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Abstract: An interesting problem in statistical physics is the condensation of classical
particles in droplets or clusters when the pair-interaction is given by a stable Lennard-
Jones-type potential. We study two aspects of this problem. We start by deriving a
large deviations principle for the cluster size distribution for any inverse temperature
B € (0,00) and particle density p € (0, pep) in the thermodynamic limit. Here pe, > 0
is the close packing density. While in general the rate function is an abstract object,
our second main result is the I'-convergence of the rate function towards an explicit
limiting rate function in the low-temperature dilute limit 5 — oo, p | 0 such that
—B7tlogp — v for some v € (0,00). The limiting rate function and its minimisers
appeared in recent work, where the temperature and the particle density were coupled
with the particle number. In the de-coupled limit considered here, we prove that
just one cluster size is dominant, depending on the parameter v. Under additional
assumptions on the potential, the I'-convergence along curves can be strengthened to
uniform bounds, valid in a low-temperature, low-density rectangle.
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2 SABINE JANSEN, WOLFGANG KONIG, BERND METZGER
1. INTRODUCTION

We consider interacting N-particle systems in a box A = [0, L]¢ C R? with interaction energy
Un(z1,..on) = > vllzi — ), (1.1)
1<i<j<N
where v: [0,00) = R U {oo} is a pair potential of Lennard-Jones type. That is,
e it is large close to zero, inducing a repulsion that prevents the particles from clumping,
e it has a nondegenerate negative part, inducing an attraction, i.e., particles try to assume a

certain fixed distance to each other,
e it vanishes at infinity, i.e., long-range effects are absent.

Additionally, we always assume that v is stable and has compact support. We allow for the possibility

that v = oo in some interval [0,7pc] to represent hard core interaction. See Assumption (V) in
Section 1.2 below for details.
v(r)
0
-

FIGURE 1. The pair potential v(r) = 1.57712 — 5= of Lennard-Jones type.

A particle configuration & = (x1,...,xy) in the box is randomly structured into a number of smaller
subconfigurations, that is, well separated smaller groups, which we call clusters. One of our main
questions is about the joint distribution of the cluster sizes, i.e., their cardinalities. Intuitively, if
the box size is large in comparison to the particle number, then one expects many small clusters,
and if it is small, then one expects few large ones. We will analyse this question much closer in the
thermodynamic limit, that is, keeping 8 € (0,00) fixed and taking

N
N — oo, L=Ly— oo, such that 0 — P, (1.2)
N
for some fixed particle density p € (0,00), followed by the dilute low-temperature limit
1
8 —00,p)0 such that — 3 logp — v, (1.3)

for some v € (0,00). In this regime, the total entropy of the system is well approximated by the sum
of the entropies of the clusters, and the excluded-volume effect between the clusters as well as the
mixing entropy may be neglected. As a consequence, particles tend to favor one optimal cluster size,
which depends on v and may be infinite.

In recent work [CKMS10], the free energy was analysed in the coupled dilute low-temperature limit

1 N
—log — — v, (1.4)

N — o0, 8= BN — 00, L=Ly— such that — v
/BN LN
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FIGURE 2. A schematic figure illustrating the cluster decomposition of a particle configuration
and the induced graph structure.

with some constant v € (0,00). It was found that the limiting free energy is a piecewise linear,
continuous function of v with at least one kink, i.e., non-differentiable point. Furthermore, there was
a phenomenological discussion of the interplay between the limiting cluster distribution and the kinks
in the limiting free energy, on base of a variational representation. See Section 1.3 for details.

In the present paper, we go beyond [CKMS10] by considering the physically relevant setting of a
thermodynamic limit and by proving limit laws for the quantities of interest. That is, our two main
purposes are

(i) to derive, for fixed 3, p € (0,00), a large deviations principle for the cluster size distribution
in the thermodynamic limit in (1.2), and

(ii) to derive afterwards limit laws (laws of large numbers) for the cluster size distribution in the
low-temperature dilute limit in (1.3).

In this way, we decouple the limit in (1.4) into taking two separate limits, and we prove limit laws for
the cluster sizes in this regime.

The organisation of Section 1 is as follows. In Section 1.1 we introduce our model and define the
thermodynamic set-up. Our main result concerning the large deviations principle for the cluster size
distribution is formulated in Section 1.2. The low-temperature dilute limit is discussed in Sections 1.3
and 1.4. Adopting additional, stronger assumptions we give in Section 1.5 bounds that are uniform in
the temperature for dilute systems. Finally we discuss in Section 1.6 some mathematical and physical
problems related to our results.

1.1. The model and its thermodynamic set-up. Here are our assumptions on the pair interaction
potential that will be in force throughout the paper.

Assumption (V). The function v: [0,00) — R U {oo} satisfies the following.

(1) v is finite except possibly for a hard core: there is a rpe > 0 such that v = o0 on (0,7h) and
v < 00 0N (The, 00).

(2) v is stable, that is, Un(x)/N is bounded from below in N € N and & € (R)V.

(3) The support of v is compact, more precisely, b := supsupp(v) is finite.
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v(r) v(r)

0 Ar—

FIGURE 3. Two examples of pair interaction potentials satisfying assumption (V).

(4) v has an attractive tail: there is a § € (0,b) such that v(r) < 0 for all r € (b—6,b).
(5) v is continuous in [rye, 00).

Assumption (V) differs from Assumption (V) in [CKMS10] in two points: here we drop the require-
ment v(ry.) = 00, and stability was there a consequence of some cumbersome additional assumption.

We introduce the Gibbs measure induced by the energy defined in (1.1). For g € (0,00), N € N
and a box A C R?, we define the probability measure ]P’(BN)\ on AN by the Lebesgue density

1 — T

where

1
ZA(B,N) = ﬁAN e PUN(E) g

is the canonical partition function at inverse temperature .

We introduce the notions of connectedness and clusters. Fix R € (b,o0). Given @ = (x1,...,2N) €
(RHN | we introduce on the set {zi,...,zy} a graph structure by connecting two points if their
distance is < R. In this way, the notion of R-connectedness is naturally introduced, which we also
call just connectedness. The connected components are also called clusters. A cluster of cardinality
k € N is called a k-cluster. By Ny(x) we denote the number of k-clusters in x, and by

pra(T) = NFXT)

the k-cluster density, the number of k-clusters per unit volume. We consider the cluster size distribu-
tion

pA = (pk7A)]€EN (16)
as an M/ z-valued random variable, where
My = {(p)ren € 10,00 | Y ko <o}, pe(0,00) (1.7)
keN

On M, we consider the topology of pointwise convergence, in which it is compact. Note that for each
finite N and any box A C RY,

N

N
Z kp,a(x) = A xe AN,
k=1

However, some mass of p, may be lost in the limit N — oo to infinitely large clusters. The distribution
of pp under the Gibbs measure P(BN}\ is the main object of our study.
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Introduce the free energy per unit volume as

1
&) = ———log Za (53, N).
fA(B7 |A‘) 5’1\’ 0og A(/Ba )
It is known [R99] that the free energy per unit volume in the thermodynamic limit,
f(ﬁ’p) = Nliglw f[O,L]d(ﬁ’ %) (18)
N/Ld—sp

exists in R for all p > 0 when there is no hard core, i.e., if r,. = 0. When 7. > 0, there is a threshold
pep > 0, the close packing density, such that the limit exists and is finite for p € (0, pcp), and is oo for
p > pep- Since we are interested in dilute systems, i.e., small p, we will always assume that p € (0, pep)-

1.2. Large deviations for cluster distribution under the Gibbs measure. Our first main result
is a large deviations principle (LDP) for the cluster size distribution under the Gibbs measure. For
the concept of large deviations principles see the monograph [DZ98].

Theorem 1.1 (Large deviation principle with convex rate function). Fiz 5 € (0,00) and p € (0, pep)-
Then, in the thermodynamic limit N — oo, L — oo, N/L* — p, the distribution of p, under P(ﬁ?\
with A = [0, L] satisfies a large deviations principle on M, . with speed |A| = L%, where € > 0 is
such that N/L¢ < p+ ¢. The rate function Jgp: Myye — [0,00] is conver, and its effective domain
{Jp,p(:) < o0} is contained in M,. For p sufficiently small, {Jg ,(-) < oo} is equal to M,.

If we impose N/L? < p, the theorem also holds with M ,» instead of M, ..
The proof of Theorem 1.1 is in Section 2. Define f(3,p,-): M, — [0, 00] through the equality

Js.0(p)=: B(f(B.p,p) — [(B.p)). (1.9)
Then the LDP may be rewritten, formally, as
1
i /AN e—ﬁUN(m)ﬂ{pA(:c) ~ p} da ~ exp(—mAyf(ﬁ,p, p)),

Thus f(5, p, p) may be considered as the free energy associated with the cluster size distribution p,,
thought of as an order parameter. The identity inf Jg , = 0 translates into

f(ﬁap) = lj\Idlff(/Bap?)

In words: the (unconstrained) free energy is recovered as infimum of the constrained free energy as
the order parameter is varied, a relation in the spirit of Landau theory.

It is a general fact from large deviations theory that an LDP implies tightness. More specifically, the
LDP of Theorem 1.1 implies a limit law for the cluster size distribution towards the set of minimisers
of the rate function. This is even a law of large numbers if this set is a singleton. Hence, Theorem 1.1
gives us control on the limiting behaviour of the cluster size distribution under the Gibbs measure
in the thermodynamic limit. However, in the general context of Theorem 1.1, we cannot offer any
formula for the rate function Jg ,. We have to restrict ourselves to the low-temperature dilute limit
(1.3). In this setting we obtain explicit asymptotic formulae in Section 1.3 below, and this is our
second main result.
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1.3. The dilute low-temperature limit of the rate function. In this section, we formulate and
comment on our main result about the limiting behaviour of the LDP rate function Jg , introduced
in Theorem 1.1 and of its minimisers in the dilute low-temperature limit in (1.3). This behaviour is
explicitly identified in terms of the ground-state energy of Uy,

Eyx:= inf UN(ZC), N e N.
wE(Rd)N

It can be seen like in the proof of [CKMS10, Lemma 1.1] using subadditivity that the limit
€oo i= A}im —— € (—00,0)

exists. It lies in the nature of the regime in (1.3) that it is not the cluster size distribution pj that will
converge towards an interesting limit (actually, these will vanish), but the term ¢x = kpy/p, which
carries the interpretation of frequency of particles in k-clusters. Therefore, let

Q:= {q = (qr)ken € [0, 1)1 ‘ > < 1}
keN
and introduce, for v € (0,00), the map g,: @ — R defined by

v (q) == quEkk_ 4 <1 — ZQk)eoo- (1.10)

keN keN

Our second main result is the following.

Theorem 1.2 (I'-convergence of the rate function). Let v € (0,00). In the limit 5 — oo, p — 0 such
that —B~'log p — v, the function

Q S RU{s},  q=(qinen %f(ﬁ,m (£2) )

I'-converges to g, .

For the notion of I'-convergence, see the monograph [dM93]. Theorem 1.2 is proved in Section 5.1.
The physical intuition is the following: at low density, the particle system can be approximated by
an ideal gas of clusters, see [H56, Chapter 5] or [S03]. ‘Ideal’ means that we neglect the ‘excluded
volume’, i.e., the constraint that clusters have mutual distance > R. As can be seen from the proof of
Lemma 3.1, this means that the rate function f(3, p,-) is well-approximated by the ideal free energy

P, o) 1= S ko fi8) + (= 3 ko) F8) + 5 3 pullogo 1. (1)
keN keN keN

Here f,gl(ﬁ) and f<(B) should be thought of as free energies per particle in clusters of size k (resp., in
infinitely large clusters), see Section 3 for the precise definitions. The functional pg, is obtained from
fideal by two simplifications, justified at low temperatures.

e First, we approximate cluster internal free energies by their ground state energies.
e Second, we split the entropic term as

lZpk(logpk -1) = Zpklogp + lzpk<10gp—k _ 1)
B keN /8 IBkEN P

keN

and keep only the first sum. Thus we keep the entropic contribution coming from the ways to
place the clusters (their centers of gravity) in the box and discard the mixing entropy.
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Since these two simplifications suppress physical intuition to some extent, it appears natural to
further analyse the consequences of the approximation with the above ideal free energy; this is carried
out in [JK11]. Interesting connections with well-known cluster expansions are discussed in [J11].

In classical statistical physics, the approach we take here goes under the name of a geometric, or
droplet, picture of condensation [H56, S03]. This is closely related to the well-known contour picture
of the Ising model and lattice gases [R99]. Lattice gas cluster sizes have been studied, for example,
in [LP77], continuous systems were investigated in [M75, Z08|. The focus of these works was on
parameter regions where only small clusters occur. Our declared goal, in contrast, is to derive bounds
that cover both the small cluster and the large cluster regimes (in the notation introduced below, this
means both v > v* and v < v*).

Under additional assumptions on the pair potential, we can replace the somewhat abstract I'-
convergence result with more concrete uniform error bounds, see equations (1.15) to (1.18) in Theo-
rem 1.8.

The rate function g, appeared in [CKMS10] in the description of the behaviour of the partition
function Z EN[{ in the coupled dilute low-temperature limit in (1.4). More precisely, it was shown there
that, in this limit, for any v € (0, c0),

N)

1
- log Z' — .
NBx 08 Zg\ An p(v)

It was phenemenologically discussed, but it was not given mathematical substance to, the conjecture
that the random variable q,, = (kpray/p)ren under ]P’(B]]VV)’AN with Ay = [0, Lx]? satisfies an LDP
with speed Ny and rate function given by g, (-) — u(v). This would be in line with Theorem 1.1 and
Theorem 1.2, and we do believe that this is indeed true, but we make no attempt to prove this.

1.4. Limit laws in the dilute low-temperature limit. The minimiser(s) of the rate function
f(B,p,-) are of high interest, since they describe the limiting behaviour of the cluster size distribution
under the Gibbs measure. It is a general fact from the theory of I'-limits that I'-convergence implies the
convergence of minima over compact subsets and of the minimiser(s). For the limiting rate function
gy, the global minimiser has been identified in [CKMS10]. The minimum is

. . Exn—v
p(v) =infg, = ]IV%%L, (1.12)

and the minimisers are given as follows.

Lemma 1.3 (Minimisers of g,). The number v* := infyen(En — Neso) is strictly positive. The map
v — u(v) is continuous, piecewise affine and concave. Let N C (0,00) be the set of points where p(-)
changes its slope. Then N is bounded, and pu(v) = —v for v > max N and pu(v) = ex for v < v*.
FPurthermore,

(1) v* e N C [v*,00), and N is at most countable with v* as only possible accumulation point.

(2) For v > v*, we have ju(v) < ex and every minimiser q = (qx)r of g, satisfies Y cnar = 1. If
v &N, then g, has the unique minimiser q*) = (q,")y, with ¢ = Ok, k(v) With k(v) the unique
minimiser of k — (Eyx—v)/k over N. The map v — k(v) is constant between subsequent points
inN.

(3) For v < v*, we have u(v) = es and the unique minimiser of g, is the constant zero sequence
(qe)ke with g =0 for any k.

This is essentially [CKMS10, Theorem 1.5], the proof is found in the appendix. If, as in [CKMS10],
the point co is added to the state space N of the measures in O, then the minimisers of g, are
concentrated on N for v > v* and on {oo} for v < v*; it was left open in [CKMS10] whether or not
the latter regime is non-void.
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The set A is infinite if and only if (Ex — ke )ken has no minimiser. In dimensions d > 2, it is
expected (and shown in some cases in, see [R81, AFS12]) that Ej, — kes > cst. k' ~1/% — oo, ensuring
that AV is a finite set.

Now we can draw a conclusion from Theorem 1.2 about the limiting behaviour of the minimisers
of the rate function in the dilute low-temperature limit. The following assertions are well-known
consequences from the I'-convergence of Theorem 1.2, see [dM93, Theorem 7.4 and Corollary 7.24].

Corollary 1.4. In the situation of Theorem 1.2,

(1) the free energy per particle converges to u(v):

%f(ﬁ,p) = uv)

(2) if u(-) is differentiable at v (that is, for v € (0,00) \ N), any minimiser p@®® = (p\*”); of
Jg,p converges to the minimiser of g, :

k (8,p)
N A keN
P
A density o
—— _ —v*/T
— - 1
ey — p—12)T
—“---"""7 o=e
Phase IV - p=e /T
(infinite
configu-

Phase 11

rations)

Phase I (single points)

—
-

temperature T’

FIGURE 4. A diagram illustrating the expected relationship of the slope condition
—Tlogp = —B'logp — v and the minimisers of the rate function in the dilute low-
temperature limit. The phases I and IV always exist. Depending on the pair potential,
there can be values of v for which 2 < k(v) < oo, yielding intermediate phases (for
example, II and III, although the precise number of intermediate phases will depend
on the pair potential).

Another important consequence of Theorem 1.2, together with the LDP of Theorem 1.1, is a kind
of law of large numbers for the cluster size distribution p,, in the thermodynamic limit, followed by
the low-temperature dilute limit. A convenient formulation is in terms of the vector g, = (qra)ken
with gi A = kpga/p, the frequency of particles in k-clusters, if [A| = N/p.

Corollary 1.5. For any v € (0,00) \ N, any K € N and any ¢ > 0, if B is sufficiently large, p
sufficiently small and —% log p is sufficiently close to v, then, for boxes Ax with volume N/p,

Jim POY (|q,€(y),AN 1> s) =0 ifv>ot, (1.13)
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and

N—oo

K
lim ngng(qu,AN > a) —0  ifv<uvt (1.14)
k=1

Proof. We prove (1.13) and (1.14) simultaneously. Consider the set
pEM,: ‘&Zk(”)—l‘ 25} for v > v*,

A= K kpra
peM,: > | == 25} for v < v*.

P
Then the I'-convergence of Theorem 1.2 implies [dM93, Theorem 7.4] that

1
lim inf — inf ,p, ) > —inf g,,
ninf Zin f(B.p,) nf g

where lim infg , refers to the limit in Theorem 1.2. Furthermore, it is easy to see from Lemma 1.3 that
§ = inf4 g, —inf g, is positive. We pick now 3 so large and p so small and —3~!log p so close to v that
%ian f(B,p,-)—infy g, > —6/4 and %f(ﬁ, p)—p(v) < /4 (the latter is possible by Corollary 1.4(1)).
Now the LDP of Theorem 1.1 yields that

1
li log PYY) A) < —inflz, = —B|inf D —
lifnjllop |AN| og B.AN (pAN S ) = HA B,p /8|:H}‘ f(ﬁaﬂ? ) f(57p):|

< —ﬁp[igfgu —p(v) —§ - ﬂ = —Bpé/2 <0.

Hence, limpy_, IP’%N/)\N(p Ay € A) = 0. Noting that this probability is identical to the two probabilities
on the left of (1.13) and (1.14) for our two choices of A, finishes the proof. O

It may come as a surprise that, for most values of the parameter v, the cluster size distribution is
asymptotically concentrated on just one particular cluster size that depends only on v. This may be
vaguely explained by the fact that the zero-temperature limit 3 — oo forces the system to become
asymptotically ‘frozen’ in a state in which every cluster size assumes the globally optimal configuration
size, which is unique for v € (v*,00) \ N. Furthermore, note that Corollary 1.5 does not give the
existence of ‘infinite large ’ clusters (i.e., clusters whose size diverges with N) for any value of 8 and

p, not even for v < v* and —3~!logp ~ v.

1.5. Uniform bounds. Under some natural additional assumptions on the pair potential, the asser-
tions of Theorem 1.2 can be strengthened, see Theorem 1.8 below. Indeed, we will assume that the
ground states of the functional Uy consist of well-separated particles, which are contained in a ball
with volume of order N, and we assume some more regularity of the interaction function v. Then
we show that the I'-convergence in Theorem 1.2 in the coupled limit in (1.3) can be strengthened to
estimates that are uniform in some low-temperature, low-density rectangle (3, 00) x (0,7). This leads
to corresponding uniform estimates on ]% f(B,p) — u(v)| and on minimisers. We now formulate this.

Assumption 1.6 (Minimum interparticle distance, Holder continuity).

(i) There is rmin > The such that, for all N € N, every minimiser (z1,...,xx) € (RON of the
energy function Uy has interparticle distance lower bounded as |x; — xj| > rmin, © 7 J.
(ii) The pair potential v is uniformly Holder continuous in [rmpin, 00).

The existence of a uniform lower bound ry;, for ground state interparticle distance is, of course,
trivial when the potential has a hard core r,. > 0. A sufficient condition for the existence of ryi, > 0
for a potential without hard core is, for example, that v(r)/r® — oo as r — 0, as can be shown
along [T06, Lemma 2.2].



10 SABINE JANSEN, WOLFGANG KONIG, BERND METZGER

Assumption 1.7 (Maximum interparticle distance). There is a constant ¢ > 0 such that for all
N € N every minimiser (x1,...,xx) € (RON of the energy function Uy has interparticle distance
upper bounded by |v; — x| < eN/d,

On physical grounds, we would expect that this assumption is true for every reasonable potential.
To the best of our knowledge, however, non-trivial rigorous results are available in dimension two only,
for Radin’s soft disk potential [R81] and for potentials satisfying conditions (H1) to (H3) from [AFS12].
These potentials satisfy Assumption 1.6 as well.

Theorem 1.8. Suppose that in addition to Assumption (V) the pair potential “also satisfies Assump-
tions 1.6 and 1.7. Then there are p,3,C > 0 such that for every (5,p) € [B,00) x (0,p], putting
v:= —F"Llogp, the following holds.

(1) Estimate on the rate function:

1 C
;f(ﬁ,m (B )ken) — gu((Qk)k)‘ < 3 log 33, (qr)ken € Q. (1.15)
(2) Estimate on the free energy:
1 C
|~ £(8,p) = n(v)| <2~ 10g B. (1.16)
p B
(3) Minimizers: For any minimizer p@® of f(B,p,-), put ¢ := (kp\"” /p)ken. Then, ifv < v*,
(B,p)
1
G oy @ Ligp, (1.17)
k v¥—vp
keN
If v > v*, then
C 1
(B,p)
q >1-2 —log 83, 1.18
ke%:(u) ’ A(V) /8 ° ( )
where
Ex

A(v) := inf{ k_y‘k‘GN\M(V)}—M(V)>O

is the gap above the minimum, and M(v) C N is the set of minimisers of ((Ex — v)/k)ken

(thus M (v) = {k(v)} forv ¢ N).

Theorem 1.8 is proved in Section 5.2. One can see from the proof that one can choose p = (20 +
2R)~4. It follows in particular that the I'-convergence and the two convergences from Corollary 1.4 can
be strengthened to convergence for just taking 5 — oo, uniformly in p € (0, p], with an error of order
B~ tlog 3. This form of the error order term is an artefact of the assumption of Hélder continuity; the
constant C' depends on the Hélder parameter.

Note that (1.17) implies that, in the case v < v*, for every K € N, the fraction of particles in
clusters of size < K is bounded by

(8,0)
Z kpy, " _ Z ql(f,p) < 2C Kllogﬁ.

v¥—v
k<K P k<K p

This shows that, as 8 — oo, for some choices of K = Kz — oo, the fraction of particles in clusters
of size < Kp vanishes, i.e., the average cluster size becomes very large. Note that the law of large
numbers in (1.14) in Corollary 1.5 may, under Assumptions 1.6 and 1.7, be proved also with K replaced
by Kg.
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1.6. Some remarks concerning related mathematical and physical problems. Our prob-
lem is connected with continuum percolation problems for interacting particle systems, see the re-
view [GHMO1]. In our setting of finite systems, the term ‘percolation’ should be replaced with
‘formation of unbounded components’, i.e., clusters whose size diverges as the number of particles
goes go infinity. The problem of percolation or non-percolation for continuous particle systems in an
infinite-volume Gibbs state (that is, in a grand-canonical setting) is studied in [PY09]. They prove
that, for sufficiently high chemical potential and sufficiently low temperature, percolation does occur.
However, they do not give any information on the densities at which percolation occurs. This hinders
the physical interpretation, since one cannot say whether the percolation is due to high density or
strong attraction. In this light, our results are stronger and at the same time weaker: we do show
that a transition from bounded to unbounded clusters happens at low density, but only in a limiting
sense along low-temperature, low-density curves; there is no fixed temperature or density at which we
prove the formation of unbounded clusters.

In addition, our work has an interesting relationship to quantum Coulomb systems. In the simplest
case, a gas of protons and electrons, we may ask whether we observe a fully ionized gas, where
protons and electrons stay for themselves, or a gas of neutral molecules, with protons and electrons
paired up together. The mathematical model is in terms of a quantum mechanical Hamiltonian in
a fermionic Hilbert space for particles of positive and negative charge interacting via a long ranged
Coulomb potential. The analogues of our ground states FEj are defined as ground state energies
of the Hamiltonian restricted to sectors with prescribed particle numbers and center of mass motion
removed. Rigorous mathematical results were given by [F85], see also [CLY89], in the Saha regime, also
called atomic or molecular limit: when the temperature goes to 0 at fixed, negative enough chemical
potential, the Coulomb gas behaves like an ideal gas of different types of molecules or particles. The
chemical composition is determined by the chemical potential by an energy minimization problem,
akin to minimizing Ej — kp as a function of k, which in turn is the grand-canonical version of our
auxiliary variational problem (Ej — v)/k = min.

Our results adapt this quantum Coulomb system picture to a classical setting. From this point
of view, the key novelty is that we work in the canonical rather than the grand-canonical ensemble;
this allows us to extend results to the region where formation of large clusters occurs. Indeed, in the
canonical ensemble we can take the density larger than the transition density, which is conjectured to
exist and to be of the order exp(—pfv*), and at the same time impose that the density be small. In
the grand-canonical ensemble, we may of course take the chemical potential larger than the transition
potential, but then we lose control over the density and cannot apply the dilute mixture approximation.

The remainder of this paper is organised as follows. In Section 2 we prove the LDP of Theorem 1.1,
in Section 3 we compare the rate function with an explicit ideal rate function, and in Section 4 we
compare temperature-depending quantities with the ground states. Finally, the proofs of Theorems 1.2
and 1.8 are given in Section 5.

2. PROOF or THE LDP

In this section, we prove Theorem 1.1. We fix § € (0,00) and p € (0, pcp) throughout this section. In
Section 2.1 we explain our strategy and formulate the main steps, and in Sections 2.2-2.4 we prove
these steps. The proof of Theorem 1.1 is finished in Section 2.5.

2.1. Strategy. The main idea is to derive first a large deviations principle for the distribution of
(Pk,A)k=1,..; for fixed j € N, that is, for the projection of p, on the first j components, and apply
the Dawson-Gértner theorem for the transition to the projective limit as j — oo. From the proof
of the principle for the projection, we isolate an important step, see Proposition 2.1: using standard
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subadditivity arguments, we prove the existence of thermodynamic limit for constrained free energy,
the constraint referring to cluster size concentrations of size < j. The principle for the projection of
p, appears in Proposition 2.2.

Given N, Ny,...,N; € Ny define the constrained partition function with fixed cluster numbers of
size < j,
1 J
ZN(B,N,Ny,...,N;) := —/ e PN TT Y Ny () = Ny} da. (2.19)
N! Jan P

Note that Zy(8,N,Ni,...,N;) = 0if >7_ kNj > N.

In the following we shall often be interested in the interior or boundary of subsets A C [0,00)/T!
for some j € N. Unless explicitly stated otherwise, Int A and A refer to the interior and boundary of
A considered as a subset of R/*!. In particular, if 0 € A, then 0 is automatically a boundary point.

We denote by domh = {z: h(z) < oo} = {h(-) < oo} the effective domain of an (—oo, oo]-valued
function h.

Proposition 2.1. Fiz j € N. Then there is a function f;j(8,-): [0,00)/™t — R U {oo} such that

o fi(B,-) is convex and lower semi-continuous;
e its effective domain has non-empty interior A; = Intg;+1 dom f;(5,-) and f;(B,-) is continuous
m Aj 5

e its effective domain is contained in

J
dom f;(8,) € 85 < {(p.prs- 1 p5) € 10,000 |p € [0, pep]s D kiw < p},
k=1

and, moreover, if |Ay|, N, N™ ... ,N](»N) — 00 in such a way that
: My N (2.20)
— — P, — Pl e, — pi, .
Axl 7 TAN] T Al 7
then
e If (p,p1,---,pj) €Ay,
1
: (N) (N)\ __ . .
]\}gnoo |AN|1OgZAN(/87N7N1 7"'7Nj )__/Bf](/Bap7p17"'7pj)' (221)
and the limit is finite.
o If(p,p1,-..,pj) € OA; (boundary of A;), then
1
hmsup—logZAN(/B’Na Nl(N)a s )N(‘N)) < _ﬁfj(/ﬁap7p1,' . ’p]) eRU {_OO} (222)
Nooco |AN] J

o If(p,p1,-..,pj) € A_jc, then (2.21) holds true and the limit is —Bf;(5,p,p1,...,pj) = —00.

This proposition is proved in Section 2.2.

The set A; is related to close-packing situations. For example, when j = 1 and the density p is
higher than 1/|B(0, R)| (where we recall that R is the parameter in our notion of connectedness), it
is impossible to have a gas formed only of 1-clusters and we have f1(53, p, p) = oo.

Analogously to (1.9), let

I(prs- o 03) 1= B(£i(B.pr o1, pi) = F(B.p)).
We will prove in Section 2.4 the following.
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Proposition 2.2 (LDP for projection of p,). Fiz j € N. Then, in the thermodynamic limit N — oo,
L — 0o, N/L% — p, the distribution of (p1a,-..,pja) under the Gibbs measure P(ﬁ?\ with A = [0, L]?
satisfies a large deviations principle with scale |A| and rate function Ig , ;. Moreover, the rate function
18 good and convex.

Recall that a rate function is called good if its level sets are compact. In this case, it is in particular
lower semicontinuous. The large deviations principle means that, for any open set O C [0,00)/ and
any closed set C C [0,00)7, with A = [0, L]%,

1
liminf  ——lo ]P’(N)< e e(’)> > _inflg, 9.23
N,L—00,N/Li—p | A ePpa((Pra Pit) - o PP (2.23)
1
lim sup TlogP%N,)\<(p1,A,...,pj7A)EC) < —inflg, ;. (2.24)
N,L—)oo,N/Ld—>p’ ’ ’ ¢

We refer to (2.23) as to the lower bound for open sets and to (2.24) as to the upper bound for closed
sets.

2.2. Proof of Proposition 2.1 — subadditivity arguments. In this section we prove Proposi-
tion 2.1. For the remainder of this section, we fix j € N.

The crucial point is the following supermultiplicativity of partition functions, which translates into
subadditivity of free energies: Let N, N” € N. Let A’, A” be two disjoint measurable sets which have
mutual distance larger than the potential range b, and A large enough to contain the union of the two.
Then

ZA(,B,N, + N”) > ZA/UA//(ﬂ,N/ + N”) > ZA/(,B,N,) ZA//(ﬂ,N”). (2.25)

This standard trick leads to a proof of the existence of the thermodynamic limit by subadditivity
methods [R99] (where subadditivity is applied to the microcanonical ensemble instead of canonical,
but the method is the same).

The starting point of our proof is the observation that a similar inequality holds for constrained
partition functions Zx (8, N, Ni,...,N;) provided A’ and A” have mutual distance > R, where we
recall that R € (b, 00) was picked arbitrarily. Therefore we can prove existence of the constrained free
energy by adapting the standard methods. Let us recall, roughly, the standard strategy of proof:

(1) As a first step, one proves existence of limits of —ﬁ log Zx(B, N, Ni,...,Nj;) along special
sequences of cubes - roughly, the sequence is defined in an iterative way by doubling the cube’s
side length and adding a ‘security margin’, and multiplying particle numbers by 2¢. This uses
subadditivity and yields a densely defined, convex function 7.

(2) Then one shows that the function 7 is locally bounded in some region of non-empty interior,
and therefore can be extended to a continuous function f in some non-empty open set A.

(3) At last, one proves the convergence of —ﬁ log ZA (B, N, Ni,...,Nj;) to f along general cubes.

Our proof follows these steps, with some complications. Notably, an extra argument is required
in Step (2) (see Lemma 2.6 below). Moreover, we make the choice — convenient in view of the large
deviations framework — to assign values to the free energy not only in A and outside A (where f is
o0) but also in QA by requiring global lower semi-continuity and convexity.

2.2.1. Convergence along special sequences. Let R’ > R and L§ > 0 be fixed, and define (L})nen,
recursively by L% | = 2L} + R'. Explicitly, L}, = —R' + 2"(Lj + R'). Let A}, = [0,L;]¢. Thus A%,
can be considered as the union of 2¢ copies of A, with a corridor of width R’ between them. Let

Dj:={p=1(p.p1,....pj) € 0,00) T | p>0, 3ge Ng: 2Ly + R)p e Ng“}.



14 SABINE JANSEN, WOLFGANG KONIG, BERND METZGER

Lemma 2.3 (Introduction of n;(5,-)). Let (p,p1,...,pj) € Dj and put forn € N
N® = 2m(Le+ RYp, NV =2 L5+ R ) (k=1,....7). (2.26)

The following limit exists in R U {oo} and is equal to an infimum:

ni(B,p;p1s--.,p5) = nl;m 5’1\*’ log Z (ﬁ,N(n)7N1(n)7 L ,N;n))
(2.27)

— inf (== 1og Zag (B, N, NJY,. NI™) ).

in (g s 2 4 "
This limit is finite as soon as Zs (6, N™, NI"), .. 7Nj(»")) > 0 for some n € N. In particular,
J
{n;(B,") <o} C {(mm,---,pj) €D Y kpp <p< pcp}' (2.28)
k=1

Proof. We can place 27 shifted copies of Ay in Ay | in such a way that the copies have distance > R

to each other. Hence we have
2d

Zngy (B NCHDNTD L NE0) = (2 (8, N, N, NYY))
Abbreviating
24| A%
ALl

this is just the inequality u,+1 < (1 4 &,)uy,. Our goal is to show that lim,, o u,, exists and is equal
to uw := inf, ey u,. Remark that

2N (2 R 2R
Kol \2R@rR) R ) ’

which yields Y 7 | |en| < co. The case u = —oo is excluded by exploiting the stability of the energy:
for some C € (0,00), we have

Up = —

\A*] log Zax (B, N™, N{™,. ,Nj(»")) and 1+e,:=

1+e¢,=

ZA;‘L(/BaN( )aNl( )a"'aN]( ))SZA;‘L(ﬁ?N( ))Sme : N |A>TkL|N SeCN ’

and hence u > —C0.
If u = o0, then u,, = oo for all n and in particular u,, — oo = u. Consider now the case u € R. For

0 >0, let ¢ € N such that uq§€+5and1—6§HZ:q(1+6k)§1+5f0ralln2q. Then for n > q,

n—1
u<u, <ug [J(1+er) < (w+8)(1+9).
k=q
Letting first n — oo and then 6 — 0 we conclude that u,, — u. The additional assertion is clear from
the proof and from the fact that, for p > pcp,, we have co = f(8, p) = —% lim,, oo ﬁ log Za: (6, N™).
! O

2.2.2. Properties of the limit function n;(53,-). The next lemma essentially states that 7;(3,-) is a
convex function. The precise formulation needs some care since the domain D; of this function is not
closed under taking arbitrary convex combinations.

Lemma 2.4. Let p,p’ € D;. Lett € (0,1) be a dyadic fraction, i.e., of the form t = p/2? for some
q € Ng. Thentp+ (1 —t)p’ € Dj and

ni(B,tp+ (1 —t)p") <tn;(B,p) + (1 —t)n; (B, ). (2.29)
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Proof. Consider the cubes A} defined as above. A%, is the union of two sets of 277! copies of A},
plus some margin space. We first consider ¢t = % We can lower bound

Zpx,, (8,2 Ls + R) (p+ p')/2)
d—1

> (2, (8,275 + R/)dp)>2dl (20 (8,271 + BY'p'))

We divide by A7 ;| and pass to the limit, this gives Eq. (2.29) for the case t = % The general case
is obtained by iterating the inequality. O

The following is a technical preparation for the proof of the local boundedness of 7;(3,-) in
Lemma 2.6 and will also be used later. We define a cluster partition function with volume constraint:
for a, >0, k€ N, let

z(8) =

= /([0 - e_ﬁU(mm"“’x’“)l{{xl, Tg,...,xx} connected } day - - - day. (2.30)

Lemma 2.5. Let § € (0,[R — rhe)/3). There is a C(6) € R such that for all k € N and aj, >
8 + kY4 (rye + 26),
af Z(8) > |B(0,6/2)|F exp(—BC(O)k). (2.31)

Proof. The cube [0, az]? is large enough so that, for some h € (rpe + 20, R — §) and some 6 € R?, the
cubic lattice [0, ag]?N (6 + (hZ)?) contains at least k points all having distance > §/2 to the boundary
of the box. By placing particles in the lattice, we obtain an (R — d)-connected reference configuration
(z1,...,21) € ([0,a]9)* with the following properties:

e All points have distance > §/2 to the boundary of [0, az]?.
e Distinct points x;, z; have distance > ry,. + ¢ to each other.

We can lower bound Zzl’a’“ (8) by integrating only over those configurations with exactly one particle

per ball B(z;,0/2). Such a configuration is always R-connected. Moreover the energy of such a
configuration can be upper bounded by C(0)k with

C(9) = Z sup  [v(s|4])| < oo,

0e7\{0} $€(Thet0,R)
and Eq. (2.31) follows. O

Lemma 2.6 ({n;(,-) < oo} has non-empty interior). For p € (0,00), let

J
k=1
Let 6 € (0,(R — rhe)/3) and C(8) be as in Lemma 2.5. Fiz p(0) := (rhe + R+ 26)"%. Then for all
p € A;(p(8)) ND;, we have nj(B, p) < C(§) — B~ 1og|B(0,6/2)| < co. In particular,

A;(p(6)) ND; C {n;(B,-) < oo}

Proof. We first give an appropriate lower bound for the constrained partition function for the two
extreme cases when (1) all clusters have the same size k € {1,...,j}, and (2) all clusters are larger
than j. Afterwards, we use the convexity of 7;(f,-) (see Lemma 2.4) to handle all other cases.

Thus fix p = (p, p1,...,pj) € Dj N A;(p(0)). In the first case, let k € {1,...,5} and p = p™® with
p = pr = p/k and p{* = p; = 0 for i # k. It follows that the N™, N/"’s defined as in Eq. (2.26)
satisfy N = k:N,i") and Ni(”) = 0 for i # k. Furthermore, let a; > 6 + kl/d(rhc + 26) such that
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p(ar + R)? < k. We are going to use the boxes A* defined above. In A, we place cubes of side-length
aj with mutual distance > R. As n — oo, the number of such boxes behaves like

, A% N™/p _ N™

B {(aHR)dJ Tl R TR
Thus we can lower bound the partition function by requiring that each k-cluster lies entirely in one
of the above boxes, and there is at most one cluster in each such box. This gives

Zas (BN NP, Ny > (O (at 27 <ﬁ>)N(”)/ "> 1B(0,5/2)"" exp(—AN™C(6))
A:L 3 3 1 9+ .] sl N(")/k) k “L - ) p ’
(2.32)

where in the last step we used Lemma 2.5 and estimated the counting term against one. Thus we find

: 1 n n
nh_)rgomlog Zns (B, N™, N{™, ..., N™) > p(—ﬁC(a) +1ogyB(o,5/2)\).
Thus,

ni(8,p™) < p(C(8) — 5 0g | B(0,5/2)]).

In the next step, we assume that p = p® with pzo) =pr=0forall k=1,...,j. Again, we define
N™ and the N by (2.26). We now lower bound the constrained partition function by putting all
particles into one cluster.

n n n * 17 2 n -
ZA;‘L(/BaN( )7N1( )7"'7N; )) Z ‘An’Z]CV(i) (5) fOI‘ N( ) Zj+1

Observe that a,, := L}, satisfies the conditions from Lemma 2.5, thus we also have
n3(8,0) < p(C(8) ~ B 10g |B(0,6/2)]).

In the general case, let g := kpy/p for k € {1,...,j} and ¢o := 1 — Z{c:l qr- Then qo,q1,...,q; >
0 are dyadic fractions and satisfy >77_,qr = 1. Furthermore, p = >°7_ qpp™. It follows from
Lemma 2.4 that

J
<> ani(8.p") < p(C(6) — 57 1og | B(0.6/2)]).
k=0
U

2.2.3. Extension of nj(f3,-) to RI7*1. We now extend n;(3,-): D; — RU {0} to a convex, lower semi-
continuous function f;(8,-): R7T! — R U {oc}. We follow the proof of [R99, Prop. 3.3.4, p. 45]. Let
I'; be the closure of {n;(B,-) < oo}, and let A; be the interior of T';. Note that I'; C [0,00)/T!, as
1;(8,-) = 00 on R\ [0,00)7 .

Lemma 2.7. (1) The interior A; of I'; is non-empty.
(2) The restriction of‘nj(ﬁ, ) to Dj N Aj has a unique continuous extension f;(5,-): A; — R.
(3) Define f3(8,"): B9+ — RU {00} by

fi(B,p) ifped;
1i(8,p) = { +° Uped, (2:33)
lim inf p/_,p (B, p") if pe 0A;.

Then f;(B,-) is convex and lower semz’—contmuous, and

fi(B,p) = limn £ B.p+tp' —p)),  pedi;p el (2.34)
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(4)
{fi(B,+) <o} CA;C {(p, Lo py) €10,00) T | pE0,pep), Y Kpr < p}- (2.35)
k=1

Proof. (1) This follows from Lemma 2.6.

(2) For the existence and uniqueness of a continuous extension in Aj, follow [R99, p. 45]. The key
point is that in Aj, n;(5,-) is a locally uniformly bounded, densely defined, convex function in the
sense of Lemma 2.4.

(3) Let us extend fj(ﬁ, ) to RI+! with fj(ﬁ,p) = oo for p € RZTI\A,. Then f}(ﬂ, -) is convex, but
may fail to be lower semi-continuous. Furthermore, f;(5,-) and f;(f,-) can differ only on 0A;. The
lower semi-continuous hull of f;(8,-) is

clfj(ﬁ,p) = lin,ninffj(ﬁ,p'), peRITL
p'—=p
see [HLO1, Def. 1.2.4, p. 79]. This is a convex, lower semi-continuous function which coincides with
fj(ﬁ,p) in A; [HLO1, Prop. 1.2.6, p. 80]. It follows that cl f;(3, p) coincides with f;(3,-) in A;. It
is elementary to see that in the definition of clfj(ﬁ, -), the limit inferior can be restricted to those

p' — p that are in A;. In other words, clfj(ﬁ, -) and f;(f,-) coincide throughout RI*L. This shows
that f;(5,-) is convex and lower semicontinuous. Eq. (2.34) follows from [HLO1, Prop. 1.2.5].

(4) The first inclusion follows from the definition of f;(/,), and the second from (2.28). O

2.2.4. Limit behavior along general sequences.

Lemma 2.8. Fiz (p,p1,...,pj) € (0,00)L. Let (N{™)nen,-- -, (N;N))NeN be Ny-valued sequences
and (An)nen a sequence of cubes such that as N — oo, (2.20) holds. Then, if (p, p1,...,p;) is in A,

lim log Zay (B, N,N{™,...,N™) = =Bf;(B,p, p1, ..., p;) €R. (2.36)

N—o00 |AN|

Proof. We proceed as in [R99, pp. 47]. We first prove the lower bound in (2.36). We will approximate
(P, p1s- -, pj) with (p*, p, ..., p}) € D; satistying p > p* and p] < p1,...,p; < pj. The idea is to pick
the size parameter n = n(N) — oo of the special sequence of cubes AZ( N) introduced at the beginning
of Section 2.2.1 in such a way that the cubes are small compared to Ay. Hence, we can place a
lot of them inside Ay at mutual distance > R. Afterwards, we distribute the particles and clusters
inside a certain number of special cubes according to the distribution (p*, p7,..., pj) and place the
few remaining particles somewhere else in Ay.

Let (n(N))nen be an integer-valued sequence such that
n(N) — oo and |A,*1(N)|2/|AN| — 0.
We define N"™ and Ni”k(N)) by (2.26) with n replaced by n(N) and p,pi,...,p; replaced by
p*5p1,- -5 pj. Let my € Nog and v € {0, ... , N 1} be such that
N = my NI ()
This is possible because p > p* and therefore N > N"™ for all sufficiently large N. For k €

{1,...,7}, define r,(gN) by
N = my N 4 7o),

We claim that, for sufficiently large N, the ’I“;CN) are non-negative integers. Indeed, this follows from

plAN|

N n(N
Ny )~ prlAn| and mNNi’k( D~ A
n

* * p >k
| pk|An(N)| = —pplAN|
(N) P
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in combination with py > py > pﬁ* pr- Moreover, we can place my + ™) copies of AZ( N) with mutual
distance > R inside Ay. This is so because

my ALyl ~ %’AN’ and  r™M[AL | = ONTAL 3y ) = O A P) = o(|A]).-

We lower bound the constrained partition function with parameters IV, NI(N), ..., N ;N) by distributing
first particles and clusters in the mpy boxes following the distribution Ni"k(N)). This leaves r™) particles.
Of those we distribute first k:r,(CN) as clusters of size k, one per special cube, and then we distribute

the remaining s particles into clusters of size j + 1 except maybe for one of size between j + 2 and
27 + 1. Pretend for simplicity that they all have size j + 1. Then we get

log Zn (B, N,N{™, ... N;™) = mylog Zn: (B, NSO NP N

!

* o *7j
itt cl, L
+ ZT,(CN) log Zk’ () (8),
k=1

where L] ) denotes the side length of A7 . Using that Zf;ll r < < N = o(|A ), we
get

1 p
im inf — (N) (N) * % *
l}\l;ri)mf ’AN’logZAN(ﬁ,N,Nl poe N )Z—ﬁ—p*fj(ﬁ,p s PLs s D)

Now let (p*, pi,...,p;) = (psp1,--.,p;) and use the continuity of f;(8,-) in A;, to obtain

lim inf !
N—o0 |AN|

1OgZAN(/87N7N1(N)7"' 7N](N)) 2 _/Bf](/Bap7p17 7pj)

Now we prove the upper bound in (2.36). First of all, let us observe that the lower bound holds
not only for sequences of cubes, but more generally for sequences of domains A’ that converge to
infinity in the Fisher sense, as can be shown along the lines of our proof and [R99]. We shall need
the statement not for general Fisher domains but only for A%, defined below, which is an L-shaped
domain that is a difference of two cubes.

Now fix C € (0, %) For N € N, let n(N) € N be so large thatA:;(N) contains Ay and satisfies

0<C<L [Ax]

1
» < -, n € N.
N] 2
Let A% be the set of points in Ay having distance > R’ to Ay. Then (JAn]| + |A§(,|)/|A:(N)| — 1.
Let p* = (p*, p1,...,p;) € AjND; such that p; > 0. Define NI and NOY as in Eq. (2.26) with
n replaced by n(N) and p, p1, ..., p; replaced by p*, p7, ... »p;- Then

Zne (B NP, NOE, L N

> Zan (B, NN NSY) X Zp (B, N — NN — N N — N,
(2.37)
Assume for simplicity that [Ay|/ |A;( N)| — a € (0,1/2] (otherwise go to suitable subsequences). Then

NSO N Pt A = AN = pa 1
7 ~ I - = F

Define pf,..., pj in an analogous way and put p” = (p”, pY, ..., pj). Thus p* = ap + (1 — a)p” and

7

0" —pl =1 —a) ' [p—p*| <2lp - p*,
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with | - | the Euclidean norm. Let ¢ > 0 such that B.(p) C A;. Now additionally assume that
p* € B.js(p). Thus p” € A;. In Eq. (2.37), we take logarithms, divide by |A:(N)| and pass to the
limit N — oo, which gives

—Bf;i(B,p*) > alimsup
Nooo |AN]

log Zny (8, N, NI, .., NI) — (1= a)Bf;(8, p”).
To conclude we let p* — p (hence p” — p) and use a > 0 and the continuity of f;(3,-) at p. O

Lemma 2.9. Assume the situation of Lemma 2.8. If p = (p,p1,...,pj) is in Z;f or in 0A;, then

lim sup ——
N—o0 ’AN‘

(Recall that f;(3, p) = oo in the first case.)

log Zn, (B, N, N™,....N™) < —8 (8, p).

Proof. We proceed as in [R99, Prop. 3.3.8, p. 48]. One can show that there is an o € (0,1/2] such
that for p* € D; satisfying p; > 0 whenever p;, > 0, and p” € A; satisfying

p*=ap+(1-a)p” (2.38)
it holds that

—Bn;(B, p*) > alimsup

log Zax (8, N, Ny, .., NJY) = (1= @) B (8, ). (2.39)
N—o0 ’AN’

The proof of this is similar to the proof of the upper bound in Lemma 2.8.

a) Consider the case p € Z;f. For p” € Aj, we define p* by (2.38). By choosing p” close enough to
O0Aj, we can ensure that p* € D; N ZCZ Thus we conclude from (2.39) that

log Zn (8, N, Ny, N¥) = —o0.

lim sup
Nosoo |AN|

b) If p € 0Aj, let p’(e) € Aj N B:(p) be such that f;(8,p"(e)) = f;(B,p) as € | 0. By [HLOI,
Lemma 2.1.6, p. 35], the half-open line segment (p, p’(¢)] is contained in A;. Since D; is dense and
because of the continuity of f;(8,-) at p’(¢), we can find p”(¢) € A; N B.(p) such that

e p*(e), defined by (2.38) with p” replaced by p”(¢), is in A; ND; N B.(p).
* |£i(B,p'(e)) = f5(B, p"(€))| < &, so that f;(B,p"(e)) = [;(B,p) as e = 0.

It follows from Eq. (2.39) that

alimsup —— log Zx (3, N, N\, .. N(N)) < hmsup< Bfi(B,p*())+ (1 —a)Bf;(B, p"(s)))
N—o00 ‘AN‘ e—0
O
Proof of Prop. 2.1. This is now straightforward from the previous lemmas. O

2.3. The p-sections of A;. We already saw that the set {f;(/,-) < oo} has non-empty interior A;.
In view of the large deviations principle we are interested in properties of the map (p1,...,p;) —
fi(B,psp1,...,pj) at fixed § and p. This means that we look at the restriction of f;(f,-) to the
hyperplane of constant density p.

Now, this restricted map inherits the convexity and lower semi-continuity from f;(3,-). The question
whether the set where it is finite has non-empty interior is, however more subtle. Closely related is
the question whether A; has non-empty intersection with the hyperplane of constant density p.
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To this aim consider the p-section of A,

Ci(p) = {(p1s- - p5) € (0,000 | (pyp1s-p7) € Mg (2.40)
Put differently, {p} x C;(p) is the intersection of A; with the hyperplane of constant density p. The
hyperplane always cuts through the interior of A;, i.e., cannot be tangent to A;:

Lemma 2.10. For any p € (0, pep), the set Cj(p) is non-empty, convex and open. Moreover,

Ci(p) = {(p1:---,p) €10,00) | (p, p1,-- -, pj) € By} (2.41)
This last equation says that it does not matter whether we take first the p-section and then close
the set, or if we close first and then take the section.

The essential ingredients of the proof of Lemma 2.10 are the convexity of f;(f,-), Lemma 2.6 and
the following.

Lemma 2.11. Let p € (0,pcp). Then there is at least one point (p1,...,p;) € [0,00) such that
fj(/Bap7p17"' 7p]) < 0.
Proof. Let N/|An| — p. Let (N{™, ..., N/™") be such that
Zay (B, N, N NY) = max Zay (B, N, Ny, Nj).
(Nl,...7Nj)€N‘g)

According to the Hardy-Ramanujan formula, the number of partitions of N is not larger than
exp(O(V/N)). Thus we find

Zn(B.N) < exp(O(VN)) Zn, (B N.N{™ ... N}™).

Passing to a suitable subsequence, we may assume that NliN)/\AN\ — pr, k = 1,...,7, for some
(p1,--.,p;) € [0,00)7. The previous inequality then yields

]

Proof of Lemma 2.10. Let p € (0,pcp). Let p' € (p,pep) and (pf,...,p}) € [0,00)7 such that
fi(B,p’) < o0, where p’ = (p', 0}, ..., p}). Hence, p’ € A;. Let p(0) and A(p(5)) be as in Lemma 2.6.
Let C C [0,00)’"! be the cone with apex p’ and base A(p(9)), i.e., the set of convex combinations of
points in A(p(d)) and p’. By convexity, C C A;. Looking at the p-sections of C we find that C;(p) is
not empty.

Convexity and openness of Cj(p) are inherited from A;.

Now we prove (2.41). Let H, = {p} x R7 C R/*! be the hyperplane of density p. By [HLO1,
Prop. 2.1.10, p. 37],
AjﬂHp:AjﬂHp.

The left-hand side is identified as {p} x C;(p) while the right-hand side is {p} x A with A the set from
the right-hand side in Eq. (2.41). O

2.4. Proof of Proposition 2.2 — LDP for the projection of p,. In this section, we prove the large
deviations principle for (pia,...,pja) under the Gibbs measure, as formulated in Proposition 2.2.
This is equivalent to showing the two bounds in (2.23) and (2.24) and the claimed properties of
Ig ;. Observe that the distribution of (P1,A;---,pja) under the Gibbs measure is concentrated on
the compact set M,. Hence, the family of these distributions is in particular exponentially tight.
Hence, it is enough to prove the upper bound in (2.24) for compact sets. From this, in particular the
compactness of the level sets of Iy , ; follows, but we will also give an independent proof.

For the remainder of this section, we fix p € (0, pcp).
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2.4.1. Properties of I3, j. Recall the function Ig , ;: [0,00) — RU {oco} from (2.1) and the p-section
Cj(p) of Aj from (2.40). Recall from Lemma 2.10 that Cj(p) is non-empty, open and convex.

Lemma 2.12. (1) Ig,; is convex, and its level sets are compact.
(2) Ig,p,; is finite in Cj(p) and infinite in the complement of the closure of C;(p).
(3) For every open set O C [0,00)7,

{inf(’)ﬁCj(p) Iﬁ%j if ON Cj(p) 75 g,
o .

if 0N C5(p) =

Remark 2.13. Eq. (2.42) will be needed in the proof of the lower bound for the large deviations
principle. The convezity enters in a crucial way in Eq. (2.42). Lower semi-continuity alone would not
suffice! — (3) proves that the open set Cj(p) is a Ig , j-continuity set, see [DZ98, p. 5].

Proof. (1) Convexity and lower semi-continuity are immediate consequences of the properties for
fj(B,-), since the restriction of a convex, lower semi-continuous function to a hyperplane is also convex
and lower semi-continuous. Thus the level sets of I , ; are closed. By Eq. (2.35),

J
{15%]' < oo} C {(pl,... ,pj) € [0, 00)? ‘ kak < p}.
k=1

It follows that the level sets are also bounded, hence compact.
(2) If (p1,...,pj) is in Cj(p), then (p,p1,...,p;) € A; by definition of Cj(p), and therefore
fi(B,p,p1s--.,pj) < oo. Hence, I, i(p1,...,p;) < 0.

If (p1,...,pj) is in the complement of the closure of Cj(p), then by Eq. (2.41), (p,p1,...,p;) is in
the complement of the closure of Aj, from which Ig , j(p1,...,p;) = oo follows.

(3) If O and Cj(p) are disjoint, Ig ,; = +00 on O by (2). If the sets are not disjoint, we know that

inflg,;= inf Ig,:< inf Ig,,, 2.43
6] BipsJ o, ) B 0nC;(p) Bipsj ( )

and it remains to prove the opposite inequality. Thus let p = (p1,...,p;) € ONAC;(p). Let p’ € Cj(p).
By Eq. (2.34),

Ls.pi(p) =lim g, ;(p+t(p" — p)).
Because O is open and by [HLO1, Lemma 2.1.6, p. 35], for sufficiently small ¢, p+t(p'—p) € ONCj(p).

Thus for some suitable ¢ty > 0,

Iz, =limIg,(p+tip — > inf Iz, (p+t(p — > inf Iz, ;.
5.0.5(P) t0 s.pi(p+tp p))_tE(O,to) 8.pi(p+tp p))_(’)ﬂCj(p) B.p.J

2.4.2. The two bounds in (2.23) and (2.24). For A C [0,00)7, let

‘ J
Pu(G A) = {1, . N;) € NG | (Na/IAnl,..., N /IAn]) € 4, Y kN < N
k=1

We note that the probability of finding (p1,Ay,---,pjAy) in the set A is a sum of constrained partition
functions:

1
PO (Prans o pian) € 4) = s ) Zany (B, N, N1,..., ;).
’ ZAN(/BaN) .
(N1,...NN)EPN (5,A)
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Upper bound in (2.24) for compact sets. Let K C [0,00)7 be a compact set. Let (N, ... ,N;N)) €
Pn(j, K) maximize the constrained partition function over Py (j, K), i.e.,
Z N, NN NI = max Z ,N,Ny,...,N;).
AN(IB 1 j ) (N1, N5V EPN () AN(IB 1 ])
Then P K|
7DN ] N N
P ( i GK> < NG 2L g (8, N, N NG,
B,AN (plyAN pijN) ZAN(ﬁa ) AN(/B 1 j )

Now, the cardinality of Py (j, K) is smaller than the number of partitions of N, and therefore not
larger than exp(O(v/N)), which is ™). The sequence (N /|Ax], ... ,N;N)/\ANDNGN takes values
in the compact set K and therefore, going to a subsequence, we can assume that it converges to some
(p1,--.,pj) € K. Applying Proposition 2.1 we find

lim sup

IOgZAN(/BaNaNl(N)a--- aN](N)) < _ﬁfj(ﬁap,pl, ,p]) < _ﬁlnff](ﬁ’pa )
N—oo ‘AN’ K

This yields the upper bound in (2.24) for K = C.

Lower bound in (2.23) for open sets. Let O C [0,00) be an open set. Let (p1,...,p;) € O. We can
choose (N, ... ,N;N)) € Pn(4,0) so that N\ /|AN| — pg, k= 1,..., 7, and have

1
]P)(B An <(P1,AN, .. 7pj,AN) S O) = WZAN(IB,N, Nl(N), - 7N](»N)).

If (p,p1,...,pj) is in A; or in the complement of the closure of A;, we conclude from Prop. 2.1 that
lim inf —=— \AN\ log Py <(,01,AN, csPjAN) € O) > —Ippj(p1s-- -, pj)-
Thus, taking on the rlght—hand side the supremum over all such (p1,...,p;j), we obtain

lim inf —— log P ( 0)>_ £ 7 infls, .
im inf A N’ 0g PN ((P1Axs -5 pjay) €O) > Or%g (o 1Brd = 710 50

The last equality uses Lemma 2.12 for the case O N Cj(p) # &, and (2.23) is proved in this case. If
O and Cj(p) are disjoint, then infp Ig ,; = oo, and (2.23) is trivially true. This ends the proof of
Proposition 2.2.

2.5. The finish — proof of the LDP for (pa,)~nen. The proof of Theorem 1.1 follows essentially
from Proposition 2.2 and the Dawson-Gértner theorem, the LDP for projective limits, see [DZ98,
Theorem 4.6.1]. More precisely, let

Io,p((iner) = B(F (8.0, (or)xen) = £(B.p)
with
f(/Bap7 (Pk)keN) = Supf](ﬁaﬂ? Pl,--- 7pj)
JjeN

Consider first I3, as a function from [0, 00)N to RU{oo} and endow [0, 00)" with the product topology,
By the Dawson-Gértner theorem, I , is a good rate function and (p, . ) ven satisfies a large deviations
principle with rate function Iz ,.

Now for all N, IP’(ﬁN/)\N(pAN € M,:.) = 1. Moreover, M, is closed as a subset of [0,00)N in

the product topology. Thus by [DZ98, Lemma 4.1.5] we conclude that (p,, )ven satisfies a large
deviations principle also as an M, .-valued random variable in this topology.

Next, one easily sees that on M, . the product topology and the ¢ topology coincide. It follows
that (p,, ) satisfies the LDP also in this topology with the good rate function Iz ,.

I , is convex because it is the supremum of a family of convex functions.
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Finally, if Ig ,((pr)ken) is finite, then, for all j € N, we have f;(8,p, p1,...,pj) < oo and hence by
Proposition 2.1, 37 _ kpp < p. Letting j — oo we obtain > 7, kpy, < p. This proves that {Iz, < co}
is contained in M,,.

3. APPROXIMATION WITH AN IDEAL MIXTURE OF CLUSTERS

In this section, we compare the rate function f(3,p,-) defined in (1.9) with an ideal rate function.
This rate function describes a uniform mixture of clusters that do not interact with each other. This
function has a particularly simple shape, since the combinatorial complexity does not take care of the
excluded-volume effect, i.e., different clusters do not repel each other.

One of the crucial points is a lower estimate for the combinatorial complexity of putting a given
number of clusters into a large box in a well separated way. For this, we need to control the free energy
of clusters that fit into some box of a certain volume. It is relatively easy to achieve this if the radius
of that box is of order of the cardinality of the cluster, i.e., under the sole condition Assumption
(V). This will turn out in Section 5.1 to be sufficient for the regime in (1.3), i.e., for the proof of
Theorem 1.2. However, in order to handle also the much more flexible bounds in Theorem 1.8, we will
have to use boxes with volume of order of the cluster cardinality and to make use of Assumption 1.7.

We consider the cluster partition function, which is defined, for § > 0 and k£ € N, by

1
ZA(B) = —/ e*BU‘“(O’“"“’x’“)l{{O,acg, ..., xp} connected} dzs - - - day.
(Rd)k—1

k!

Recall the cluster partition function Zda(ﬁ) with restriction to [0,a]? and additional factor a=% in-

troduced in (2.30) above. The reader easily checks that
lim Z;(8) = Z{'(B),  keN,B € (0,00).

We also define associated cluster free energies per particle:

FNB) = —@logz AB), ) = —@1 og Zg(B). (3.44)

Let
fe(B) = tmint f1(8)  and - f(B,p) i= limsup fiP(9), (3.45)

where Ly, is such that the volume of [0, L] is equal to k/p. We Wlll see in Section 4, see Lemma 4.3
and (4.54), that these quantities are finite. One can actually show that they exist as limits, but we
will not need that.

Now we can state our bounds. The first one expresses the (simple) bound that comes from dropping
the excluded-volume effect. Recall the definition (1.11) of the ideal free energy fideal,

Lemma 3.1 (Lower bound). For all 3,p >0 and p € M,,
F(B:p.p) = f9 (B, p, p). (3.46)

Proof. Recall the definition (2.19) of the constrained partition functions Zx(8, N, Ny,...,Ny). We
show first that

AZC]
ZA(/BaNaNla"'a <H ‘ ‘ ) (347)

for all N,Ny,...,Ny € Ny with Zévzlka = N. Fix such a vector (N,Ni,...,Ny). Let ¢ =
(r1,...,zN) € AN with Ny clusters of size 1, Ny clusters of size 2, etc. Consider the graph with
vertices {1,..., N} and edges those {4, j},i # j, where |z; — ;| < R. The graph splits into connected
components; this induces a partition Z(x) of the index set {1,..., N}. The set partition has Ny sets of
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size 1, N sets of size 2, etc. Let J = J((INk)x) be the collection of such set partitions of {1,...,N}.
Note that the integral of e PUN over {z: Z(x) = T} does not depend on T € J. The cardinality of J
is

N!

7= J (Nk!k!N’“).

Therefore, for any Z» € J, we may write

1
Z(B, N, Ny, Ny) = == 3 / e PN I T(a) = T) da
" Teg AN
1

T, (NG R

The indicator function in the last integral can be upper bounded by dropping the requirement that
clusters have mutual distance > R. This leads to a product of indicator functions, one for each cluster,
encoding that the cluster is connected and stays inside A. Noting that

/ e PUN@ T (z) =10} da.
AN

1
N e_ﬁU(xl"“’”C’“)]l{{xl, ..., xp} connected } da - - - day < [A Z(B)
(integrate first over xg, ...,z at fixed 1, and then over x;), we deduce Eq. (3.47).

Next, we note that n! > (n/e)” for all n € N. Therefore, (3.47) gives that
ZA(57N7 N17 s 7NN) < eXp(_/B‘A‘fideal(57 %7 (%)k‘EN))7 (348)

where we have set N = 0 for k > N + 1, and f4¢al is defined in (1.11).

Now we turn to a lower bound for the rate function. Let O C M, be an open set. For N € N, let

p™ be a cluster size distribution in M, of the form p}"’ = Nj./|Ay| with integer Ny, and minimising

fideal(3 N/|A|, p) among distributions of this type. Summing Eq. (3.48) over partitions related to O,
we obtain
1 .
) o (N) oo rideal N
- lgffﬁ,p < 1}\151;101(? TAn] logPy s (pay € 0) < —Blﬂlgoff (B, TAN]? p™) + Bf(B,p)-

We have used that the number of integer partitions of N, by the Hardy-Ramanujan formula, is of order

exp(O(V'N)) and therefore does not contribute at the exponential scale considered here. Since M, is
: (N) . (N)

compact, we may assume, up to choosing subsequences, that p,”" — py for all £, i.e., p'™) converges

to some p € M,. Since the functional (p, p) — fi9¢8(3, p, p) is lower semi-continuous, it follows that,

along the chosen subsequence,

ideal — Bim ideal N MY > ideal .
f (ﬁap’p) l}?l};loff (5, ‘AN|’p ) _l%ff (IB’p? )

We deduce
inf f(/87 P ) > inf fideal(/Ba Py ')7
o o
for every open set O C M. To conclude, for p € M), noting that M, is metrizable, we can choose open

environments O \, {p} and complete the proof by exploiting the lower semi-continuity of f9(3, p, ).
]

Our second bound controls the error when dropping the excluded-volume effect. This was much
easier in [CKMS10] and was hidden in the proof of Proposition 2.2 there.
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Proposition 3.2 (Upper bound). For each k € N, let ar > 0 be such that (a, + R)? < k/p. Then,
for any p = (pr)ken;
F(B.p.p) < kprfg ™ (8) + <P_kak)f§<1>(57 ﬁZpklogp
keN keN keN (3.49)
+ 52 o~ log(1 = o+ R)Y) + log(1 + £)7).

keN

Proof. We first remark that it is enough to show (3.49) for p replaced by £e™* for any k € N (where
e = (i;)jen) and for p replaced by 0, the sequence consisting of zeros. Indeed, recall from
Theorem 1.1 that f(, p, -) is convex, note that an arbitrary p can be written as the convex combination

kpr kpr
(k)ken = ) Pk pe) 4 (1 = i) 0,

ken P ken P

and note that the right-hand side of (3. 49) is affine in p. Hence, we only have to show that
£(B.p, e®) < pfi (ﬁ)+m log p+ k( log (1-f(ax+ R)?) +log (1+2)%)), k€N, (3.50)

and that

£(8,p,0) < pfs(8,p). (3.51)
We now prove (3.51). Let O C M, be an open set containing 0, and O its closure. By the LDP,

lim sup
N—oo ‘A ’

For N € N, consider the cluster size distribution obtained by putting all particles into one large cluster:
P = =p =0, p§ = 1/|An]|. Note that p™ = (p{)gen lies in M, for any N € N. We have
p™ — 0as N — oo and thus p™ € O C O for sufficiently large N. As a consequence, we can lower
bound

logIP’B AN(pAN €0) < —i%fI@p.

- ANIZy"™™ ()
P(N) 0) > IP)(N) — () — | N
@AN(PAN €0) > @AN(PAN p) Zan (B, N)

Recalling that [Ax| = N/p, it follows that

. . 1 ANZy™B) !
—infIs, > limsu lo > —Bpfs(B,p) + ,p).

Since Ig ,(-) = Bf(B,p,-) — Bf(B,p), this implies inf5 f(5,p,-) < pf (B, p). This holds for all open
sets O containing 0. Letting O N\, {0} and using the lower semi-continuity of f(3,p,-), we deduce

(3.51).
Now let us turn to (3.50). We proceed in a way analogous to Lemma 2.6. Fix k € N. Let N be
a multiple of k. Consider the cluster size distribution obtained by putting all particles into clusters
of size k, i.e., put N(N) (N/k)éjy for j € N. We divide the box Ay into £y boxes of side length
aj with mutual dlstance at least R. Hence, {y ~ 7(% + R)~?. The assumption (a, + R)? < k/p
guarantees that £ > N/k for sufficiently large N. Therefore, we can lower bound
l N/k
Zan (BN NN = () (alzien @)
N/k
Therefore, using that |Ay| = N/p and Stirling’s formula,

l}\rfrl)lglof’ N’logZAN(ﬁ N,N™M, .. NJ7)

p i (3.52)

P cl,a p p ay pay
> Pog 7z () — 21 2 <7——>
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Multiplying the right-hand side with —3~!, the right-hand side of (3.50) arises. In the same way as
in the proof of (3.51), one derives, with the help of Lemma 2.8, that f(5, p, 7e®) is not larger than
—B~1 times the left-hand side of (3.52). This ends the proof of (3.50). O

4. BOUNDS FOR THE CLUSTER FREE ENERGY

In this section we give some more bounds that will later be used in the proofs of Theorems 1.2 and
1.8. We further estimate some entropy terms, and we give bounds that control the replacement of
temperature-depending terms by the corresponding ground-state terms. Throughout this section we
assume that the pair potential v satisfies Assumption (V).

We will later replace the term >, px(log pr — 1) in f19°(B, p, (p)x) by Y. pk log pr. To this aim
the following will be useful.

Lemma 4.1 (Entropy bound). For any probability distribution (pg)reny on N,

0<—> prlogpy <1+1log ) kpy.
keN keN

Proof. We may assume that the expectation ), kpy is finite. It is elementary to see that the
maximizer of the entropy among the set of probability distributions with a given finite expectation
is a geometric distribution. For pp = (1 — u)ukil, k € N, for some u € (0,1), the expectation is
> ken kpr = 1/(1 — u) and the entropy is

—Zpklogpk— log(1 —u) — (1 —u) Zuk L 1) log u
keN kEN
ulogu U log U
| ) —
og(l —u) T = log Z kpi + —T
keN
We conclude by observing that zlogaxz > x — 1 for all x > 0 and recalling that u < 1. O

Lemma 4.2. For any p € (0,00) and any p = (pg)ren € M),

3 prlog 2 > 2y,
keN P

Proof. Put m := ), . pr and py := pi/m. Then

Zpklog Pl — 5" mpplog ™2 = mlog " +m’> " pylog p
keN keN P keN
> mlogm — m—mlongpk > 2mlogm —m,
P keN p
where we applied Lemma 4.1 and that ), - kpx < p/m. Now use the inequality zlogz > 2 — 1 and
drop the term m. O

In our bounds in Lemma 3.1 and Proposition 3.2, we will later replace the cluster free energies with
ground state energies; in this section we give bounds that will allow us to control the replacement
error. We also prove that f<(3) and f< (3, p) are finite.

Lemma 4.3 (Lower bound for f&(3) and f<(B)). There is a constant C > 0 such that for all

B € (0,00),
<l(3) > % _ %, k€N, B e (0,00).

In particular, fS(B8) > es — % for any B € (0,00).
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Proof. We follow [CKMS10, Sec. 2.4]. First, note that
1
zZA(B) < efﬁEkE ‘{(5[32, v zp) € (RO 10,20, ..., 21} R—Connected}‘

with || the Lebesgue volume. Now, with each @’ = (x9, ..., x)) such that « := (0, ') is R-connected,
we can associate a tree T'(’) with vertex set {1,...,k} and edge set E(T(x")) C {{i,j}: i # j}, and
such that

{i.j} e E(T(x) = |wi—x| <R
Note that for a given x’, there are in general several trees satisfying this condition; we pick arbitrarily
one of them and call it T'(x’). Now we have

‘{:1:’ e (RO (0,2 R—Connected}‘

= Z ‘{m e (RY*=1|(0,2") R-connected, T(x T}‘
T tree

< Z ‘{az' € (RN 11 (0,2") R-connected, {i,j} € E(T) = |z; — x;] < R}‘
T tree

For each given tree T', the Lebesgue volume of the set in the last line above is upper bounded by
|B(0, R)|*~'. By Cayley’s theorem, see [AZ9S, pp.141-146], the number of labeled trees with k

vertices is k*2. Thus s

k
70 < P S B, B
and the proof is easily concluded. O

Now we show that the volume constraint in the cluster partition function is immaterial for large £
if the radius of the confining box is of order of the particle number with a sufficiently large prefactor.

Lemma 4.4 (Low-temperature behavior of fgla(ﬂ)). For any k € N and any choice of ar(B) in
[kR, 00),

. clak(B) . @
51520 fr B) ="

Proof. The lower bound, ‘>’, is trivial since Zzl’a(ﬁ) < Z(B) for any a. For ay(8) > kR, the box
[0, ax(B)]¢ is certainly large enough to contain a minimiser of @ — Uy(x). Therefore, lower bounding
the integral by an integral in a neighborhood of the minimiser, we find

E
lim inf = 1 R .
iminf 7 log ko

which is the upper bound ‘<’. O

Under additional assumptions, most importantly Assumption 1.7, it will be enough to pick aj of
order k'/¢ instead of k, with some error of order %log B:

Lemma 4.5 (Uniform low-temperature bounds for gl’a(ﬂ)). Suppose that the pair potential also
satisfies Assumptions 1.6 and 1.7. There is an o > 0 and a § > 0 such that for all 3 € [B,0), and
every sequence of ai’s satisfying aj, > ok/?,
E C
e (g) < 7’“ + 5 log logB,  keN. (4.53)

In particular, for any p € (0,1/a?) and B € [B, ),

F(B.p) < oo+ %log 8. (4.54)
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Proof. The strategy of the proof is as follows. According to Assumption 1.7, we may pick a minimiser
for U}, that fits into some ball whose volume is of order of the particle number. Then we restrict the
integral in the definition of the cluster partition function to some neighbourhood of this minimiser
and control the error with the help of the Holder continuity from Assumption 1.6. Let us turn to the
details.

Let ¢ > 0 be as in Assumption 1.7, § > 0 as in Lemma 2.5. Then o := 2(c 4 §) satisfies ak/? >
§ + ck'/? for all k € N. Fix t € (1, R/b). Let npay € N be the maximal number of particles that can
be placed in B(0, R), keeping mutual distance > 7y, with 7y, as in Assumption 1.6.

For k € N, let a; > ak'/? and let @ = (2{”,...,2\”) be a minimiser of the energy Uy that fits
into the cube with side length ay — . Thus =@ is b—connected7 and |z; — x| > rmin for every i # j.
The scaled state tz£(® is tb-connected and has minimum interparticle distance > try;,. By the Holder
continuity of the potential v,

Ut®) - U®) §j§j(tm@ r?]) — ol 2]
i—1 j2i
< knmaxsup{ [v(r’) = v(r)|: 7 = rmin, 7> rin, |1 — 1] < (8- 1)b}
< Chnmax(t — 1)°°
with C and s such that |v(r") —v(r)| < Clr' — r|® for any r,7’ > ryim. Let € € (0,1) such that
£ <6/2, Tmin < trmin — 26, and th+2¢ < R.

We will obtain a lower bound for Z;l’a’“ (B) by considering configurations (z1,...,xy) with exactly one
particle per e-ball around tx;.o) for j =2,... k. To this end, put

M= | <B(tx )y €) X - x B(tal) e))
oSG

where &), denotes the set of permutations of 2,...,k, and let M be the set of configurations in
the cube of side length aj, — § obtained by rigid shifts from configurations in {2{”} x M’. For small
enough ¢, the balls B (tx(o()Q) £),...,B (tx(o() k)’ ,€) do not overlap, and M’ has therefore Lebesgue volume

(k —1)!|B(0,¢)[F~!. Moreover,
d
a
M| > (M| (af, — 6 — k') > 7’“!/\4'!-
Now « € M is R-connected and has minimum interparticle distance > ryi,. Thus
|U(x) — U(te®)| < Cknpaxe®, x e M.
Restricting the integral in the definition (2.30) of ZZ"® (8) to M, we obtain

al Z(8) > ]B(O ) exp(—=B(Ex + Chnmaxle® + (t — 1)°0°]).

— 2k
This implies, for |B(0,¢)| <1,
ca E Cnmax(e® + (t — 1)%b° 1 log 2
piten(e) < e 4 S ELLEDI 2o (0,2 + 222

Now we pick ¢ = 1/ for definiteness and obtain that (4.53) is satisfied for sufficiently large 5. O

5. PROOF OF I'-CONVERGENCE AND UNIFORM BOUNDS

In this section, we prove Theorems 1.2 and 1.8. Recall that Theorem 1.2 is proved under the sole
Assumption (V) and that we additionally suppose that Assumptions 1.6 and 1.7 hold for Theorem 1.8.
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5.1. Proof of Theorem 1.2. Fix v € (0,00) and let (0,00) > s+ (B(s), p(s)) be a curve in (0, 00)?
such that, as s — oo,

1
B(s) = oo, p(s) — 0, ———logp(s) = v.
(5 (5 S o)
We need to show that, for any g = (qx)ren € Q,

Lower bound: For all curves ¢ — q,

1
lim inf — f(B(s), p(s), p*) > g.(q). 5.55
minf 75 F(3(5),(5). ) 2 0u(a) (5.55)
Upper bound / recovery sequence: there is a curve ¢'¥ — q such that
. 1 s
limsup —— f(B(s), p(s), p) < gu(q)- (5.56)
s—oo P(8)

Proof of the lower bound. We write ¢ = (q S))k € Q. Define p©® = (pk Jken by qk = k:p 2 /p. Let
C > 0and B > 0 such that kf(8) > Ex—CkB~! for any k € NU{oc} and 8 € [, 00), see Lemma 4.3.
Then Lemma 3.1 gives

1 s), p(s), p*) 'Ok — ﬁ e 1 pk L - e
S (3s).0().p %p(s)ﬂc (-2 k) 5 kEZNp(s) Uoe e’ 1) = 55
(s) (s)

:%5@@“5()1"” 9)+ <1‘Z’€pk>

1 Py . Py n\_ C
+ 5 2 507 (8 3~ 1) ~ 5y

keN

The term in the second line converges to g, (q) because of the continuity of the map q — >, - qx(Ex —
v)/k + (1 = > 4cn Qr)eoo; here enters the property Ep/k — es. The terms in the last line are, by
Lemma 4.2, of order 1/3(s) and therefore converge to 0. O

Proof of upper bound / existence of a recovery sequence. We choose p-dependent box sizes ax(p) such
that (ar(p)+R)? < k/(2p), ar > R, and ag > 6 + k" (rpe +6), with § as in Lemma 2.5. Such a choice
is possible for small enough p, and compatible with the additional requirement that ax(p) — oo as
p — 0, for every k € N. Lemma 2.5 tells us that

f]ghak(P(S)) < C(8) — % log |B(0,0/2)] + %,

which can be upper bounded by some constant C, uniformly in & € N and sufficiently large s.

Now we apply Prop. 3.2. This gives, for sufficiently large s and any sequence p = (pk)x,

o F(B(s). p(s).p) < 37 kL D 3(5)) 4 (13T e GONC)

p(s) = p(s) =7 p(
1 Pk 1 Pk
R NP g4 1) Tog 2. 5.57
+ B 2 ol 5P T 55y 2 sy D18 57
Consider first the case > p-, ¢x = 1. Let ¢'¥ := q. We have, for any K € N,
1 s Cl ar(p(s)) log p(S) S log 2041
5B, p(5),p) < Zq (DB - F5) +C X i

k=K+1
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Since ag(p(s)) — oo as s — oo for any k € {1,..., K}, using Lemma 4.4, we get
o0
imsup —— F(5(6). p(s), o <zqk iy
§—00 p( ) k=K1

Letting K — oo we find that limsup,_, p(s)_lf(ﬁ(s),p(s),p(s)) < 9,(q).
Next, consider the case ¢ = 0 for all k € N. For n € N, let s, > 0 large enough so that for s > s,,

| fﬁl’a"(p ) _ g, /n| < 1/n. The sequence (s, )nen can be chosen increasing and diverging. We set

k(s) :=n for s € [sp, Sp+1) and n € N. It follows that k(s) — oo as s — oo, and

f;t:k(s p(S))(ﬁ(S)) _

< —
< oy s € [s1,00),
from which we deduce fCl ak(s)(p(s))(ﬂ(s)) — €00 a8 5 — 00. Set qi(s) := 0 p(s)- Then we find

fim sup ﬁ (B(s), p(5), p) < €00 = 9(@).

To conclude, we observe that every ¢ € Q can be written as a convex combination of a vector q’
with >~ cn ¢, = 1 and the zero vector, and a recovery sequence is constructed by taking the convex
combination of ¢/ and the recovery sequence for the zero vector. ]

5.2. Proof of Theorem 1.8. Proof of (1): We prove (1.15) in terms of py’s instead of gx’s. Then it
reads

F (8. . (pr)xen) — [Z or (Bt 22) 4 (0= X ko e ]| < %plogﬁ, (Pi)ent € My. (5.58)
keN

s

Lemmas 3.1, 4.2, and 4.3 yield that there is C' € (0,00) such that, for all 8,p € (0,00) and p =
(Pr)ken € M),

f(B.p,p) = 9B, p, p)

>S5 C) (om Sm) (- )+ A e LS,

keN keN

>Zpk(Ek+—> + (o= D kor)ese — C“’)B

keN keN

(5.59)
This is ‘>’ in (5.58). For proving ‘<’, we pick, for p € (0,00) and k € N, box diameters a(p) such
that ag(p) > ak'/?, with a as in Lemma 4.5, and (ax(p) + R)? < k/2p, for all k € N. This is possible
provided p < k/2(ak® + R)? for any k € N, and this is, by monotonicity in k, guaranteed for p < 7,
where we put p = m. We may also assume, without loss of generality, that a > R, which implies
that ay(p) > R for all k € N. We obtain, for (3, p) € [3,00) x (0,p), and C > 0 as in Lemma 4.5, for
any p € M,, with the help of Proposition 3.2,

f(ﬁ,p,p)ﬁzkpk(%—%logﬁ)Jr( kak)(eoo—gl 5)+ELS

keN keN keN

k

keN

< ZPk(Ek+—) ( kak>eoo logﬁ—i-(d—i-l)ﬂlogQ,

which is the corresponding upper bound in (5.58).
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Proof of (2): Let p = (pi)r be a minimiser of f(3,p,-) and q := (kpr/p)ren. Write v = —3"11og p.
Then

1 1 C C

Similarly, let ¢ be a minimiser of g,(-) and p := (pqx/k)ren. Then

) = g,(q) > %f(ﬁ,p, p) - %logﬁ > %f(ﬁ,p) - %log 5.

Proof of (3): Let p = (pi)r be a minimiser of f(3,p,-) and q := (kpr/p)ren. Write v = —3~!log p.
Then (1) and (2) yield

1 C 1 C C
9v(q) — —f(B;p, —log B —(=f(B,p) — ZlogB) <27 logp.
(@) = 1) < 2 F(B.p.0) + 5 (57(B.0) = 5108 8) <2
Hence,
C Ep—v
25 loa 5 > gu(a) — () = 3 (Z55 — ) )k + (eoe — 1) (1= D a). (5.61)
keN keN
For v < v*, we use that pu(r) = ex and estimate
E,—v Ep—keeq —v _ V' —v
PR = K =T
Substituting this in (5.61), this yields the first claim, (1.17).
For v > v*, we restrict the first sum on the right of (5.61) to k € N\ M (v), where we lower estimate
the brackets agalnst A(v), and we estimate ex, — p(v) > A(v). This gives
C
25logh> 3 AW)a+ A (1= ) =a0) Y e
kEN\M (v) keN kEM(u

This yields the second claim, (1.18).

6. APPENDIX: PROOF OF LEMMA 1.3

Here we prove Lemma 1.3. With the exception of the positivity of v*, this has been proved in
[CKMS10, Theorem 1.5]; that proof works under the slightly different assumption on v that we have
here. To obtain the positivity of v*, this proof needs a slight modification, which we briefly indicate
now. Fix M, N € N. Let 2™ = (z1,...,2x) € (RY)Y be a minimiser of Uy and y™ = (y1,...,ym)
a minimiser of Ups. Recall that b is the potential range and let § > 0 be such that v < 0 on (b—6,b).
Let e € (0,0/2). Let a € R? be such that the shift g™ := (§1,...,9m) := (y1+a, ...,y +a) satisfies

gy and ™ have distance |z; — 3;| > b — 6 + ¢ (and hence v(|z; — y;]) < 0),
e there is at least one pair of particles (x;,y;) with distance |z; —y;| < b —e.

e all points from y

Let £ = (™ ™) ¢ (RHONHM | Let ¢ := — SUD,¢[p—b+e,h—e] V(1) > 0. Then we have
Eniy SU@@N) <U@@™) +U@™) —c=Ey + Ey —c.

In particular, the sequences (En)yen and (En — ¢) yen are subadditive, whence

E Ey —
eoozlim—N:Iim N C:inf

EN —C
Nooco N Noco N NeN ’

Because of the stability of the pair potential, we have es, > —oo. The inequality es < (Eny — ¢)/N
for any N leads to Enx — Nes > ¢ for any N, and this is the positivity of v*.
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