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The main purpose of this minicourse

� We look at sequences (Sn)n∈N of random variables showing an exponential behaviour

P(Sn ≈ x) ≈ e−nI(x) as n→∞

for any x, with I(x) some rate function.

� The event {Sn ≈ x} is an event of a large deviation (strictly speaking, only if

x 6= E(Sn)).

� We make this precise, and build a theory around it.

� We give the main tools of that theory.

� We explain the relation with asymptotics of exponential integrals of the form

E
[
enf(Sn)] ≈ en sup[f−I] as n→∞

and draw conclusions.

� We show how to analyse models from statistical physics with the help of this theory.
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Introductory example: random walk

� Let (Xi)i∈N an i.i.d. sequence of real random variables, and consider the mean

Sn = 1
n

(X1 + · · ·+Xn). Assume that X1 has all exponential moments finite and

expectation zero. Then, for any x > 0, the probability of {Sn ≥ x} converges to zero,

according to the law of large numbers.

� What is the decay speed of this probability?

� It is even exponential, as an application of the Markov inequality (exponential Chebyshev

inequality) shows for any y > 0 and any n ∈ N:

P(Sn ≥ x) = P(eynSn ≥ eyxn) ≤ e−yxnE[eynSn ] = e−yxnE
[ n∏
i=1

eyXi
]

= e−yxnE[eyX1 ]n =
(

e−yxE[eyX1 ]
)n
.

� This may be summarized by saying that

lim sup
n→∞

1

n
log P(Sn ≥ x) ≤ −I(x), x ∈ (0,∞),

with rate function equal to the Legendre transform

I(x) = sup
y∈R

[yx− logE(eyX1)].
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Large-deviations principles

Definition

We say that a sequence (Sn)n∈N of random variables with values in a metric space X
satisfies a large-deviations principle (LDP) with rate function I : X → [0,∞] if the set function
1
n

log P(Sn ∈ ·) converges weakly towards the set function− infx∈· I(x), i.e., for any open

set G ⊂ X and for any closed set F ⊂ X ,

lim inf
n→∞

1

n
log P(Sn ∈ G) ≥ − inf

G
I,

lim sup
n→∞

1

n
log P(Sn ∈ F ) ≤ − inf

F
I.

� Hence, topology plays an important role in an LDP.

� Often (but not always), I is convex, and I(x) ≥ 0 with equality if and only if E[Sn] = x.

� I is lower semi-continuous, i.e., the level sets {x : I(x) ≤ α} are closed. If they are

even compact, then I is called good. (Many authors include this in the definition.)

� The LDP gives (1) the decay rate of the probability and (2) potentially a formula for deeper

analysis.
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Survey on this minicourse

� random walks (X = R), CRAMÉR’s theorem

� LDPs from exponential moments =⇒ GÄRTNER-ELLIS theorem =⇒ occupation times

measures of Brownian motions

� exponential integrals, VARADHAN’s lemma =⇒ exponential transforms =⇒
CURIE-WEISS model (ferromagnetic spin system)

� small factor times Brownian motion (X = C[0, 1]) =⇒ SCHILDER’s theorem

� empirical measures of i.i.d. sequences (X =M1(Γ)) =⇒ SANOV’s theorem =⇒
Gibbs conditioning principle

� empirical pair measures of Markov chains (X =M(s)

1 (Γ× Γ)) =⇒ one-dimensional

polymer measures

� continuous functions of LDPs (contraction principle) =⇒ randomly perturbed dynamical

systems ((X = C[0, 1]), FREIDLIN-WENTZELL theory)

� empirical stationary fields (X =M(s)

1 (point processes)) =⇒ thermodynamic limit of

many-body systems
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LDP for the mean of a random walk

Cramér’s theorem

The mean Sn = 1
n

(X1 + · · ·+Xn) of i.i.d. real random variables X1, . . . , Xn having all

exponential moments finite satisfies, as n→∞, an LDP with speed n and rate function

I(x) = supy∈R[yx− logE(eyX1)].

Proof steps:

� The proof of the upper bound for F = [x,∞) with x > 0 was shown above.

� Sets of the form (−∞,−x] are handled in the same way.

� The proof of the corresponding lower bound requires the Cramér transform:

P̂a(X1 ∈ A) =
1

Za
E
[
eaX11l{X1 ∈ A}

]
,

and we see that

P(Sn ≈ x) = Zna Êa
[
e−anSn1l{Sn ≈ x}

]
≈ Zna e−axnP̂a(Sn ≈ x).

Picking a = ax as the maximizer in I(x), then ax = Êax(Sn) = x, and we obtain

lim
n→∞

1

n
log P(Sn ≈ xn) = −[axx− logZax ] = −I(x).

� General sets are handled by using that I is strictly in/decreasing in [0,∞) / (−∞, 0].
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LDPs derived from exponential moments

Far-reaching extension of CRAMÉR’s theorem.

We call (Sn)n∈N exponentially tight if, for any M > 0, there is a compact set KM ⊂ X such

that

lim sup
n→∞

1

n
log P(Sn ∈ Kc

M ) ≤ −M.

GÄRTNER-ELLIS theorem

Let (Sn)n∈N be an exponentially tight sequence of random variables taking values in a

Banach space X . Assume that

Λ(f) = lim
n→∞

1

n
logE

[
enf(Sn)], f ∈ X ∗,

exists and that Λ is lower semicontinuous and Gâteau differentiable (i.e., for all f, g ∈ X ∗ the

map t 7→ Λ(f + tg) is differentiable at zero).

Then (Sn)n∈N satisfies an LDP with rate function equal to the Legendre transform of Λ.

The proof is a (quite technical) extension of the above proof of CRAMÉR’s theorem.
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Occupation times measures of Brownian motion

Let B = (Bt)t∈[0,∞) be a Brownian motion in Rd, and let µt(A) = 1
t

∫ t
0

1l{Bs∈A} ds

denote its normalized occupation times measure.

DONSKER-VARADHAN-GÄRTNER LDP

For any compact nice set Q ⊂ Rd, the measure µt satisfies, as t→∞, an LDP on the set

M1(Q) under P(· ∩ {Bs ∈ Q for any s ∈ [0, t]}) with scale t and rate function

IQ(µ) =
1

2

∫
|∇f(x)|2 dx,

if f = dµ
dx

exists and is smooth and satisfies zero boundary condition in Q.

� Indeed,

lim
t→∞

1

t
logE[et〈g,µt〉1l{B[0,1]⊂Q}] = λ1(g,Q),

the principal eigenvalue of− 1
2
∆ + g in Q. The Rayleigh-Ritz formula

λ1(g,Q) = sup
‖f‖2=1

〈(− 1
2
∆ + g)f, f〉 = sup‖f‖2=1

(
〈g, f2〉+ 1

2
‖∇f‖22

)
.

shows that it is the Legendre transform of IQ (substitute f2 = dµ
dx

).

� There is an analogous version for continuous-time random walks.
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Exponential integrals

VARADHAN’s lemma

If (Sn)n∈N satisfies an LDP with good rate function I in X , and if f : X → R is continuous

and bounded, then

lim
n→∞

1

n
logE[enf(Sn)] = sup

x∈X
(f(x)− I(x)).

This is a substantial extension of the well-known Laplace principle that says that
∫ 1

0
enf(x) dx

behaves to first order like enmax[0,1] f if f : [0, 1]→ R is continuous.

LDP for exponential tilts

If (Sn)n∈N satisfies an LDP with good rate function I in X , and if f : X → R is continuous

and bounded, then we define the transformed measure

dP̂n(Sn ∈ ·) =
1

Zn
E
[
enf(Sn)1l{Sn∈·}

]
, where Zn = E

[
enf(Sn)].

Then the distributions of Sn under P̂n satisfy, as n→∞, an LDP with rate function

If (x) = I(x)− f(x)− inf[I − f ].
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Application: phase transition in the CURIE-WEISS model

A mean-field model for ferromagnetism:

� configuration space E = {−1, 1}N

� energy HN (σ) = − 1
2N

∑N
i,j=1 σiσj

� probability νN (σ) = 1
ZN,β

e−βHN (σ)2−N .

� mean magnetisation σN = 1
N

∑N
i=1 σi. Then−βHN (σ) = F (σ) with F (η) = β

2
η2.

� CRAMÉR =⇒ LDP for σN under [ 1
2
(δ−1 + δ1)]⊗N with rate function

I(x) = sup
y∈R

[
xy − log(

1

2
(e−y + ey))

]
=

1 + x

2
log(1 + x) +

1− x
2

log(1− x).

� Corollary =⇒ LDP for σN under νN with rate function I − F − inf[I − F ].

� Minimizer(s) mβ ∈ [−1, 1] are characterised by

mβ =
e2βmβ − 1

e2βmβ + 1
.

� Phase transition: β ≤ 1 =⇒ mβ = 0 and β > 1 =⇒ mβ > 0.
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LDP for Brownian paths

SCHILDER’s theorem

Let W = (Wt)t∈[0,1] be a Brownian motion, then (εW )ε>0 satisfies an LDP on C[0, 1] with

scale ε−2 and rate function I(ϕ) = 1
2

∫ 1

0
|ϕ′(t)|2 dt if ϕ is absolutely continuous with

ϕ(0) = 0 (and I(ϕ) =∞ otherwise).

Here is a heuristic proof: for ϕ ∈ C[0, 1] differentiable with ϕ(0) = 0, for large r ∈ N,

P(εW ≈ ϕ) ≈ P
(
W (i/r) ≈ 1

ε
ϕ(i/r) for all i = 0, 1, . . . , r

)
=

r∏
i=1

P
(
W (1/r) ≈ 1

ε
(ϕ(i/r)− ϕ((i− 1)/r))

)
.

Now use that W (1/r) is normal with variance 1/r:

P(εW ≈ ϕ) ≈
r∏
i=1

e−
1
2
rε−2(ϕ(i/r)−ϕ((i−1)/r))2

= exp
{
− 1

2
ε−2 1

r

r∑
i=1

(ϕ(i/r)− ϕ((i− 1)/r)

1/r

)2}
.

Using a RIEMANN sum approximation, we see that e−ε
−2I(ϕ).
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LDP for empirical measures

SANOV’s theorem

If (Xi)i∈N is an i.i.d. sequence of random variables with distribution µ on a Polish space Γ,

then the empirical measure Sn = 1
n

∑n
i=1 δXi satisfies an LDP on the set X =M1(Γ) of

probability measures on Γ with rate function equal to the KULLBACK-LEIBLER entropy

I(P ) = H(P | µ) =

∫
P (dx) log

dP

dµ
(x) =

∫
µ(dx)ϕ

(dP

dµ
(x)
)
,

with ϕ(y) = y log y.

This can be seen as an abstract version of CRAMÉR’s theorem for the i.i.d. variables δXi :

Entropy = Legendre transform

For any ν, µ ∈M1(Γ),

H(ν | µ) = sup
f∈Cb(Γ)

[ ∫
Γ

f dν − log

∫
Γ

ef dµ
]
.

The minimizer is f = log dν
dµ

, if it is well-defined.
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The Gibbs conditioning principle

Here is an application of SANOV’s theorem to statistical physics. Assume that X is finite. We

condition (X1, . . . , Xn) on the event{ n∑
i=1

f(Xi) ∈ A
}

= {〈f, Sn〉 ∈ A} = {Sn ∈ ΣA,f},

for some A ⊂ R and some f : X → R. Assume that

Λ(ΣA,f ) ≡ inf
Σ◦
A,f

H(· | µ) = inf
ΣA,f

H(· | µ),

and denote byM(ΣA,f ) the set of minimizers. Then

The Gibbs principle

� All the accumulation points of the conditional distribution of Sn given {Sn ∈ ΣA,f} lie in

conv(M(ΣA,f )).

� If ΣA,f is convex with non-empty interior, thenM(ΣA,f ) is a singleton, to which this

distribution then converges.
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Empirical pair measures of Markov chains

Let (Xi)i∈N0 be a Markov chain on the finite set Γ with transition kernel P = (p(i, j))i,j∈Γ.

Let X (2) denote the set of probability measures on Γ× Γ with equal marginals.

LDP for the empirical pair measures

The empirical pair measure L(2)
n = 1

n

∑n
i=1 δ(Xi,Xi+1) satisfies an LDP on X (2) with rate

function

I(2)(ν) =
∑
γ,γ̃∈Γ

ν(γ, γ̃) log
ν(γ, γ̃)

ν(γ)p(γ, γ̃)
.

� There is a combinatorial proof. There are versions for Polish spaces Γ, e.g. under the

assumption of a strong uniform ergodicity.

� I(2)(ν) is the entropy of ν with respect to ν ⊗ P .

� There is an extension to k-tupels, L(k)
n = 1

n

∑n
i=1 δ(Xi,...,Xi−1+k) ∈M1(Γk). The

rate function I(k)(ν) is the entropy of ν with respect to ν ⊗ P , where ν is the projection

on the first k − 1 coordinates.

� Using projective limits as k →∞, one finds, via the DAWSON-GÄRTNER approach, an

extension for k =∞, i.e., mixtures of Dirac measures on shifts, see below.
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Application to one-dimensional polymer measures, I.

� (Xn)n∈N0 = simple random walk on Z,`(x) =
∑n
i=1 1l{Xi=x} local times,

Yn =

n∑
i,j=1

1l{Xi=Xj} =
∑
x∈Z

`n(x)2 number of self-intersections

�

polymer measure dPn,β =
1

Zn,β
e−βYn dP, β ∈ (0,∞),

� Discrete version of the RAY-KNIGHT theorem =⇒ in some situations,

`(x) = m(x) +m(x− 1)− 1 with a Markov chain (m(x))x∈N0 on N with transition

kernel

p(i, j) = 2−(i+j−1)

(
i+ j − 1

i− 1

)
, i, j ∈ N.

Hence,

Zn,β(θ) := E
[
e−βYn1l{Xn≈θn}

]
≈ E

[
e−β

∑θn
x=1(m(x)+m(x−1)−1)21l{∑θn

x=1(m(x)+m(x−1)−1)=n}

]
≈ E

[
e−βθn〈L

(2)
θn
,ϕ2〉1l{〈L(2)

θn
,ϕ〉=1/θ}

]
, with ϕ(i, j) = i+ j − 1.
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Application to one-dimensional polymer measures, II.

Hence, the LDP for L(2)
n , together with Varadhan’s lemma, gives

lim
n→∞

1

n
logZn,β(θ) = −χβ(θ),

where

χβ(θ) = θ inf
{
β〈ν, ϕ2〉+ I(2)(ν) : ν ∈M(s)

1 (N2), 〈ν, ϕ〉 =
1

θ

}
.

The minimizer exists, and is unique; it gives a lot of information about the ‘typical’ behaviour of

the polymer measure. In particular, χβ is strictly minimal at some positive θ∗β , i.e., the polymer

has a positive drift.

(Details: [GREVEN/DEN HOLLANDER (1993)])
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Continuous functions of LDPs

An important tool:

Contraction principle

If (Sn)n∈N satisfies an LDP with rate function I on X , and if F : X → Y is a continuous map

into another metric space, then also (F (Sn))n∈N satisfies an LDP with rate function

J(y) = inf{I(x) : x ∈ X , F (x) = y}, y ∈ Y.

� Markov chains: The (explicit) LDP for empirical pair measures

L(2)
n = 1

n

∑n
i=1 δ(Xi,Xi+1) of a Markov chain implies a (less explicit) LDP for the

empirical measure L(1)
n = 1

n

∑n
i=1 δXi of this chain, since the map ν 7→ ν (mrginal

measure) is continuous. There is in general no better formula than

I(1)(µ) = inf
{
I(2)(ν) : ν ∈M(s)

1 (Γ× Γ), ν = µ
}
.
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Randomly perturbed dynamical systems

This is an application of the contraction principle to SCHILDER’s theorem. It is the starting point

of the FREIDLIN-WENTZELL theory.

Let B = (Bt)t∈[0,1] be a d-dimensional Brownian motion, and consider the SDE

dX(ε)

t = b(X(ε)

t )dt+ εdBt, t ∈ [0, 1], X(ε)

0 = x0,

with b : Rd → Rd Lipschitz continuous. That is,

X(ε)

t = x0 +

∫ t

0

b(X(ε)
s )ds+ εBt, t ∈ [0, 1].

Hence, X(ε) is a continuous function of B. Hence, an application of the contraction principle to

SCHILDER’s theorem gives that (X(ε))ε>0 satisfies an LDP with scale ε−2 and rate function

ψ 7→ 1

2

∫ 1

0

|ψ′(t)− b(ψ(t))|2 dt, if ψ(0) = x0 and ψ is absolutely continuous.
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Empirical stationary fields

This is a far-reaching extension of the LDP for k-tuple measures for Markov chains:

� k =∞.

� d-dimensional parameter space instead of N.

� continuous parameter space Rd instead of Nd

� reference measure is the Poisson point process (PPP) instead of a Markov chain.

� we add marks to the particles.

Let ωP =
∑
i∈I δ(xi,mi) be a marked PPP in Rd ×M with intensity measure λLeb⊗m.

For a centred box Λ, let ω(Λ) be the Λ-periodic repetition of the restriction of ω to Λ.

empirical stationary field: RΛ(ω) =
1

|Λ|

∫
Λ

dx δθx(ω(Λ))

This is a stationary marked point processes in Rd.

LDP for the field [GEORGII/ZESSIN (1994)]

As Λ ↑ Rd, the distributions ofRΛ(ωP) satisfy an LDP with rate function

I(P ) = H(P | ωP) = lim
Λ↑Rd

1

|Λ|HΛ(P |Λ | ωP|Λ),

which is lower semi-continuous and affine.
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Application: many-body systems, I.

N independent particles X1, . . . , XN in a centred box ΛN ⊂ Rd of volume N/ρ with pair

interaction

V (x1, . . . , xN ) =
∑

1≤i<j≤N

v(|xi − xj |), with v : (0,∞)→ R and lim
r↓0

v(r) =∞.

Partition function: ZN,β,ΛN =
1

N !

∫
ΛN
N

dx1 . . .dxN e−βV (x).

(Mark-dependent models also within reach in general)

We seek for a formula for the free energy per volume

f(β, ρ) = − 1

β
lim
N→∞

1

|ΛN |
logZN,β,ΛN .
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Application: many-body systems, II.

Strategy:

1. Rewrite ZN,β,ΛN in terms of a PPP(ρ), ωP.

2. Use that it has N i.i.d. uniform particles, when conditioned on having N particles in ΛN .

3. Rewrite the energy as |ΛN |〈RΛN (ωP), βF 〉 with suitable F and the conditioning event

as {〈RΛN (ωP),NU 〉 = ρ}.
4. Use the LDP and obtain a variational formula

5. (Try to squeeze some information out ...)

The functionals are (for ω =
∑
i∈I δxi , using the unit box U = [− 1

2
, 1

2
]d),

F (ω) =
1

2

∑
i 6=j : xi∈U

v(|xi − xj |) and NU (ω) =
∑
i∈I

1lU (xi).

Hence, we should obtain

f(β, ρ) = inf
{
〈P, F 〉+

1

β
I(P ) : P ∈M(s)

1 (Ω), 〈P,NU 〉 = ρ
}
.
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