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Background and Goals

m We consider a classical stable interacting many-particle system with attraction in

continuous space.

m Objective: study the transition between gaseous and solid phase in the
thermodynamic limit.

m Very difficult at positive temperature and positive particle density.

B Instead, we study a dilute low-temperature regime. This makes the particles
organise themselves into small groups called clusters.

m We approximate the system with a well-known ideal-mixture of clusters
(droplets) and prove that the difference vanishes exponentially with vanishing
temperature.

m We study

m the free energy,
m the constrained free energy given a cluster-size distribution,
m the optimal cluster-size distribution.
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Energy

Energy of N particles in RY:
N

UN() =Un(a,om) = S v(i=xil),  forx=(xa,...,xn) € RN,
i,j=1
i
Pair-interaction function v: [0, ) — (—oo, ] of Lennard-Jones type:
[oe]
VAN

| AN

Lennard-Jones potential examples of our potentials
v(ir)y=r—_r-%

m short-distance repulsion (possibly hard-core) implying stability,
m preference of a certain positive distance,

®m bounded interaction length.
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Random Clusters

inverse temperature 3 € (0, )

Gibbs measure: IP’(N A (dX) = ﬁe’ﬁu’“(x) dx, xeAN.

Partition function: ZA(B,N) = ,\}I /NefBUN(x) dx.

Connectivity structure: Fix R larger than the interaction length of v.
Sites x and y are called connected if [x—y| <R.

clusters (droplets) = the connected components

Nk(X) =number of k-clusters in X = (X1, ...,Xn)

k-cluster density 1 pxa(X) = N|k/5)|()
cluster size distribution: PA = (pkv/\)keN

as an My /|a -valued random variable, where

Mp ::{(pk)keNe [0, ) ‘kGZNkPk<P} p € (0,).
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Regimes Considered

We study the cluster-size distribution in the box A = [0, L]
m in the thermodynamic limit

N
N — oo, L=LN — oo, SuChthatL—d—>p€(0,00),
N
followed by the dilute low-temperature limit

B—owp]0 such that —%Iogp — Vv € (0,0),

(joint work with SABINE JANSEN and BERND METZGER, WIAS.)
m and in the coupled dilute low-temperature limit

N — oo, B=PpNn— o, L=Ly— suchthat—ilogﬂd—»ve(o,oo),
By UL
(joint work with A. CoLLEVECCHIO (Venice), P. MORTERS (Bath) and N.
SIDOROVA (London))
Here,

m total entropy ~ sum of the entropies of the clusters,

m excluded-volume effect between the clusters may be neglected,

B mixing entropy may be neglected.
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LDP in the Thermodynamic Limit

1

Free energy per unit volume : fA(B, %) = BN logZa(B,N).
limiting free energy : f(B.p):= lim fio1pa(B, .

Goal: find f(B,p,-): Mp — [0,] such that

[ &P (a0 ken ~ (Pulkere k= e (—BIA B, (ke

and define the rate function as

Ig.0 ((PK)ken)= B((B,p, (Pken) — f(B,P))-

Large deviation principle with convex rate function, [JKM11]

In the thermodynamic limit N — oo, L — o, N/LY — p, the distribution of p, under
P(E)/\ with A = [0, L]9 satisfies a large deviation principle with speed |A| = LY. The
rate function Jg ,, : Mp+¢ — [0, ] is convex, and its effective domain {Jg ,(-) < o} is
contained in Mp.
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On the Proof of the LDP
Standard strategy, adapted to cluster-size distributions:

1. Projection: LDP for (px A (X))k=1,...,j for fixed j with some rate function Jg , ;.
m Use subadditivity along special segences of increasing cubes (having a
separating margin) to define a densely defined preliminary rate function,
m extend this rate function continuously and prove that it is finite on open sets,
m fill the gaps for an arbitrary sequence of cubes,
m show that the extended preliminary rate function gives an LDP.
2. Apply the Géartner-Dawson theorem (projective limit LDP) to get full LDP with
rate function
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Dilute Low-Temperature Limit

The ground state, i.e., zero temperature : En:= inf Un(X).
xe(RI)N
- o . En .
stability & subadditivity = €p i= ,\Illm N € (—,0) exists.

Interpret gx = kpk/p as the probability that a given particle lies in a k-cluster.

Approximate rate function: gy ((akk) = ) Gk BV + (1— > qk)eoo
keN k keN

on the set
2= {(qk)keN €[o, 1]N’ ngQk < 1}

I-convergence of the rate function, [JKM11]

In the limit 8 — o, p — 0 such that —3~1logp — v, the function

QHRU{OOL (qk)kH%f(vav(B%)kGN)

["-converges to gy.
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Explanation
Our Approximations:
m We approximate f(f8,p,(pk)k) by an ideal gas of clusters, neglecting the
“excluded volume”:

= (B.p. ()= 3 kK (B)+ (P 3 ko) 12(8) + 5 3 pullogpi— 1)
keN keN keN

(flf' (B) = free energy per particle in a cluster of size k.)
® We approximate fi93 (g3 p, (p—ﬂk)keN) with pgy (g) using two simplifications:
m cluster internal free energies ~ ground state energies: fkc' (B) = Ex.

| |
1 Iogp p Ok Iogp
3 > Pellogpc— 2 ~ (log = — P
BkezN “ kGZN “B keN k ( ) k;\T
~—p Y g
2%

In classical statistical physics: “Geometric (or droplet) picture of condensation”.

Closely related to the contour picture of the Ising model an lattice gases.
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Corollary: Convergence of Minimisers

Consequences of I'-convergence, [JKM11]

In the same limit 8 — oo, p | O such that —% logp — v,

|
1 H .
Ef(B,p)Hngngv =1 p(v),

m if v is not a kink point of (), then any minimiser of Jg , converges to the
minimiser of gy .

density p
VT
- T p=e
-p=e /T
- p=e
Phase IV a--mp=ev/T
(infinite
configu-

rations)

Phase I (single points)

temperature T
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Properties of gy

B V' =infyen(En — Néw) lies in (0, ).

BV U(v)=infygy =infyen EN,\,"’ is continuous, piecewise affine and concave.
m U(-) has at least one kink, and the kinks accumulate at most at v*.

m If v € (Vv*,®) is not a kink point, then gy has the unique minimizer d«v) (Dirac
sequence) with k(v) the unique minimizer of ki— (Ex — v)/k.

®m For v < v*, the unique minimizer of gy is O (zero sequence).

Interpretation:
m There is at least one phase transition, possibly much more.
® In the high-temperature phase v >> 1, all clusters are singletons.
® In any intermediate phase, all clusters have size k(v).
m In the low-temperature phase v € (0,v*), there are only infinite clusters.
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Corollary: LLN for Cluster Sizes

The main consequence of the LDP, together with the I"-convergence of the rate
function, is:

Limiting distributions of cluster sizes, [JKM11]

Let v € (0,%) be not a kink point, and fix € > 0. Then, if B is sufficiently large, p
sufficiently small and —% logp is sufficiently close to v, for boxes Ay with volume

N/p.

0 ifv>vF

I|m IF’B An (‘—pk( A~ 1‘ > s)

Iian‘L’;A (kZ\ka7,\>s) 0 ifv<v®.
€

In other words, in this two-step limit, the model has only one cluster size, which is
infinite for small v.
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Approximation with Ideal Mixture

B The approximation with gy is difficult to interpret physically, and gy has some
“unphysical” properties: possibly many phase transitions of v — p(v), and many
minimisers of gy in the kinks. We think that just one of these phase transitions is
“physical”, the others correspond to cross-overs inside the gas phase.

m Much better is the approximation with the ideal mixture of droplets, fi%a which
is known, under reasonable assumptions, to have only one phase transition.

B These assumptions are on the compactness of the shape of the relevant
configurations at positive, but low temperature:

® The main contribution to the cluster internal energy comes from compact
(d-dimensional) configurations,
m the correction term in the convergence f,f' B) — fg'(B) is of surface order:
kfid (B) —kfd (B) > Ckt- /9,
(Verification seems out of reach yet.)

® We have rigorous bounds for the comparison of the original model with the
ideal-mixture model, which are exponentially small in vanishing temperature,
see next slides.
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The ideal mixture

Recall:
% (8. p. (p)k %kpkf )+ (p- Z\!kpk)fd > piogpc—1)
B saturation density: Let
pideal Z keﬁk B)] c (O oo]
keN

m chemical potential: For p < pld®d (B) let u'9d (B, p) € (—o0, 1S (B)) be the
unique solution of

5 kePH BB _
k=1
and for p > pl4% (B), let 1'% (B, p) := £J(B).

m Then, the minimiser (p}% (B, p)) of 1% (B, p,-) is given by
pided (5. p) = eBKIH(Bp)- 2 (6)]

m Under appropriate bounds on fkc'(B), the saturation density is finite at low
temperature, and 1% (B3, p .) has a phase transition.
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Comparison with ideal mixture

Joint work with SABINE JANSEN (WIAS). Our hypotheses:
(1) Some Hédlder continuity and uniform stability of v. (holds under general
assumptions)
(2) Compact shape of ground states. (in d < 2 see [AU YEUNG, FRIESECKE,
SCHMIDT (2011)])
(3) Compact shape of clusters at low temperature. (open)
(4) Surface-order correction: kf (B) —kfg (B) > Ck:~%/4. (open)
Let H(a;b) = Syen(bk — ax +aklog Bﬂk) denote the entropy.

Approximation with ideal mixture
Under Hypotheses (1), (3) and (4), for any sufficiently large 8 and sufficiently small p,
) C .
0= (B,p)— F*(B,p) < FmI*= (B, p) ™/,

and, for any minimiser p = p#* = (py)ken of f(B,p,-), with m:= ¥ N Pk,

m 2~ 1/d+) 1.p. P%(B,p) 1 21/(d+1)
mioe (§.p) 1| =CP nd oM (o s gy) <P

If Hypotheses (3) and (4) are replaced by (2), this holds for —B~1logp > v* + & with
£-dependent constants.
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Coupled Limit

Idea: Couple inverse temperature 8 = By — o with particle density N/L% = oy — 0

such that
1 N .
——log = v € (0,0) is constant.
N

BN
(Example: By =< logN and |An| = |[0,Ln]% = N® with a > 1.)

Then energic and entropic forces compete on the same, critical scale, and determine
the behaviour of the system.

Large v = entropy wins, i.e., typical inter-particle distance diverges,
Small v = interaction wins, i.e., crystalline structure in the particles emerges.

Free energy per particle in the coupled limit, [CKMS10]

—u(v) = A@wwl()gz[om 1(Bn,N).
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On the Proof: Empirical Measure

Let x={x1,...,Xn} be a configuration of points in Ay, identified with its cloud
s N, 8. It decomposes into its connected components

X]=) &,
j€6;
Main object: the empirical measure on the connected components, translated such
that any of its points is at the origin with equal measure:

(x) 1 <
YN = N i;5[xi]7x

Then the energy iﬁ written

N N
1
W) = Y V(% —x]) = i) =3 gy 2 Vx)
i,J=. i= 1 # X,y
‘i;jl I; ng[’ﬁ] Z zl(#y
=N¥(YY),
where
/ V(@A) o 5 vlix-y).
xyeA
XAy
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On the Proof: Large-Deviation Principle

Let X be a vector of i.i.d. random variables X;"', X" ..., X\" uniformly distributed on
An, and write Yy = Y5’ Hence,

| N

Zn(BN,PN) = A

NL [GXD{ —BNW(YN)}]~

Proposition. (Yn)nen satisfies a large-deviation principle with speed Nfy and rate

function i 1
) :c[l_/v(dA) ﬂ].

That is, 1
—— logPa, (N € - —inf J(Y).
S 129 0 € ) > it ()
Informally, Varadhan’s lemma implies

l\llianN—/:;N logE, [exp{ —BNqJ(YN)}] = —inf {W(Y) +3(V)}.

It is not difficult to see that this is basically the assertion.
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