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The main purpose of this minicourse

B We look at sequences (Sy )nen of random variables showing an exponential behaviour
P(S, ~ ) ~ e ™M@ asn = 0

for any z, with I (z) some rate function.

B The event {S,, = x} is an event of a large deviation (strictly speaking, only if
z # E(Sn)).

B We make this precise, and build a theory around it.

B We give the main tools of that theory.

B We explain the relation with asymptotics of exponential integrals of the form
E[e"f(S”)} ~ e P gy 0o

and draw conclusions.

B We show how to analyse models from statistical physics with the help of this theory.
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Introductory example: random walk

B Let (X;):en aniid. sequence of real random variables, and consider the mean
Sn = L(X1 4+ 4 Xn). Assume that X; has all exponential moments finite and

expectation zero. Then, for any x > 0, the probability of {Sn > x} converges to zero,

according to the law of large numbers.
B What is the decay speed of this probability?
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Introductory example: random walk

B Let (X;):en ani.i.d. sequence of real random variables, and consider the mean
Sn = L(X1 4+ 4 Xn). Assume that X; has all exponential moments finite and
expectation zero. Then, for any x > 0, the probability of {Sn > x} converges to zero,
according to the law of large numbers.
B What is the decay speed of this probability?
W It is even exponential, as an application of the Markov inequality (exponential Chebyshev
inequality) shows for any 4y > 0 and any n € N:
n
P(S, > x) = P(e’™5" > e¥"") < e YT E[eV"5"] = e_ymE[HeyXi]

i=1

— efyzn]E[eyXl]n _ (efyz]E[eyXI})’ﬂ
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Introductory example: random walk

B Let (X;):en ani.i.d. sequence of real random variables, and consider the mean
Sn = L(X1 4+ 4 Xn). Assume that X; has all exponential moments finite and
expectation zero. Then, for any x > 0, the probability of {Sn > x} converges to zero,
according to the law of large numbers.

B What is the decay speed of this probability?

W It is even exponential, as an application of the Markov inequality (exponential Chebyshev
inequality) shows for any 4y > 0 and any n € N:

P(S, > x) = P(e’™5" > e¥"") < e YT E[eV"5"] = e_ymE[HeyXi]

i=1

— efyzn]E[eyXl]n _ (efyz]E[eyXI})n

B This may be summarized by saying that

lim sup — log]P’(S >z) < —I(z), x¢€(0,00),

n—oo

with rate function equal to the Legendre transform

I(z) = sup[yz — log E(e¥*1)].
yER
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Large-deviations principles

We say that a sequence (Sn )nen of random variables with values in a metric space X
satisfies a large-deviations principle (LDP) with rate function I: X — [0, oo] if the set function
LlogP(Sn € -) converges weakly towards the set function — inf,e. I(z), i.e., for any open
set G C X and for any closed set F' C X,

lim inf 1 logP(Sn € G) > —infI,
n—oo N G

lim sup 1 logP(Sp, € F) < — i%f 1.

n—oo TN

B Hence, topology plays an important role in an LDP.
Often (but not always), I is convex, and I (z) > 0 with equality if and only if E[S,,] = z.

B [ is lower semi-continuous, i.e., the level sets {z: I(x) < «} are closed. If they are
even compact, then [ is called good. (Many authors include this in the definition.)

B The LDP gives (1) the decay rate of the probability and (2) potentially a formula for deeper
analysis.
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Survey on this minicourse

B random walks (X = R), CRAMER'’s theorem

B LDPs from exponential moments = GARTNER-ELLIS theorem == occupation times
measures of Brownian motions

B exponential integrals, VARADHAN’s lemma = exponential transforms =—>
CURIE-WEISS model (ferromagnetic spin system)

B small factor times Brownian motion (X = C[0, 1]) = SCHILDER’s theorem

B empirical measures of i.i.d. sequences (X = M (I")) = SANOV’s theorem —>
Gibbs conditioning principle

B empirical pair measures of Markov chains (X = M (I" x I")) = one-dimensional
polymer measures

B continuous functions of LDPs (contraction principle) == randomly perturbed dynamical
systems ((X = C[0, 1]), FREIDLIN-WENTZELL theory)

B empirical stationary fields (X = M ¥ (point processes)) == thermodynamic limit of
many-body systems
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LDP for the mean of a random walk

Cramér’s theorem

The mean S,, = %(Xl + .-+ X,,) of i.i.d. real random variables X1, . . . , X, having all
exponential moments finite satisfies, as n — 0o, an LDP with speed n and rate function
I(z) = supyeR[yx — log E(eyX1 )]
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LDP for the mean of a random walk \133‘;”,6‘ é

Cramér’s theorem

The mean S,, = %(Xl + .-+ X,,) of i.i.d. real random variables X1, . . . , X, having all
exponential moments finite satisfies, as n — 0o, an LDP with speed n and rate function
I(z) = supyeR[yx — log E(eyX1 )]

Proof steps:

B The proof of the upper bound for F' = [z, 00) with = > 0 was shown above.
B Sets of the form (—oo, —z] are handled in the same way.
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LDP for the mean of a random walk \‘Zﬂ“‘}"‘e‘ j

Cramér’s theorem

The mean S,, = %(Xl + .-+ X,,) of i.i.d. real random variables X1, . . . , X, having all
exponential moments finite satisfies, as n — 0o, an LDP with speed n and rate function
I(z) = supyeR[yx — log E(eyX1 )]

Proof steps:
B The proof of the upper bound for F' = [z, 00) with = > 0 was shown above.
B Sets of the form (—oo, —z] are handled in the same way.
B The proof of the corresponding lower bound requires the Cramér transform:

Bo(X) € A) = ZLE[eGXI 1{X, € A}],
and we see that

P(Sy ~ ) = ZyBale """ 1{S, =~ x}] = Z'e """ Pu(Sy ~ ).
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LDP for the mean of a random walk \‘Zﬂ“‘}"‘e‘ j

The mean S,, = %(Xl + .-+ X,,) of i.i.d. real random variables X1, . . . , X, having all

exponential moments finite satisfies, as n — 0o, an LDP with speed n and rate function
I(z) = supyeR[yx — log E(eyX1 )]

Proof steps:
B The proof of the upper bound for F' = [z, 00) with = > 0 was shown above.
B Sets of the form (—oo, —z] are handled in the same way.
B The proof of the corresponding lower bound requires the Cramér transform:

B (X1 € A) = Z%E[eaxl 10X, € 4}],
and we see that
P(Sy ~ ) = ZyBale """ 1{S, =~ x}] = Z'e """ Pu(Sy ~ ).
Picking a = a. as the maximizer in I (), then a, = Eq, (Sn) = &, and we obtain
lim 1 logP(S,, ~ zn) = —[azz — log Za, ] = —I(z).
n—oo N

B General sets are handled by using that I is strictly in/decreasing in [0, c0) / (—o0, 0].
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LDPs derived from exponential moments

Far-reaching extension of CRAMER’s theorem.
We call (Sy)nen exponentially tight if, for any M > 0, there is a compact set Ka; C X such
that 1

lim sup - logP(S, € Ky;) < —M.

n—oo

GARTNER-ELLIS theorem

Let (.Sy ) nen be an exponentially tight sequence of random variables taking values in a
Banach space X’. Assume that

A(f) = lim llogIE[e”f(S")], fexr,

n—oo N

exists and that A is lower semicontinuous and Gateau differentiable (i.e., for all f,g € X the
map t — A(f + tg) is differentiable at zero).
Then (Sn)neN satisfies an LDP with rate function equal to the Legendre transform of A.

The proof is a (quite technical) extension of the above proof of CRAMER’s theorem.
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Occupation times measures of Brownian motion @

Let B = (Bt)+c[0,00) be a Brownian motion in R?, and let f1¢ (A) = 1 fot 1y, eayds
denote its normalized occupation times measure.

DONSKER-VARADHAN-GARTNER LDP

For any compact nice set ) C R?, the measure Lt satisfies, as ¢ — 0o, an LDP on the set
M1(Q) under P(- N {Bs € Qforany s € [0,¢]}) with scale ¢ and rate function

1 2
lo( = 3 [ 194@)*da,
if f= g—‘; exists and is smooth and satisfies zero boundary condition in Q.

B Indeed,
o1 (g,
Jim - log B[P 05, cop] = Mg, Q)
the principal eigenvalue of —%A + g in Q. The Rayleigh-Ritz formula

(g, Q) = |\fS\Fp:1<(7%A +9)f. f) = SUpP| flla=1 (<97 f2> =+ %IIVfHS)

shows that it is the Legendre transform of I (substitute f2 = j—‘;).
B There is an analogous version for continuous-time random walks.
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Exponential integrals

VARADHAN’s lemma

If (S )nen satisfies an LDP with good rate function I in X, and if f: X — R is continuous
and bounded, then

lim + log E[e™ 5] = sup (f(z) — I(z)).
n—oo 1 TEX

This is a substantial extension of the well-known Laplace principle that says that fol e 4z
behaves to first order like ™ ™**10.11 / if f: [0,1] — R is continuous.

LDP for exponential tilts

If (S )nen satisfies an LDP with good rate function I in X, and if f: X — R is continuous
and bounded, then we define the transformed measure

dP, (S, € ) = Zi

n

E[e"f(S")]l{sne.}], where Z,, = IE[e"f(S“)].

Then the distributions of .S,, under ﬁn satisfy, as n — 00, an LDP with rate function

Ij(z) = I(z) — f(x) — inf[I — f].
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Application: phase transition in the CURIE-WEISS model

A mean-field model for ferromagnetism:

configuration space E = {—1,1}

energy Hy (0) = — 5% E?fj:l 00

probability v (o) = Z;ﬁefﬂHM”)Q*N.

mean magnetisation oy = % Zi\;l 0;. Then —BHy (o) = F (o) with F'(n) = gnz.

CRAMER = LDP for & v under [ (-1 + 61)]®" with rate function

1+ 1-—

log(1+4z) + 5 e log(1 — z).

(@) = sup oy — log (5 (¢™* +¢*))] =

B Corollary = LDP for &y under v with rate function I — F' — inf[I — F].

B Minimizer(s) mg € [—1, 1] are characterised by

e?fms _ 1

mg = —wm———.
P Pms 11

Phase transition: 3 <1 = mg =0and § > 1 = mg > 0.
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LDP for Brownian paths \‘Zﬂ“‘}"‘e‘ j

SCHILDER’s theorem

Let W = (W4)¢e[o,1) be a Brownian motion, then (W) satisfies an LDP on C[0, 1] with
scale ¢~ and rate function (¢) = 5 fo |’ (¢)|? dt if @ is absolutely continuous with
»(0) = 0 (and I(¢) = oo otherwise).

Here is a heuristic proof: for ¢ € C[0, 1] differentiable with ©(0) = 0, for large r € N,
P(eW = @) = P(W(i/r) = Lo(i/r) foralli = 0,1,...,7)

= H]P’ (1/r) = 2(e(i/r) = ((i = 1)/7))).-
Now use that W (1/r) is normal with variance 1/7:

P(eW =~ ¢) ~ He—%7“6*2(w(i/m—w((i—m/r))z’

i=1

= exp{ — %5—2% Z (‘P(Z/T') *f/(ﬁl — 1)/7‘))2}.

i=

-2
Using a RIEMANN sum approximation, we see thate 5 1 (#).
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LDP for empirical measures

SANOV’s theorem

If (X;)ien is an i.i.d. sequence of random variables with distribution 4 on a Polish space T,
then the empirical measure S, = = """ | dx, satisfies an LDP on the set X = M (I') of

probability measures on I" with rate function equal to the KULLBACK-LEIBLER entropy

I(P)=H(P | ) = / P(dz) log %x) - / u(dz) w(%(:c)),

with o(y) = ylogy.
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LDP for empirical measures

SANOV’s theorem

If (X;):en is an i.i.d. sequence of random variables with distribution 1 on a Polish space T,
then the empirical measure S,, = 1 Y- | §x, satisfies an LDP on the set X = M (T') of

n

probability measures on I" with rate function equal to the KULLBACK-LEIBLER entropy
dP dP
I(P) = (P | p) = [ Pldo) 1og (@) = [ utae) o( G- @),

with o(y) = ylogy.

This can be seen as an abstract version of CRAMER's theorem for the i.i.d. variables d x;:

Entropy = Legendre transform

Forany v, u € M (T),

H(v|p)= sup [/Ffdu—log/refd,u].

felp(I)

The minimizer is f = log g—z, if it is well-defined.
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The Gibbs conditioning principle 'Zf‘g”}

Here is an application of SANOV’s theorem to statistical physics. Assume that X is finite. We
condition (X1, ..., X,) on the event

{2 rx) e a} = ((.9.) € 4} = {Sw € Bagh.

for some A C R and some f: X — R. Assume that

A(Sa) = jof H(-| ) = inf H(-| ),
A f

Af

and denote by M (X 4, 5) the set of minimizers. Then

The Gibbs principle
B All the accumulation points of the conditional distribution of Sy, given {S,, € X4 ¢} liein
conv(M(Xa,5)).

B [f X4, is convex with non-empty interior, then M (X 4, ¢) is a singleton, to which this
distribution then converges.
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Empirical pair measures of Markov chains

Let (X;)ien, be a Markov chain on the finite set I" with transition kernel P = (p(%, j))i,jer-
Let X denote the set of probability measures on I' x I' with equal marginals.

LDP for the empirical pair measures

The empirical pair measure L) = = 377" | §(x, x,,,) satisfies an LDP on X'*) with rate
function

@ (1)) = v =)o V(%:Y)
=) g;r UL &5 Mp(1,7)”
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Empirical pair measures of Markov chains

Let (X;)ien, be a Markov chain on the finite set I" with transition kernel P = (p(%, j))i,jer-
Let X denote the set of probability measures on I' x I' with equal marginals.

LDP for the empirical pair measures

The empirical pair measure L) = = 377" | §(x, x,,,) satisfies an LDP on X'*) with rate
function

@ (1)) = ” =)o V(%:Y)
=) g;r UL &5 Mp(1,7)”

B There is a combinatorial proof. There are versions for Polish spaces I, e.g. under the
assumption of a strong uniform ergodicity.

B /@ (v) is the entropy of v with respect to 7 @ P.

W There is an extension to k-tupels, L)) = L 37 | O(XrXi1an) € M;(I'%). The
rate function ¥ (v) is the entropy of v with respect to 7 ® P, where T is the projection
on the first £ — 1 coordinates.

B Using projective limits as k — o0, one finds, via the DAWSON-GARTNER approach, an
extension for k = oo, i.e., mixtures of Dirac measures on shifts, see below.
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Application to one-dimensional polymer measures, I.

B (X,)nen, = simple random walk on Z,0(z) = Y | 11x,— local times,

Y, = Z Tix,=x;3 = Zén(x)2 number of self-intersections

i,j=1 z€Z

polymer measure ~ dP, g = e PV gp, B € (0,00),

n,B
B Discrete version of the RAY-KNIGHT theorem => in some situations,

£(z) = m(x) + m(z — 1) — 1 with a Markov chain (m(z))zen, on N with transition

o fi+i—1
p(i,j) =27 1)<Z+J ) i,j €N.

kernel

1 —1
Hence,
Zn,ﬁ (9) =K [e_ﬂY" ]I{anGn}]

~ B[e 8 oty (m@)+m(z—1)-1)?

ﬂ{zgzl<m<z>+m<z—1>—1>:n}}

— n (2) 2 . .. . .
zIE[e BOn(Ly,, e >]1{<ng)’¢>:1/0}], with (4,7) =i+ 5 — 1.
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Application to one-dimensional polymer measures, Il.

Hence, the LDP for Lﬁf), together with Varadhan’s lemma, gives

lim — log Zn,5(0) = —x5(0),

n— o0
where

X6 (0) = 0inf {Blu. ) + 19w): v e MPOP). () = 1.

The minimizer exists, and is unique; it gives a lot of information about the ‘typical’ behaviour of
the polymer measure. In particular, x g is strictly minimal at some positive 62, i.e., the polymer
has a positive drift.

(Details: [GREVEN/DEN HOLLANDER (1993)])
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Continuous functions of LDPs

An important tool:

Contraction principle

If (Sn)nen satisfies an LDP with rate function I on X, and if F': X — ) is a continuous map
into another metric space, then also (F'(S»))nen satisfies an LDP with rate function

J(y) =inf{I(z): z € X,F(z) =y}, ye.

B Markov chains: The (explicit) LDP for empirical pair measures
Lf) = % Z?Zl 5(Xi,X71+1) of a Markov chain implies a (less explicit) LDP for the
empirical measure L, = L 3" §x, of this chain, since the map v/ — ¥ (mrginal
measure) is continuous. There is in general no better formula than

IV (p) =inf {I®(W): v e MP (T xT),7 = pu}.
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Randomly perturbed dynamical systems

This is an application of the contraction principle to SCHILDER’s theorem. It is the starting point
of the FREIDLIN-WENTZELL theory.
Let B = (Bt)te[(),l] be a d-dimensional Brownian motion, and consider the SDE

dX\® =b(X?)dt +edB:, te0,1], X7 =0,
with b: R? — R? Lipschitz continuous. That is,

t
Xt<6>:$0+/ b(X{)ds+eB:, telo,1].
0

Hence, X ) is a continuous function of B. Hence, an application of the contraction principle to

—2

SCHILDER's theorem gives that (X(E))g>0 satisfies an LDP with scale £~ “ and rate function

Y~ % /1 [0’ (t) — b(y(t))? dt, if 10(0) = xo and 1) is absolutely continuous.
0
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Empirical stationary fields

This is a far-reaching extension of the LDP for k-tuple measures for Markov chains:
H k= oo
d-dimensional parameter space instead of N.

]

B continuous parameter space R? instead of N?

B reference measure is the Poisson point process (PPP) instead of a Markov chain.
|

we add marks to the particles.

Large-deviations theory - Cologne, 15 June 2018 - Page 19 (21)



Empirical stationary fields

This is a far-reaching extension of the LDP for k-tuple measures for Markov chains:

B k= oo0.

B d-dimensional parameter space instead of N.

B continuous parameter space R? instead of N?

B reference measure is the Poisson point process (PPP) instead of a Markov chain.

B we add marks to the particles.
Letwp = Eie] O(z;,m;) be amarked PPP in R? x 90t with intensity measure ALeb & m.
For a centred box A, let w™ be the A-periodic repetition of the restriction of w to A.

1
empirical stationary field: ~ Ra(w) = W/ dzdy, (o(a)y
A

This is a stationary marked point processes in R%.

LDP for the field [GEORGII/ZESSIN (1994)]

As A 1 R?, the distributions of R a (wp ) satisfy an LDP with rate function

1
i HA(Pla [ wela),

I(P)=H(P | wp) zlli%éld Al

which is lower semi-continuous and affine.
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Application: many-body systems, I. @

N independent particles X1, ..., Xy inacentred box Ay C R? of volume N/ p with pair

interaction

V(zi,...,zN) = Z v(|lz; — z4]),  withv: (0,00) = Rand limv(r) = co.
1<i<j<N 0

1 _
Partition function:  Zn,g.ay = ﬁ/ dzy ... dzye PV,

(Mark-dependent models also within reach in general)
We seek for a formula for the free energy per volume

1
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Application: many-body systems, Il. \kztxx;;,é‘ 3

Strategy:
1. Rewrite Zn ,a in terms of a PPP(p), wp.
2. Use that it has NN i.i.d. uniform particles, when conditioned on having N particles in Ay .
3. Rewrite the energy as |[An|(Ra, (wp), BF) with suitable F' and the conditioning event
as {(Ray (wp), Nu) = p}.
4. Use the LDP and obtain a variational formula
5. (Try to squeeze some information out ...)

The functionals are (for w = . _, dz,, using the unit box U = [—%, %}d),

i€l

F(w):% S (el and  No(w) =3 lu().

i#j: w €U iel

Hence, we should obtain

7(8.p) = inf { (P, F) + %I(P): P e M{(Q), (P, Ny) = p}.
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