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Introduction

Let Φ a point process modelling the location of the nodes of a
network. For any t ∈ Z+ let ΦT (t) ⊂ Φ be the set of nodes that
are transmitting at time t and ΦR(t) = Φ \ ΦT (t) the ones that
are receiving. We define the SINR from a node x ∈ ΦT (t) to a
node y ∈ ΦR(t) as

SINRxy (t) :=
Px(t)ht(x , y)`(x , y)

γI (t) + N
.

I Px(t) the transmitted power from x .
I ht(x , y) the space-time fading coefficients from x to y .
I `(x , y) the path-loss function.
I I (t) =

∑
z∈ΦT (t)\{x ,y} Pz(t)ht(z , y)`(z , y) the interference

coming from the other nodes.
I γ the interference suppression constant, N the noise.
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We say that the transmission from x ∈ ΦT (t) to y ∈ ΦR(t) has
been successful if SINRxy > β a positive constant.

The goal is to propose a model where

I The expected value of the delay time of successfully
transmitting one package from one node to another is finite.

I The average velocity in which the package travels around the
net is not zero.
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The model

We will assume that

I Φ is a homogeneous PPP with intensity λ in R2.

I ht(x , y), x , y ∈ Φ, t = 0, 1, ... are independent ∼ exp(µ).

I `(x , y) = `(|x − y |) = |x − y |−α ∧ 1, α > 2.

I Every node is a transmitter or a receiver following a Bernoulli
random variable 1x(t), with transmission probability
P(1x(t) = 1) = px(t).

I 0 < γ < 1.
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We will track a tagged package that traverse the network following
a conic forwarding strategy for that let C1, ...,Cm be cones centred
in the origin with angle 2Φ < π

2 s.t. ∪mi=1Ci = R2 and are disjoint,
also lets assume that C1 is symmetric with respect to the x axis.
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At time t the node x will transmit through the cone x + Cd(x , t)
that contains the final destination of the package to nt(x) the
nearest node in that cone.

We will assume that

I If the node x is on at time t then it transmits with power
Px(t) = c`(x , nt(x))−1 where c = M(1− ε)−1, 0 < ε < 1.

I M = Px(t)px(t).

Which implies that px(t) = (1− ε)`(x , nt(x)).
This is what is called power control strategy.
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Then we have that the SINR from node x to node y at time t is
given by

SINRxy (t) :=
Px(t)ht(x , y)`(x , y)1x(t)(1− 1y (t))

γI (t) + N
.

The next indicator function tell us if the transmission has been
successful

exy (t) :=

{
1 1 if SINRxy > β
0 otherwise.
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Finited expected exit time
Information velocity strictly positive

Definition
Let the minimum exit time taken by any packet to be successfully
transmitted from node x to its nearest neighbour n(x) in the
destination cone of the packet be:

T (x) = min{t > 0 : ex ,nt(x)(t) = 1}.

Theorem
Suppose βγ < 1 then the SINR graph with power control policy
satisfies that E (T (x)) <∞ for any x ∈ Φ.
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Finited expected exit time
Information velocity strictly positive

Proof: Without loss of generality, we will suppose that the package
is being transmitted by the origin o ∈ Φ, let Cd the destination
cone of this package and n(o) the nearest neighbour of o in Cd .

We have that

P(T (o) > k | Φ) = E{
k∏

t=1

P(A(t) ∪ B(t) | Gk)1F |Φ}.

I F := ∩kj=2{po(j) = po(1)}.
I Gk is the σ-algebra generated by Φ and the choice of the

cones made at all nodes of Φ up to time k.

I A(t) := {o ∈ ΦR(t)}.
I B(t) := {o ∈ ΦT (t), n(o) ∈ ΦR(t),SINRo,n(o)(t) ≤ β}.
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Finited expected exit time
Information velocity strictly positive

On the event F since Po(t)`(o, n(o)) = c and
ht(o, n(o)) ∼ exp(µ).

P(A(t)|Gk) = 1− po(1),

P(B(t) | Gk) = po(1)qn(o)(t)(1− E{e−
µβ
c

(N+γI (t)) | Gk}).

In consequence since pn(o)(t) = `(n(o))(1− ε) ≤ 1− ε

P(A(t) ∪ B(t)|Gk) ≤ P(A(t)|Gk) + P(B(t)|Gk)

≤ 1− po(1)εe−
µβN
c E (e−

µβγ
c

I (t)|Gk). (1)
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Finited expected exit time
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Let a = µβγ
c . Also suppose z ∈ Φ \ {o, n(o)} transmits using cone

z + Ci at time t with transmission probability p
(i)
z (t) and power

P
(i)
z (t).

Then we have that

E{e−
µβγ
c

I (t)|Gk} =
∏

z∈Φ\{o,n(o)}

E{e−a1zP
(i)
z (t)ht(z,n(o))`(z,n(o))|Gk}.

Again from the fact that ht(z , n(o)) ∼ exp(µ)

E{e−a1zP
(i)
z (t)ht(z,n(o))`(z,n(o))|Gk}

= (1− p
(i)
z ) + p

(i)
z E{e−aP

(i)
z (t)ht(z,n(o))`(z,n(o))|Φ}

= (1− p
(i)
z ) + p

(i)
z

c

c + βγ`(z , n(o))P
(i)
z (t)

. (2)

Adrián Hinojosa Random Networks Seminar Power control policy on the SINR graph



The model
Main results

References

Finited expected exit time
Information velocity strictly positive

Let a = µβγ
c . Also suppose z ∈ Φ \ {o, n(o)} transmits using cone

z + Ci at time t with transmission probability p
(i)
z (t) and power

P
(i)
z (t).

Then we have that

E{e−
µβγ
c

I (t)|Gk} =
∏

z∈Φ\{o,n(o)}

E{e−a1zP
(i)
z (t)ht(z,n(o))`(z,n(o))|Gk}.

Again from the fact that ht(z , n(o)) ∼ exp(µ)

E{e−a1zP
(i)
z (t)ht(z,n(o))`(z,n(o))|Gk}

= (1− p
(i)
z ) + p

(i)
z E{e−aP

(i)
z (t)ht(z,n(o))`(z,n(o))|Φ}

= (1− p
(i)
z ) + p

(i)
z

c

c + βγ`(z , n(o))P
(i)
z (t)

. (2)

Adrián Hinojosa Random Networks Seminar Power control policy on the SINR graph



The model
Main results

References

Finited expected exit time
Information velocity strictly positive

Let a = µβγ
c . Also suppose z ∈ Φ \ {o, n(o)} transmits using cone

z + Ci at time t with transmission probability p
(i)
z (t) and power

P
(i)
z (t).

Then we have that

E{e−
µβγ
c

I (t)|Gk} =
∏

z∈Φ\{o,n(o)}

E{e−a1zP
(i)
z (t)ht(z,n(o))`(z,n(o))|Gk}.

Again from the fact that ht(z , n(o)) ∼ exp(µ)

E{e−a1zP
(i)
z (t)ht(z,n(o))`(z,n(o))|Gk}

= (1− p
(i)
z ) + p

(i)
z E{e−aP

(i)
z (t)ht(z,n(o))`(z,n(o))|Φ}

= (1− p
(i)
z ) + p

(i)
z

c

c + βγ`(z , n(o))P
(i)
z (t)

. (2)

Adrián Hinojosa Random Networks Seminar Power control policy on the SINR graph



The model
Main results

References

Finited expected exit time
Information velocity strictly positive

For z ∈ Φ \ {o, n(o)} let

I C ∗z = C ∗z (Φ) the cone which minimizes (2) and in
consequence maximizes (1).

I p∗z , P∗z , 1∗z the corresponding transmission probability, power
and Bernoulli random variable.

I

I ∗(t) =
∑

z∈Φ\{o,n(o)}

1∗zP
∗
z ht(z , n(o))`(z , n(o)).

Since on the event F , I ∗(t) , I ∗(1) then

P(A(t) ∪ B(t)|Gk) ≤ 1− po(1)εe−
µβN
c E{e−aI∗(1)|Φ}.
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Then for J := po(1)εe−
µβN
c E{e−aI∗(1)|Φ} we get that

P(T (o) > k |Φ) ≤ (1− J)k

and since 0 < 1− J < 1

E (T (o)) =
∑
k≥0

P(T (o) > k)

= E (
∑
k≥0

P(T (o) > k |Φ)) ≤ E (J−1).

By Cauchy-Schwartz on J−1

E (T (o)) ≤ e
µβN
c

ε
(E{po(1)−2}E{ 1

(E{e−aI∗(1)|Φ})2
})

1
2 .
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From the definition of the transmission probability po(t),

E{po(1)−2} = E{( c

M
)2(|n(o)|2α ∨ 1)} <∞,

since the nearest neighbour distance in a cone of an homogeneous
PPP with intensity λ has density

f (r) =
2λπr

m
e−

λπ
m

r2
, r > 0.
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For finishing the proof we have to show that

E{ 1

(E{e−aI∗(1)|Φ})2
} <∞,

E{e−aI∗(1)|Φ} =
∏

z∈Φ\{o,n(o)}

E{e−a1∗zP
∗
z h1(z,n(o))`(z,n(o))|Φ}.

We have that

E{e−a1∗zP
∗
z h1(z,n(o))`(z,n(o))|Φ} = 1− βγp∗zP

∗
z `(z , n(o))

c + βγP∗z `(z , n(o))

≥ 1− βγM`(z , n(o))

c
= 1− βγ(1− ε)`(z , n(o)). (3)

Since p∗zP
∗
z = M and c = M(1− ε)−1.
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Let c1 = βγ(1− ε) by (3) we get

1

(E{e−aI∗(1)|Φ})2
≤

∏
z∈Φ\{o,n(o)}

1

(1− c1`(z , n(o)))2
. (4)

(*) Let Φ0 a PPP independent of the other nodes and intensity
λ1{(o+Cd )∩B(o,|n(o)|} i.e. (Φ \ {o, n(o)}) ∪ Φ0 is a PPP of intensity
λ with the origin at n(o).

Since for z ∈ R2, e−2log(1−c1`(|z|) ≥ 1 and by 4 we get

E{ 1

(E{e−aI∗(1)|Φ})2
} ≤ E{

∏
z∈Φ\{o,n(o)}∪Φ0

e−2 log(1−c1`(|z|))}.
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Finally by Campbell´s theorem since
∫
R2 `(|z |)dz <∞:

E{ 1

(E{e−aI∗(1)|Φ})2
} ≤ exp(λ

∫
R2

(e−2log(1−c1`(|z|)) − 1))dz)

≤ exp(
2λc1

(1− c1)2

∫
R2

`(|z |)dz) <∞
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Now we want to measure how fast the package moves in time from
the origin to its destination.

Definition
Let T0 be the time taken by this tagged package starting at
X0 = o ∈ Φ to successfully reach its nearest neighbour X1 = n(o)
in the destination cone C1. More generally let Ti−1 be the time
taken for the packet to successfully reach the nearest neighbour Xi

of Xi−1 in the destination cone Xi−1 + C1.

Definition
The information velocity of SINR network is defined as

v = lim inf
t→∞

d(t)

t

where d(t) is the distance of the tagged packet from the origin at
time t.
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Theorem
Under the conditions of Theorem 2. the information velocity v > 0
a.s.

Proof.(*) For all i ≥ 0, let

I Ri := |Xi+1 − Xi |.
I θi := arcsin(

Xi+1,2−Xi,2

Ri
) where Xi = (Xi ,1,Xi ,2).

The cones {(Xi + C1) ∩ B(Xi ,Ri ), i ≥ 0} are non-overlapping since
2φ < π

2 .
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Since Φ is homogeneous PPP with intensity λ, we have that
{(Ri , θi ), i ≥ 0} is an i.i.d. sequence of random vectors where

I Ri has density

f (r) =
2λπr

m
e−
−λπ
m

r2
,

I θi is uniformly distributed on (−φ, φ).

(*)Our goal is to construct an stationary sequence of stopping
times such that for all i ≥ 0, T

′
i ≥ Ti .
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(*)Now we will add some extra nodes for constructing {T ′i }.

Let

I {(R−i , θ−i , i ≥ 1)} an i.i.d sequence of random vectors with
distribution (R0, θ0).

Define Φ̃ = {X−i , i ≥ 1} starting from X−1 to satisfy

I R−i = |X−i − X−i+1|.
I θ−i = arcsin(

X−i+1,2−X−i,2

R−i
).
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(*)For i ≥ 0 let

I Φi be an PPP of intensity λ1{(Xi+C1)∩B(Xi ,Ri )} independent of
everything else,

I T
′
i be the delay experienced by the packet in going from Xi to

Xi+1 when the interference is coming from the nodes in
(Φ \ {Xi ,Xi+1}) ∪ Φ̃ ∪i−1

j=0 Φj .

(T
′
i , i ≥ 0) is a stationary sequence with T

′
i ≥ Ti . We want to

proof that E (T
′
0) <∞ and then use the Birkoff´s ergodic theorem.
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Let Ĩ (t) =
∑

z∈Φ̃
1zPz(t)ht(z , n(o))`(z , n(o)). Analogously to the

first theorem we have that

E (T
′
0) ≤ e

µβN
c

ε
(E{po(1)−2}E{ 1

(E{e−a(I∗(1)+Ĩ∗(1))|Φ ∪ Φ̃})2
})

1
2 .

Since we conditioned on Φ ∪ Φ̃, I ∗(1) and Ĩ ∗(1) are independent
we have that

E{e−a(I∗(1)+Ĩ∗(1))|Φ∪ Φ̃} = E{e−aI∗(1))|Φ}E{e−aĨ∗(1)|Φ̃∪ {n(o)}}
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By Cauchy-Schwartz inequality the result follows if we show

E{ 1

(E{e−aI∗(1))|Φ})4
}E{ 1

(E{e−aĨ∗(1)|Φ̃ ∪ {n(o)}})4
} <∞.

Again by Campbell’s theorem

E{ 1

(E{e−aI∗(1))|Φ})4
} ≤ exp(

λ

(1− c1)4

∫
R2

(1−(1−c1`(|z |))4)dz) <∞

.
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(*)Since for all i ∈ N,
∑i

j=0 R−j cos(θ−j) ≤ |X−i − n(o)| and ` is
decreasing

E{ 1

(E{e−aĨ∗(1)|Φ̃ ∪ {n(o)}})4
} ≤ E{

∞∏
i=1

e−4 log(1−c1`(X−i ,n(o)))}

≤ E{
∞∏
i=1

e−4 log(1−c1`(
∑i

j=0 R−j cos(θ−j ))}

= E{e
∑∞

n=1 g(Sn+1)}

where Sn =
∑n−1

j=0 R−j cos(θ−j) and g(x) = −4 log(1− c1`(x)).
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Let 0 < δ < E{R cos(θ)}, by the Chernoff bound

P(
Sn
n
< δ) ≤ e−ζ(δ)n,

with ζ(δ) = supv≤0{νδ − log(E (eνR cos(θ)))}.

Then by the Borel Cantelli lemma exists N(ω), and c2 > 0 s.t.

P(N ≥ m) = P(Sn < nδ for some n ≥ m)

≤
∞∑

n=m

e−ζ(δ)n ≤ c2e
−ζ(δ)m.
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Since g is non-increasing, we get

E{e
∑∞

n=1 g(Sn)} = E{e
∑N

n=1 g(Sn)+
∑∞

n=N+1 g(Sn)}

≤ E{e
∑N

n=1 g(0)+
∑∞

n=N+1 g(nδ)} ≤ e
∑∞

n=1 g(nδ)E{eg(0)N}.

I On the one hand by the comparison test
∑∞

n=1 g(nδ) <∞.

I On the other hand since R cos(θ) > 0 then ζ(δ) ↑ ∞ as δ ↓ 0,
and we can choose δ s.t. ζ(δ) > g(0) so it follows that
E{eg(0)N} <∞.
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By Birkoffs ergodic theorem exist a r.v. T
′

s.t.

lim
n→∞

1

n

n−1∑
k=0

T
′
k = T

′
.

Also since T
′
i ≥ 1 then T

′ ≥ 1.
Finally from the fact that 1T n−1≤t<T nd(t) ≥

∑n−1
k=1 Rk cos(θk), we

conclude that

lim inf
t→∞

d(t)

t
≥ lim

n→∞

∑n−1
k=1 Rk cos(θk)∑n−1

k=1 T
′
k

=
E (R cos(θ))

T ′
> 0,

as we wanted.
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