of Proposition A.2.In the 
ase ν < ν∗ we just remark that for su�
iently large β, ρ > ρideal
sat (β) hen
e

∞
∑

k=1

kρideal
k (β, ρ)

ρ
=

ρideal
sat (β)

ρand the proof is 
on
luded by applying Proposition A.1. �A
knowledgements We gratefully a
knowledge �nan
ial support by the DFG-Fors
her-gruppe FOR718 �Analysis and sto
hasti
s in 
omplex physi
al systems�.Referen
es[AFS12℄ Y. Au Yeung, G. Friese
ke and B. S
hmidt, Minimizing atomi
 
on�gurations of short range pairpotentials in two dimensions: 
rystallization in the Wul� shape, Cal
. Var. Partial Di�. Eq. 44, 81-100(2012).[BCP86℄ J.M. Ball, J. Carr and O. Penrose, The Be
ker-Döring 
luster equations: basi
 properties and asymp-toti
 behaviour of solutions, Commun. Math. Phys. 104, 657-692 (1986).[CKMS10℄ A. Colleve

hio, W. König, P. Mörters and N. Sidorova, Phase transitions for dilute parti
le systemswith Lennard-Jones potential, Commun. Math. Phys. 299, 603-630 (2010).[DS84℄ R. Di
kman andW.C. S
hieve, Proof of the existen
e of the 
luster free energy, J. Stat. Phys. 36, 435-446(1984).[DS86℄ R. Di
kman and W.C. S
hieve, Collapse transition and asymptoti
 s
aling behavior of latti
e animals:Low-temperature expansion, J. Stat. Phys. 44, 465-489 (1986).[GHM01℄ H.-O. Georgii, O. Häggström and C. Maes, The random geometry of equilibrium phases, Phase transi-tions and 
riti
al phenomena, Vol. 18, A
ademi
 Press, San Diego, CA, 2001, pp. 1�142.[H56℄ T.L. Hill, Statisti
al Me
hani
s: Prin
iples and Sele
ted Appli
ations, M
Graw-Hill Book Co., In
., NewYork (1956)[J11℄ S. Jansen, Mayer and virial series at low temperature, preprint (2011).[JKM11℄ S. Jansen, W. König and B. Metzger, Large deviations for 
luster size distributions in a 
ontinuous
lassi
al many-body system, preprint (2011).[LP77℄ J.L. Lebowitz and O. Penrose, Cluster and per
olation inequalities for latti
e systems with intera
tions,J. Stat. Phys. 16, 321-337 (1977).[M75℄ M.G. Mürmann, Equilibrium properties of physi
al 
lusters, Commun. Math. Phys. 45, 233-246 (1975).[R81℄ C. Radin, The ground state for soft disks, J. Stat. Phys. 26 (1981), 365-373.[Th06℄ F. Theil, A proof of 
rystallization in two dimensions, Commun. Math. Phys. 262, 209�236 (2006).


	1. Introduction and main results
	2. Proof of Theorem 1.1
	3. Proof of Theorems 1.2 and 1.3
	Appendix A. The idealised model in the Saha regime
	References

