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Preface

A wireless communication network can be viewed as a collection of nodes, located in some domain,
which can in turn be transmitters or receivers (depending on the considered network, nodes will be mobile
users, base stations in a cellular network, access points of a WiFi mesh etc.). At a given time, some nodes
simultaneously transmit, each toward its own receiver. Each transmitter–receiver pair requires its own
wireless link. The signal received from the link transmitter is jammed by the signals received from the other
transmitters. Even in the simplest model where the signal power radiated from a point decays in an isotropic
way with Euclidean distance, the geometry of the node location plays a key role since it determines the
signal to interference and noise ratio (SINR) at each receiver and hence the possibility of establishing
simultaneously this collection of links at a given bit rate. The interference seen by a receiver is the sum of
the signal powers received from all transmitters, except its own transmitter.

Stochastic geometry provides a natural way of defining and computing macroscopic properties of such
networks, by averaging over all potential geometrical patterns for the nodes, in the same way as queuing
theory provides response times or congestion, averaged over all potential arrival patterns within a given
parametric class.

Modeling wireless communication networks in terms of stochastic geometry seems particularly relevant
for large scale networks. In the simplest case, it consists in treating such a network as a snapshot of a
stationary random model in the whole Euclidean plane or space and analyzing it in a probabilistic way.
In particular the locations of the network elements are seen as the realizations of some point processes.
When the underlying random model is ergodic, the probabilistic analysis also provides a way of estimating
spatial averages which often capture the key dependencies of the network performance characteristics
(connectivity, stability, capacity, etc.) in function of a relatively small number of parameters, which are
typically the densities of the underlying point processes and the parameters of the involved protocols. By
spatial average, we mean an empirical average made over a large collection of ’locations’ in the considered
domain; depending on the cases, these locations will simply be certain points of the domain, or nodes
located in the domain, or even nodes on a certain route defined on this domain. These various kinds of
spatial averages will be defined in precise terms in the monograph. This is a very natural approach e.g. for
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ad hoc networks, or more generally to describe user positions, when these are best described by random
processes. But it can also be applied to represent both irregular and regular network architectures as
observed in cellular wireless networks. In all these cases, such a space average is performed on a large
collection of nodes of the network executing some common protocol and considered at some common time
when one takes a snapshot of the network. Simple instances of such averages could be the fraction of nodes
which transmit, the fraction of space which is covered or connected, the fraction of nodes which trans-
mit their packet successfully, or the average geographic progress obtained by a node forwarding a packet
towards some destination. This is rather new to classical performance evaluation, compared to time averages.

Stochastic geometry, which we use as a tool for the evaluation of such spatial averages, is a rich branch
of applied probability particularly adapted to the study of random phenomena on the plane or in higher
dimension. It is intrinsically related to the theory of point processes. Initially its development was stimulated
by applications to biology, astronomy and material sciences. Nowadays, it is also used in image analysis and
in the context of communication networks. In this latter case, its role is similar to this played by the theory
of point processes on the real line in classical queuing theory.

The use of stochastic geometry for modeling communication networks is relatively new. The first
papers appeared in the engineering literature shortly before 2000. One can consider Gilbert’s paper
of 1961 (Gilbert 1961) both as the first paper on continuum and Boolean percolation and as the first
paper on the analysis of the connectivity of large wireless networks by means of stochastic geometry.
Similar observations can be made on (Gilbert 1962) concerning Poisson–Voronoi tessellations. The
number of papers using some form of stochastic geometry is increasing fast. One of the most important ob-
served trends is to better take into account specific mechanisms of wireless communications in these models.

Time averages have been classical objects of performance evaluation since the work of Erlang (1917).
Typical exmples are the random delay to transmit a packet from a given node, the number of time steps
required for a packet to be transported from source to destination on some multihop route, the frequency
with which a transmission is not granted access due to some capacity limitations, etc. A classical reference
on the matter is (Kleinrock 1975). These time averages will be studied here either on their own or in
conjunction with space averages. The combination of the two types of averages unveils interesting new
phenomena and leads to challenging mathematical questions. As we will see, the order in which the time
and the space averages are performed matters and each order has a different physical meaning.

This monograph surveys recent results of this approach and is structured in two volumes. Volume I
focuses on the theory of spatial averages and contains three parts. Part I in Volume I provides a compact
survey on classical stochastic geometry models. Part II in Volume I focuses on SINR stochastic geometry.
Part III in Volume I is an appendix which contains mathematical tools used throughout the monograph.
Volume II bears on more practical wireless network modeling and performance analysis. It is in this volume
that the interplay between wireless communications and stochastic geometry is the deepest and that the
time-space framework alluded to above is the most important. The aim is to show how stochastic geometry
can be used in a more or less systematic way to analyze the phenomena that arise in this context. Part IV
in Volume II is focused on medium access control (MAC). We study MAC protocols used in mobile ad
hoc networks (MANETs) and in cellular networks. Part V in Volume II discusses the use of stochastic
geometry for the quantitative analysis of routing algorithms in MANETs. Part VI in Volume II gives a
concise summary of wireless communication principles and of the network architectures considered in the
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monograph. This part is self contained and readers not familiar with wireless networking might either read
it before reading the monograph itself, or refer to it when needed.

Here are some comments on what the reader will obtain from studying the material contained in this
monograph and on the possible ways of reading it.

For readers with a background in applied probability, this monograph is expected to provide a direct
access to an emerging and fast growing branch of spatial stochastic modeling (see e.g. the proceedings of
conferences such as IEEE Infocom, ACM Sigmetrics, ACM Mobicom, etc. or the special issue (Haenggi,
Andrews, Baccelli, Dousse, and Franceschetti 2009)). By mastering the basic principles of wireless links
and of the organization of communications in a wireless network, as summarized in Volume II and already
alluded to in Volume I, these readers will be granted access to a rich field of new questions with high practical
interest. SINR stochastic geometry opens new and interesting mathematical questions. The two categories
of objects studied in Volume II, namely medium access and routing protocols, have a large number of
variants and of implications. Each of these could give birth to a new stochastic model to be understood
and analyzed. Even for classical models of stochastic geometry, the new questions stemming from wireless
networking often provide an original viewpoint. A typical example is that of route averages associated with a
Poisson point process as discussed in Part V in Volume II. Reader alreadly knowledgeable in basic stochastic
geometry might skip Part I in Volume I and follow the path:

Part II in Volume I⇒ Part IV in Volume II⇒ Part V in Volume II,

using Part VI in Volume II for understanding the physical meaning of the examples pertaining to wireless
networks.

For readers with a main interest in wireless network design, the monograph is expected to offer a new and
comprehensive methodology for the performance evaluation of large scale wireless networks. This method-
ology consists in the computation of both time and space averages within a unified setting which inherently
addresses the scalability issue in that it poses the problems in an infinite domain/population case from the
very beginning. We show that this methodology has the potential of providing both qualitative and quantita-
tive results.

• Some of the most important qualitative results pertaining to these infinite population models
are in terms of phase transitions. A typical example bears on the conditions under which the
network is spatially connected. Another type of phase transition bears on the conditions under
which the network delivers packets in a finite mean time for a given medium access and a given
routing protocol. As we shall see, these phase transitions allow one to understand how to tune the
protocol parameters to ensure that the network is in the desirable ”phase” (i.e. well connected and
with small mean delays). Other qualitative results are in terms of scaling laws: for instance, how
do the overhead or the end-to-end delay on a route scale with the distance between the source
and the destination, or with the density of nodes?
• Quantitative results are often in terms of closed form expressions for both time and space aver-

ages, and this for each variant of the involved protocols. The reader will hence be in a position
to discuss and compare various protocols and more generally various wireless network organiza-
tions. Here are typical questions addressed and answered in Volume II: is it better to improve on
Aloha by using a collision avoidance scheme of the CSMA type or by using a channel-aware ex-
tension of Aloha? Is Rayleigh fading beneficial or detrimental when using a given MAC scheme?
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How does geographic routing compare to shortest path routing in a mobile ad hoc network? Is
is better to separate the medium access and the routing decisions or to perform some cross layer
joint optimization?

The reader with a wireless communication could either read the monograph from the beginning to the end,
or start with Volume II i.e. follow the path

Part IV in Volume II⇒ Part V in Volume II⇒ Part II in Volume I

and use Volume I when needed to find the mathematical results which are needed to progress through
Volume I.

We conclude with some comments on what the reader will not find in this monograph:

• We will not discuss statistical questions and give no measurement based validitation of certain
stochastic assumptions used in the monograph: e.g. when are Poisson-based models justified?
When should one rather use point processes with some repulsion or attraction? When is the
stationarity/ergodicity assumption valid? Our only aim will be to show what can be done with
stochastic geometry when assumptions of this kind can be made.
• We will not go beyond SINR models either. It is well known that considering interference as noise

is not the only possible option in a wireless network. Other options (collaborative schemes, suc-
cessive cancellation techniques) can offer better rates, though at the expense of more algorithmic
overhead and the exhange of more information between nodes. We believe that the methodology
discussed in this monograph has the potential of analyzing such techniques but we decided not
to do this here.

Here are some final technical remarks. Some sections, marked with a * sign, can be skipped at the first
reading as their results are not used in what follows; The index, which is common to the two volumes, is
designed to be the main tool to navigate within and between the two volumes.
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Iyer, Mohamed Karray, Omid Mirsadeghi, Paul Muhlethaler Barbara Staehle and Patrick Thiran for their
comments on various parts of the manuscript.

vi



Preface to Volume II

The two first parts of volume II, namely Part IV and Part V, are structured in terms of the key ingredients of
wireless communications, namely medium access and routing. The general aim of this volume is to show
how stochastic geometry can be used in a more or less systematic way to analyze the key phenomena that
arise in this context. We will limit ourselves to the simplest (yet not simplistic) models and to the most
basic protocols. We expect that it will nevertheless be clear when reading this volume that much more can
be done for improving the realism of the models, for continuing the analysis, as well as for extending the
scope of the methodology.

Part IV is focused on medium access control (MAC). We study MAC protocols used both in mobile ad
hoc networks (MANETs) and in cellular networks. We analyze spatial Aloha schemes in terms of Poisson
shot noise processes in Chapter 16 and carrier sense multiple access (CSMA) schemes in terms of Matérn
point processes in Chapter 17. The analytical results are then used to perform various optimizations on
these schemes. For instance, we will learn about the tuning of the protocol parameters which maximizes
the number of successful transmissions or the throughput per unit of space. We will also determine the
protocol parameters for which end-to-end delays have a finite mean, etc. Chapter 18 is focused on the code
division multiple access (CDMA) schemes with power control used in cellular networks. The terminal
nodes associated with a given concentration node (base station, access point) are those located in its Voronoi
cell w.r.t. the point process of concentration nodes. For analyzing these systems, we will use both shot
noise processes and tessellations. When terminal nodes require a fixed bit rate, and power is controlled so
as to maximize the number of terminal nodes that can be served by such a cellular network, powers become
functionals of the underlying point processes. We study admission control and capacity within this context.

Part V discusses the use of stochastic geometry for the qualitative and quantitative analysis of routing
algorithms in a MANET where the nodes are some realization of some homogeneous Poisson point process
of the plane. In the point-to-point routing case, the main object of interest is the path from some source
to some destination node. In the point-to-multipoint case, this is the tree rooted in the source node and
spanning a set of destination nodes. The motivations are multihop diffusion in MANETs. We also analyze
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the multipoint-to-point case, which is used for instance for concentration in wireless sensor communication
networks where information has to be gathered at some central node. These random geometric objects are
made of a set of wireless links, which have to be either simultaneously of successively feasible. Chapter
19 is focused on optimal routing, like e.g. shortest path and minimal weight routing. The main tool is
subadditive ergodic theory. In Chapter 20, we analyze various types of suboptimal (greedy) geographic
routing schemes. We show how to use stochastic geometry to analyze local functionals of the random
paths/tree such as the distribution of the length of its edges or the mean degree of its nodes. Chapter 21
bears on time-space routing. This class of routing algorithms leverages the interaction between MAC and
routing and belong to the so called cross-layer framework. More precisely, these algorithms take advantage
of the time and space diversity of fading variables and MAC decisions to minimize the end-to-end delay
for the transmission of a packet from the source to the destination. Typical qualitative results bear on the
’convergence’ of these routing algorithms or on the fact that the velocity of a packet on a route is e.g.
positive or zero. Typical quantitative results are in terms of the comparison of the mean time it takes to
transport a packet from some source node to some destination node.

Part VI is an appendix which contains a concise summary of wireless communication principles and
of the network architectures considered in the monograph. Chapter 22 is focused on propagation issues
and on statistical channel models for fading such as Rayleigh or Rician fading. Chapter 23 bears on
detection with a special focus on the fundamental limitations of wireless channels. As for architecture,
we describe both MANETs and cellular networks in Chapter 24. MANETs are “flat” networks, with a
single type of nodes which are at the same time transmitters, receivers and relays. Examples of MAC
protocols used within this framework are described as well as multihop routing principles. Cellular
networks have two types of network elements: base stations and users. Within this context, we discuss
power control and its feasibility as well as admission control. We also consider other classes of hetero-
geneous networks like WiFi mesh networks, sensor networks or combinations of WiFi and cellular networks.

Let us conclude with a few general dichotomies valid throughout the volume.

Two basic communication models will be considered:

• A digital communication model, where the throughput on a link (mesured in bits per seconds) is
determined by the SINR at the receiver through a Shannon-like formula;
• A packet model, where the SINR at the receiver determines the probability of reception (also

called probability of capture) of the packet and where the throughput on a link is measured in
packets per time slot and is defined as the inverse of the mean delay for the reception of a packet
on this link.

In most models, time will be slotted and the time slot will be considered such that fading is constant over
a time slot (see Chapter 22 for more on the physical meaning of this assumption). More precisely, we will
study a fast fading case where the fading between a transmitter and a receiver changes from a time slot to
the next and a slow fading case where it remains unchanged over time. Several other time scales have to be
considered and compared to the time slot:

• The time scale of symbol transmissions, which will be considered small compared to the time
slot. It is at this time scale that the noise is typically assumed to be additive and Gaussian and that
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spreading techniques can be invoked to justify the representation of interference as a Gaussian
additive noise (see § 23.3.3). It is hence also at this time scale that the bit-rate over one slot is given
in terms of the ratio of the mean signal power to the mean interference-and-noise power, where
these means are ergodic averages over many symbols in one slot. At higher, slot time scale, we
will have distributions for interference and noise which are no longer Gaussian. In fact the values
of these quantities at the slot time scale correspond to the variances of the respective (Gaussian
additive white) processes at the symbol time scale. The randomness of noise and interference at
the time slot scale reflect space-time fluctuations of these variances (e.g. due to MAC decisions,
fading, etc?).
• The time scale of mobility, which will be considered large compared to time slots. In particular

in the part on routing, we will primarily focus on scenarios where all nodes are static and where
routes are established on this static network. The rationale being that the time scale of packet
transmission on a route is smaller than that of node mobility. Stated differently, we will not
consider here the class of delay tolerant networks which leverage node mobility for the transport
of packets.
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In this part, we analyze various kinds of medium access control (MAC) protocols using stochastic geom-
etry tools. The reader not familiar with MAC should refer to §24.1 in the appendix in case what is described
in the chapters is not self-sufficient.

We begin with Aloha, which is analyzed in detail, and then CSMA, both in the context of MANETS.
We then study CDMA for cellular networks. In all three cases, we develop a whole-plane snapshot analysis
which yields estimates of various instantaneous spatial or time-space performance metrics. This whole-plane
analysis is meant to address the scalability of protocols since it is focused on results which are pertinent for
very large networks.

For MANETSs using Aloha and CSMA, we analyze:

• the spatial density of nodes authorized to transmit by the MAC;
• the probability of success of a typical transmission, which leads to formulas for the density of

successful transmissions whenever a target SINR is prescribed;
• the distribution of the throughput obtained by an authorized node in case of elastic trafic, namely

when no target SINR is given, which leads to estimates for the density of throughput in the
network, where the throughput is defined in terms of a Shannon-like formula. In addition to this
digital communication view point, we will also discuss the packet transmission model where the
throughput is defined in terms of the number of time slots required to successfully transmit a
packet.

For the CDMA case, we incorporate the key concept of power control (see § 24.2 in the appendix for the
algebraic formulation of the power control problem). In this case, the spatial performance metrics are:

• for the case where a target SINR is prescribed, the spatial intensity of cells where some admission
control has to be enforced in order to make the global power control problem feasible and the
resulting density of users accepted in the access network;
• for the case where no target SINR is prescribed, the density of throughput in the network.

A key paradigm throughout this part is that of the ’social optimization’ of the protocol, which consists in
determining the tuning of the protocol parameters which maximizes the density of successful transmissions
or the density of throughput or the spatial reuse (to be defined) in such a network.

Let us stress that this part is made of three rather unbalanced chapters. Chapter 16, which bears on the
simplest MAC protocol, is by far the most comprehensive. Chapters 16 and 18 introduce essential new
features (spatial contention for the former and power control for the latter). These new features lead to
technical difficulties and more research will be required to extend all types of results available for the Aloha
case to these more complex (and more realistic) MAC protocols.
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16
Spatial Aloha

16.1 Introduction

In this chapter we study a slotted version of Aloha. As explained in Section 24.1.2, under the Aloha MAC
protocol, at each time slot, each potential transmitter independently tosses a coin with some bias p which
will be referred to as the medium access probability (MAP); it accesses the medium if the outcome is heads
and it delays its transmission otherwise.

It is important to tune the value of the MAP p so as to realize a compromise between the two contradict-
ing wishes to have a large average number of concurrent transmissions per unit area and a high probability
that authorized transmissions be successful: large values of p allow more concurrent transmissions but (sta-
tistically) smaller exclusion zones, making these transmissions more vulnerable; smaller values of p give
fewer transmissions with higher probability of success.

Another important tradeoff concerns the typical one-hop distance of transmissions. A small distance
makes the transmissions more sure but involves more relaying nodes to communicate packets between origin
and destination. On the other hand, a larger one-hop distance reduces the number of hops but might increase
the number failed transmissions and hence that of retransmissions at each hop.

In the first four sections, we consider a simplified mobile ad hoc network (MANET) model called the
bipolar model, where we do not yet address routing issues but do assume that each transmitter has its receiver
at some fixed or random distance. As we will see, this will be sufficient to define and study the following
performance metrics: the probability of success (high enough SINR) for a typical transmission and the mean
throughput (bit-rate) for a typical transmission at this distance. The mean number of successful transmissions
and the mean throughput per unit area, the mean number of meters of progress per unit area, the transport
density, etc. are studied in § 16.3, together with the notion of spatial reuse which is quite useful to compare
scenarios and policies. Let us stress that the definitions of § 16.3 extend to other MAC than Aloha and will
be used throughout the present volume. In § 16.4, this simplified setting is also used to study variants of
Aloha such as Opportunistic Aloha, which leverages the channels fluctuations due to fading.

From Section 16.5 on, we leave the bipole model and focus on more realistic scenarios, like for instance
that where the MANET nodes dynamically split in a subset of transmitters and a complementary subset of
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receivers and use the Aloha scheme to do so in a fully distributed way. This will allow us to introduce some
first ideas pertaining to multihop routing. We consider for instance the case where the routing algorithm
chooses the closest possible receiver as next hop. Another scenario, considered in this section is that where
each transmitter broadcasts and where the receiver maximizing some utility is elected as next hop.

The last section of the chapter (§ 16.6) is devoted to the time-space scenario and to the evaluation of the
local delays, which are the random numbers of slots required to transmit a packet. In most practical cases,
these local delays are finite random variables but they have unexpected properties: in many cases, their mean
value is infinite; in certain cases, they exhibit an interesting phase transition phenomenon which we propose
to call the wireless contention phase transition and which has several incarnations. All this will be central
for the analysis of time-space routing in Part V.

16.2 Spatial Aloha in a Poisson Bipolar MANET

16.2.1 The Poisson Bipolar MANET Model with Independent Fading and Aloha MAC

Below, we consider a Poisson bipolar network model in which each point of the Poisson pattern represents
a node of the MANET (a potential transmitter) and has an infinite backlog of packets to transmit to its
associated receiver, which is not part of the Poisson pattern of points and which is located at distance r. This
model is meaningful for a multi-hop network in the sense that it allows one to analyze the performance of
such a network “at some arbitrary time slot”. The transmitters considered in this slot are some relay nodes
and not necessarily the sources of the transmitted packets. Similarly, the receivers need not be the final
destinations. The fact that all receivers are at the same distance from their transmitters is a simplification
that will be relaxed in Section 16.5.

More precisely, we assume that a snapshot of the MANET can be represented by an independently
marked (i.m.) Poisson point process (p.p.); cf. Sections 1.1.1 and 2.1.1 in Volume I, where the point process
is homogeneous on the plane, with intensity λ and where the multidimensional mark of a point carries
information about the MAC status of the point (allowed to transmit or delayed; cf. Section 24.1) in the
current time slot and about the fading conditions of the channels to all receivers (cf. Section 22.2 and also
Section 2.3 in Volume I). This marked Poisson p.p. will be denoted by Φ̃ = {(Xi, ei, yi,Fi)}, where

(1) Φ = {Xi} denotes the locations of the points (the potential transmitters); Φ is always assumed
Poisson with positive and finite intensity λ;

(2) {ei} is the medium access indicator of node i; (ei = 1 if node i is allowed to transmit in the
considered time slot and 0 otherwise). The random variables ei are hence i.i.d. and independent
of everything else, with P(ei = 1) = p (p is the MAP).

(3) {yi} denotes the location of the receiver for node Xi (we assume here that no two transmitters
have the same receiver). We assume that {Xi − yi} are i.i.d random vectors with |Xi − yi| = r;
i.e. each receiver is at distance r from its transmitter (see Figure 16.1). There is no difficulty ex-
tending what is described below to the case where these distances are independent and identically
distributed random variables, independent of everything else.

(4) {Fi = (F ji : j)} where F ji denotes the virtual power emitted by node i (provided ei = 1)
towards receiver yj . By virtual power F ji , we understand the product of the effective power
of transmitter i and of the random fading from this node to receiver yj (cf. Remark 2.3.1 in
Volume I). The random vectors {Fi} are assumed to be i.i.d. and the components (F ji , j) are
assumed to be identically distributed (distributed as a generic random variable (r.v.) denoted by
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Fig. 16.1 A snapshot of bipolar MANET with Aloha MAC.

F ) with mean 1/µ assumed finite. In the case of constant effective transmission power 1/µ and
Rayleigh fading, F is exponential with mean 1/µ (see Section 22.2.4). In this case it is reasonable
to assume that the components of (F ji : j) are independent, which will be the default option in
what follows. This is justified if the distance between two receivers is larger than the coherence
distance of the wireless channel (cf. Section 22.3), which is a natural assumption here. Below, we
will also consider non exponential cases which allow one to analyze other types of fading such as
e.g. Rician or Nakagami scenarios (see Section 22.2.4) or simply the case without fading (when
F ≡ 1/µ is deterministic).

In addition, we consider a non-negative random variable W independent of Φ̃ modeling the power of the
thermal noise. A natural extension consist in considering a random field rather than a random variable.

Since we assume that Aloha is used, the set of nodes that transmit in the reference time slot Φ1 = {Xi :
ei = 1} corresponds to an independent thinning of Φ and thus by the corresponding property of the Poisson
p.p. (cf. Proposition 1.3.5 in Volume I), Φ1 is a Poisson p.p. with intensity λ1 = λp.

Select some omnidirectional path-loss (OPL) model l(·) (see Section 22.1.2). An important special case
consists in taking

l(u) = (Au)β for A > 0 and β > 2, (16.1)

which we call in what follows OPL 3. Note that 1/l(u) has a pole at u = 0, and thus in particular is not
correct for small distances (and hence in particular for u small compared to 1/

√
λ). Another inconvenience

of this path-loss model is that the total power received at a given location from an infinite Poisson pattern
of transmitters has an infinite mean (where averaging is taken over all configurations of transmitters); cf.
Remark 2.3.5 in Volume I. Despite the drawbacks of the OPL 3 path-loss model (16.1), we will use it as our
default model, because it is precise enough for large enough values of u, it simplifies many calculations and
reveals important scaling laws (see Section 16.2.4).
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Other possible choices of path-loss function, OPL 1, OPL 2, avoiding the pole at at u = 0 are given in
Example 22.1.3.

Note that in our fading/virtual power and OPL model, the receiver of node i receives the transmitter
located at node j with a power equal to F ji /l(|Xj − yi|), where | · | denotes the Euclidean distance on the
plane.

16.2.2 Coverage (Non-Outage) Probability for a Typical Node

In what follows we will present the basic analysis of the performance of our network model assuming that
a successful connection corresponds to the situation when the signal to interference and noise ratio (SINR)
is larger than some threshold T . The last condition (which might be required in practice due to the use of
particular coding scheme related to a given bit-rate – cf. Section 23.3.4) is either called non-outage condition
or capture condition depending on the framework. Later, in Section 16.2.3, we will also consider adaptive
coding schemes in which the appropriate choice of coding scheme is selected for each observed SINR level,
which allows us to obtain a bit-rate close to that given by Shannon’s law for all such SINR.

Definition 16.2.1. We will say that transmitter {Xi} covers its receiver yi in the reference time slot if

SINRi =
F ii /l(|Xi − yi|)

W + I1
i

≥ T , (16.2)

where the interference I1
i is the shot-noise (SN) of Φ̃1, namely, I1

i =
∑

Xj∈eΦ1, j 6=i F
i
j/l(|Xj − yi|) and

where T is some SINR threshold.

For the motivation and more details on the shot-noise interference model see Section 2.3 in Volume I and
in particular the random cross-fading model model M/GI/∞ in Example 2.3.9 in Volume I. We will also
equivalently say that xi can be successfully received by yi or that yi is not in outage with respect to xi in
the time slot. In what follows we will be interested in the probability that this property holds true for the
typical node of the MANET, given it is a transmitter. This notion can be formalized using Palm theory in the
context of stationary marked point processes (cf. 2.1.2 in Volume I).

Denote by δi the indicator that (16.2) holds, namely, that location yi is covered by transmitter Xi with
the required quality. We will consider δi as a new mark of Xi. The marked point process Φ̃ enriched with
these marks is still stationary (cf. Definition 2.1.4 in Volume I). However, in contrast to the original marks
ei, yi,Fi, given the points of Φ, the random variables {δi} are neither independent nor identically distributed.
Indeed, the points of Φ lying in dense clusters have a smaller probability of coverage than more isolated
points due to interference; in addition, the shot noise variables I1

i make that δi’s dependent.
By probability of coverage of a typical node given it is a transmitter, we understand

P0{ δ0 = 1 | e0 = 1} = E0[δ0 | e0 = 1],

where P0 is the Palm probability associated to the (marked) stationary point process Φ̃ and where δ0 is the
mark of the point X0 = 0 a.s. located at the origin 0 under P0. This Palm probability P0 is derived from the
original (stationary) probability P by the following relation (cf. Definition 2.1.5 in Volume I)

P0{ δ0 = 1 | e0 = 1} =
1

λ1|B|
E
[∑

i

δi1(Xi ∈ B)
]
,

6



where B is an arbitrary subset of the plane and |B| is its surface. Thus, knowing that λ1|B| is the expected
number of transmitters inB, the typical node coverage probability is the mean number of transmitters which
cover their receivers in any given window B in which we observe our MANET. Note that this mean is based
on a double averaging: a mathematical expectation – over all possible realizations of the MANET and, for
each realization, a spatial averaging – over all nodes in B.

If the underlying point process is ergodic (as it is the cased for our i.m. Poisson p.p. Φ̃) the typical node
coverage probability can also be interpreted as a spatial average of the number of transmitters which cover
their receiver in almost every given realization of the MANET and large B (tending to the whole plane; cf.
Proposition 1.6.10 in Volume I).

For a stationary i.m. Poisson p.p. the probability P0 can easily be constructed due to Slivnyak’s theorem
(cf. Theorem 1.4.5 in Volume I): under P0, the nodes of our Poisson MANET and their marks follow the
distribution Φ̃ ∪ {(X0 = 0, e0, y0,F0)}, where Φ̃ is the original stationary i.m. Poisson p.p. (i.e. that seen
under the original probability P) and (e0, y0,F0) is a new copy of the mark independent of everything else
and distributed like all other i.i.d. marks (ei, yi,Fi) of Φ̃ under P. (cf. Remark 2.1.7 in Volume I).

Note that under P0, the node at the origin (the typical node), is not necessarily a transmitter; e0 is equal
to 1 or 0 with probability p and 1− p respectively.

Denote by pc(r, λ1, T ) = E0[δ0 | e0 = 1] the probability of coverage of the typical MANET node given
it is a transmitter. It follows from the above construction that this probability only depends on the density
of effective transmitters λ1 = λp, on the distance r and on the SINR threshold T ; it can be expressed using
three independent generic random variables F, I1,W by the following formula:

pc(r, λ1, T ) = P0{F 0
0 > l(r)T (W + I1

0 ) | e0 = 1 } = P{F ≥ T l(r)(I1 +W ) } . (16.3)

Note also that this probability, is equal to the one-point coverage probability p0(y0) in the GI
W+M/GI SINR

cell model of Section 5.3.1 in Volume I associated with the Poisson p.p. intensity λ1. (see the meaning
of this Kendall-like notation in Section 5.3 in Volume I). For this reason, our Aloha MANET model is of
the GI

W+M/GI type where the GI in the numerator indicates a general distribution for the virtual power of
the signal F and where the M/GI in the denominator indicates that the SN interference is generated by a
Poisson pattern of interferrers (M), with a general distribution (G) for their virtual powers. Special cases of
distributions marks are deterministic (D) and exponential (M). We recall that M/· denotes a SN model with
a Poisson point process.

In what follows, we will often use the following explicit formula for the Laplace transform of the generic
shot-noise I1 =

∑
Xj∈eΦ1 Fj/l(|Xj |), which is valid in Poisson p.p. case whenever the random variables Fj

are independent copies of the generic fading variable F (cf. Corollary 2.3.8 in Volume I):

LI1(s) = E[e−I
1s] = exp

{
−λ12π

∞∫
0

t
(

1− LF (s/l(t))
)

dt
}
, (16.4)

where LF is the Laplace transform of F . This can be derived from the formula for the Laplace functional of
the Poisson p.p. (see Propositions 1.2.2 and 2.2.4 in Volume I).‘
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16.2.2.1 Rayleigh Case

The next result bears on the Rayleigh fading case (F exponential with mean 1/µ). Using the independence
assumptions, it is easy to see that the right-hand side of (16.3) can be rewritten as

pc(r, λ) = E
[
e−µ(T l(r)(I1+W )

]
= LI1(µT l(r))LW (µT l(r)) , (16.5)

where LW is the Laplace transform of W and where LI1 can be expressed from (16.4) when using the fact
that F is exponential:

LI1(s) = exp

−2πλ1

∞∫
0

t

1 + µl(t)/s
dt

 . (16.6)

Using this observation, one immediately obtains (cf. also Proposition 5.3.3 and Example 5.3.4 in Volume I):

Proposition 16.2.2. Consider the Poisson bipolar network model of Section 16.2.1 with Rayleigh fading.
In this M

W+M/M model

pc(r, λ1, T ) = LW (µT l(r)) exp
{
− 2πλ1

∞∫
0

u

1 + l(u)/(T l(r))
du
}
. (16.7)

In particular if W ≡ 0 and that the path-loss model (16.1) is used then

pc(r, λ1, T ) = exp(−λ1r
2T 2/βK(β)) , (16.8)

where

K(β) =
2πΓ(2/β)Γ(1− 2/β)

β
=

2π2

β sin(2π/β)
. (16.9)

Example 16.2.3. The above result can be used in the following context: assume one wants to operate a
MANET in a regime where each transmitter is guaranteed a SINR at least T with a probability larger than
1− ε, where ε is a predefined quality of service, or equivalently, where the probability of outage is less then
ε. Then, if the transmitter-receiver distance is r, the MAP p should be such that pc(r, λp, T ) = 1 − ε. In
particular, assuming the path-loss setting (16.1), one should take

p = min
(

1,
− ln(1− ε)
λr2T 2/βK(β)

)
≈ min

(
1,

ε

λr2T 2/βK(β)

)
. (16.10)

For example, for T = 10dB 1 and OPL 3 model with β = 4, r = 1, one should take p ≈ min (1, 0.064 ε/λ) .

16.2.2.2 General Fading

In what follows, we consider our Poisson bipolar Aloha MANET model with a general fading model, i.e.;
GI

W+M/GI one. In this case one can get integral representations for the probability of coverage on the basis of
the results of Section 5.3.1 in Volume I in Chapter 5 in Volume I.

We show that under some additional regularity conditions one can get integral representations for the
probability of coverage.

1A positive eal number x is 10 log10(x) dB.
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Proposition 16.2.4. Consider the Poisson bipolar network model of Section 16.2.1 with fading variables F
such that

• F has a finite first moment and admits a square integrable density;
• Either I1 or W admit a density which is square integrable.

Then the probability of a successful transmission is equal to

pc(r, λ1, T ) =

∞∫
−∞

LI1(2iπl(r)Ts)LW (2iπl(r)Ts)
LF (−2iπs)− 1

2iπs
ds . (16.11)

Remark: Sufficient conditions for I1 to admit a density are given in Proposition 2.2.6 in Volume I. Roughly
speaking these conditions require that F be non-null and that the path-loss function l be not constant in
any interval. This is satisfied e.g. for OPL 3 and OPL 2 model, but not for OPL 1 – see Example 22.1.3.
Concerning the square integrability of the density, which is equivalent to the integrability of |LI1(is)|2
(see (Feller 1971, p.510) and also (2.20 in Volume I)), using (16.4) one can easily check that it is satisfied
for the OPL 3 model provided P{F > 0} > 0. Moreover, under the same conditions |LI1(is)| is integrable
(and so is |LI1(is)|/|s| for large |s|).

Proof. (of Proposition 16.2.4) By the independence of I1 andW in (16.3), the second assumption of Propo-
sition 16.2.4 implies that I1 + W admits a density g(·) that is square integrable. The result then follows
from

pc(r, λ1, T ) = P{ (I1 +W )T l(r) < F } ,

by the Plancherel-Parseval theorem; see e.g. (Brémaud 2002, Th. C3.3, p.157)) and for more details Corol-
lary 12.2.2 in Volume I.

16.2.3 Shannon Throughput of a Typical Node

In Section 16.2.2 we have adopted a digital communication model and assumed that a channel could be
sustained at a given bit-rate if the SINR was above some fixed threshold T , which corresponds to the case
where some constant bit rate is required (e.g. voice). In this section we consider the situation with elastic
traffic, where there is no minimal requirement on the bit rate T and where the latter depends on the SINR
through some Shannon like formula.More precisely, this arises in case of an adaptive coding scenario where
the coding can be “loose” and thus the bit-rate high if the SINR is high, whereas a small SINR requites a
“tight” coding and leads to a low throughput. We will adopt the following definition.

Definition 16.2.5. We define the (Shannon) throughput (bit-rate) of the channel from transmitter xi to its
receiver yi by

Ti = log(1 + SINRi) , (16.12)

where SINRi is as in Definition 16.2.1.
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One can also ask about the throughput of a typical transmitter (or equivalently about the spatial average of
the rate obtained by the transmitters), namely

τ(r, λ1) = E0[T0 | e0 = 1] = E0[log(1 + SINR0) | e0 = 1]

and also about its Laplace transform

LT (s) = E0[e−sT0 | e0 = 1] = E0[(1 + SINR0)−s | e0 = 1] .

Let us now make the following simple observations:

τ(r, λ1) = E0[log(1 + SINR0) | e0 = 1]

=

∞∫
0

P0{ log(1 + SINR0) > t | e0 = 1 } dt

=

∞∫
0

P0{SINR0 > et − 1 | e0 = 1 } dt

=

∞∫
0

pc(r, λ1, e
t − 1) dt =

∞∫
0

pc(r, λ1, v)
v + 1

dv (16.13)

and similarly

LT (s) = E0[(1 + SINR0)−s | e0 = 1]

= 1−
1∫

0

pc(r, λ1, t
−1/s − 1) dt = 1− s

∞∫
0

pc(r, λ1, v)
(1 + v)1+s

dv , (16.14)

provided P{SINR0 = T} = 0 for all T ≥ 0, which is true e.g. when F admits a density (cf. (16.3)). This in
conjunction with Propositions 16.2.2 and 16.2.4 leads to the following results:

Corollary 16.2.6. Under the assumptions of Proposition 16.2.2 (namely for the model with Rayleigh fad-
ing) and for the OPL 3 path-loss model (16.1)

τ =
β

2

∞∫
0

e−λ1K(β)r2v v
β
2
−1

1 + v
β
2

LW
(
µ(Ar)βvβ/2

)
dv (16.15)

and

LT (s) =
βs

2

∞∫
0

(
1− e−λ1K(β)r2vLW

(
µ(Ar)βvβ/2

)) v
β
2
−1(

1 + v
β
2

)1+s dv , (16.16)

where K(β) is defined in (16.9).
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r = .25 r = .37 r = .5 r = .65 r = .75 r = .9 r = 1
Rayleigh 1.52 .886 .480 .250 .166 .0930 .0648
Erlang (8) 1.71 .942 .495 .242 .155 .0832 .0571

Table 16.1 Impact of the fading on the mean throughput τ for varying distance r. Erlang distribution of order 8 mimics no-fading case; β = 4,
exponential noise W with mean 0.01.

Corollary 16.2.7. Under the assumptions of Proposition 16.2.4 (namely in the model with general fading
F )

τ =

∞∫
0

∞∫
−∞

LI1 (2iπvsl(r))LW (2iπvsl(r))
LF (−2iπs)− 1

2iπs(1 + v)
dsdv (16.17)

and

LT (s) = 1− s
∞∫

0

∞∫
−∞

LI1 (2iπvsl(r))LW (2iπvsl(r))
LF (−2iπs)− 1
2iπs(1 + v)1+s

dsdv . (16.18)

Here is a direct application of the last results.

Example 16.2.8. Table 16.1 shows how Rayleigh fading compares to the situation with no fading. The
OPL 3 model is assumed with A = 1 and β = 4. We assume W to be exponential with mean 0.01. We use
the formulas of the last corollaries; the Rayleigh case is with F exponential of parameter 1; to represent the
no fading case within this framework we take F Erlang of high order (here 8) with the same mean 1 as the
exponential. We see that the presence of fading is beneficial in the far-field, and detrimental in the near-field.

16.2.4 Scaling Properties

We show below that in the Poisson bipolar network model of Section 16.2.1, when using the OPL 3
model (16.1) and when W = 0, some interesting scaling properties can be derived.

Denote by p̄c(r) = pc(r, 1, T ) the value of the probability of connection calculated in this model with
T ≡ 1, λ1 = 1,W ≡ 0 and normalized virtual powers F̄ ji = µF ji . Note that p̄c(r) does not depend on any
parameter of the model other than the distribution of the normalize virtual power F̄ .

Proposition 16.2.9. In the Poisson bipolar network model of Section 16.2.1 with path-loss model (16.1)
and W = 0

pc(r, λ1, T ) = p̄c(rT 1/β
√
λ1) .

Proof. The Poisson point process Φ1 with intensity λ1 > 0 can be represented as {X ′i/
√
λ1 }, where Φ′ =

{X ′i} is Poisson with intensity 1 (cf. Example 1.3.12 in Volume I). Because of this, under (16.1), the Poisson
shot-noise interference variable I1 admits the following representation: I1 = λ

β/2
1 I ′1, where I ′1 is defined
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in the same manner as I1 but with respect to Φ′. Thus for W = 0,

pc(r, λ1, T ) = P(F ≥ T (Ar)βI1)

= P
(
µF ≥ µ(ArT 1/βλ

1/2
1 )βI ′1

)
= p̄c(rT 1/β

√
λ1 ) .

Remark 16.2.10. The scaling of the coverage probability presented in Proposition 16.2.9 is the first of
sevaral examples of scaling in

√
λ. Recall that this is also how the transport capacity scales in the well-

known Gupta and Kumar law. There are three fundamental ingredients for obtaining this scaling in the
present context:

• the scale invariance property of the Poisson p.p. (cf. Example 1.3.12 in Volume I),
• the power-law form of OPL 3,
• the fact that thermal noise was neglected.

Note however the following important limitations concerning this scaling. First, when λ → ∞, the nodes
are closer to each other and one may challenge the usage of OPL 3 (the pole at the origin is not adequate for
represention path loss on small distances). On the other hand, when λ → 0, the transmission distances are
very long; communications become noise limited and the assumption W = 0 may no longer be justified.

16.3 Spatial Performance Metrics

When trying to maximize the coverage probability pc(r, λ1, T ) or the throughput τ(r, λ1), one obtains de-
generate maxima at r = 0. Assuming that our MANET features packets which have to reach some distant
destination nodes, a more meaningful optimization consists in maximizing some distance-based characteris-
tics. In the coverage scenario, we will for instance consider the mean progress made in a typical transmission:

prog(r, λ1, T ) = rE0[δ0] = rpc(r, λ1, T ) . (16.19)

Similarly, in the digital communication (or Shannon-throughput) scenario, we define the mean transport of
a typical transmission as

trans(r, λ1, T ) = rE0[T0] = rτ(r, λ1) . (16.20)

These characteristics might still not lead to pertinent optimizations of the MANET, as they are concerned
with one (typical) transmission. In particular, they are trivially maximized when p→ 0, when transmissions
are very efficient but very rare in the network. In fact, we will need some network (social) performance
metrics.

Definition 16.3.1. We will call

• (spatial) density of successful transmissions, dsuc, the mean number of successful transmissions
per unit area;
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• (spatial) density of progress, dprog, the mean number of meters progressed by all transmissions
taking place per unit surface unit;
• (spatial) density of throughput, dthrou, the mean throughput per unit surface unit;
• (spatial) density of transport, dtrans, the mean number of bit-meters transported per second and

per unit of surface.

The knowledge of pc(r, λ1, T ) or τ(r, λ1) allows one to estimate these spatial network performance
metrics. The link between individual and social characteristics is guaranteed by Campbell’s formula (cf. (2.9
in Volume I)).

In what follows we precise the meaning of the characteristics proposed in Definition 16.3.1 in the case
of our Poisson bipolar MANET model.

The density of successful transmissions can formally seen as the mean number of successful transmis-
sions is some arbitrary subset of the plane B

dsuc(r, λ1.T ) =
1
|B|

E
[∑

i

eiδi1(Xi ∈ B)
]

that, by stationarity, does not depend on the particular choice of set B. Denote g(x, Φ̃) = 1(x ∈ B)e0δ0.
The right hand side of the above equation can be expressed as

1
|B|

E
[∫
R2

g(x, Φ̃− x) Φ(dx)
]

and by Campbell’s formula (2.9 in Volume I) is equal to
λ

|B|

∫
R2

E0[g(x, Φ̃)] dx = λE0[e0δ0] ,

which gives the following result

dsuc(r, λ1.T ) = λ1pc(r, λ1, T ) = λppc(r, λp, T ). (16.21)

Similarly, the density of progress can be defined as the mean number of meters progressed by all trans-
missions taking place is some arbitrary subset of the plane B

dprog(r, λ1, T ) =
1
|B|

E
[∑

i

reiδi1(Xi ∈ B)
]

= rλ1pc(r, λ1, T ) ; (16.22)

by the same arguments as for (16.21).
The spatial density of throughput is equal to

dthrou(r, λ1) =
1
|B|

E
[∑

i

ei1(Xi ∈ B) log(1 + SINRi)
]

= λ1τ(r, λ1) (16.23)

and the density of transport

dtrans(r, λ1) =
1
|B|

E
[∑

i

eir1(Xi ∈ B) log(1 + SINRi)
]

= λ1rτ(r, λ1). (16.24)
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In the following sections we will be interested in optimizing the spatial performance of an Aloha
MANET.

16.3.1 Optimization of the Density of Progress

16.3.1.1 Best MAP Given Some Transmission Distance

We already mentioned that a good tuning of p should find a compromise between the average number
of concurrent transmissions per unit area and the probability that a given authorized transmission will be
successful. To find such a compromise, one ought to maximize the density of progress, or equivalently the
density of successful transmissions, dsuc(r, λp, T ) = λp pc(r, λp, T ), w.r.t. p, for a given r and λ. This can
be done explicitly for our Poisson bipolar network model of with Rayleigh fading.

Define
λmax = arg max

0≤λ<∞
dsuc(r, λ, T )

whenever such a value of λ exists and is unique. The following result follows from Proposition 16.2.2.

Proposition 16.3.2. Under the assumptions of Proposition 16.2.2 (in M
W+M/M model) with p = 1 the unique

maximum of the density of successful transmissions dsuc(r, λ, T ) is attained at

λmax =

2π

∞∫
0

u

1 + l(u)/(T l(r))
du

−1

,

and the maximal value is equal to

dsuc(r, λmax, T ) = e−1λmax LW (µT l(r)) .

In particular, assuming W ≡ 0 and OPL 3 model (16.1)

λmax =
1

K(β)r2T 2/β
, (16.25)

dsuc(r, λmax, T ) =
1

eK(β)r2T 2/β
. (16.26)

with K(β) defined in (16.9).

Proof. The result follows from (16.7) by differentiation of the function λpc(r, λ, T ) with respect to λ.

The above result yields the following corollary concerning the tuning of the MAC parameter when λ is fixed.

Corollary 16.3.3. Under assumptions of Proposition 16.2.2 (in M
W+M/M model) with some given r the value

of the MAP p that maximizes the density of successful transmissions is

pmax = min(1, λmax/λ) .

In order to extend our observations to general fading (or equivalently to a general distribution for virtual
power), let us assumeW = 0 and the path-loss model OPL 3. Then, using Lemma 16.2.9, we can easily show
that λmax and dsuc(r, λmax), exhibit, up to some constant, the same dependence on the model parameters,
namely the distance r from transmitter to receiver, T the threshold and µ the inverse of the mean of virtual
power F , as that given in (16.25) and (16.26) for exponential F .
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Proposition 16.3.4. In the Poisson bipolar network model GI
0+M/GI (with a general fading) of Section 16.2.1,

with OPL 3 and W = 0

λmax =
const1
r2T 2/β

,

dsuc(r, λmax) =
const2
r2T 2/β

,

where the constants const1 and const2 do not depend on r, T, µ, provided λmax is well defined.

Proof. Assume that λmax is well defined. By Lemma 16.2.9, const1 = arg maxλ≥0{λp̄c(
√
λ)} and const2 =

maxλ≥0{λp̄c(
√
λ)}.

So the main question is that of the definition of λmax which is addressed below.

16.3.1.2 *General Definition of λmax

In this somewhat section, we show that under some mild conditions, λmax is well defined and not degenerate
(i.e. 0 < λmax < ∞) for a general GI

W+M/GI model. Assume T > 0. Note that dsuc(r, 0, T ) = 0; so under
some natural non-degeneracy assumptions, the maximum is certainly not attained at λ = 0.

Proposition 16.3.5. Consider the Poisson bipolar network model GI
W+M/GI model of Section 16.2.1 with

p = 1 and general fading with a finite mean. Assume that l(r) > 0 and is such that the generic shot-noise
I(λ) =

∑
Xj∈eΦ Fj/l(|Xj |) admits a density for all λ > 0. Then

(1) If P{F > 0 } > 0, then pc(r, x, T ) (and so dsuc(r, x, T )) is continuous in x, so that the maxi-
mum of the function x→ dsuc(r, x, T ) in the interval [0, λ] is attained for some 0 < λmax ≤ λ;

(2) If for all a > 0, the modified shot-noise at the origin:

I ′(λ) =
∑
Xj∈eΦ

1(|Xj | > a)Fj/l(|Xj |)

has finite mean for all λ > 0, then limx→∞ dsuc(r, x, T ) = 0 and consequently, for sufficiently
large λ, this maximum is attained for some λmax < λ.

The statement of the last theorem means that for a sufficiently large density of nodes λ, a nontrivial MAP
0 < pmax < 1 equal to pmax = λmax/λ will optimize the density of successful transmissions.

Proof. (of Proposition 16.3.5) Recall that pc(r, λ, T ) = P{ I(λ) ≤ F/(l(r)T −W ) }, where we made the
dependence of the shot-noise variable I(λ) = I1 = I (note that p = 1) on the intensity of the Poisson p.p.
explicit. By the thinning property of the Poisson p.p. (stated in Proposition 1.3.5 in Volume I) we can split
the shot-noise variable into two independent Poisson shot-noise terms I(λ + ε) = I(λ) + I(ε). Moreover,
we can do this in such a way that I(ε), which is finite by assumption, almost surely converges to 0 when
ε→ 0. Consequently,

0 ≤ pc(r, λ, T )− pc(r, λ+ ε, T ) = P
{ F

l(r)T −W
− I(ε) < I(λ) ≤ F

l(r)T −W

}
15



and

lim
ε→0

(
pc(r, λ, T )− pc(r, λ+ ε, T )

)
= P

{
I(λ) =

F

l(r)T −W

}
= 0 ,

where the last equation is due to the fact that I(λ) is independent of F,W and admits a density. Splitting
the P.p.p of intensity λ into two P.p.p’s with intensity λ − ε and ε, and considering the associated shot-
noise variables I(λ − ε) and I(ε), with I(λ) defined as their sum, one can show in a similar manner that
limε→0 pc(r, λ− ε, T )− pc(r, λ, T ) = 0. This concludes the proof of the first part of the proposition.

We now prove the second part. Let G(s) = P{F ≥ s }. Take ε > 0 and such that ε < E[I ′(1)] =
I
′(1) <∞. By independence we have

dsuc(r, λ, T ) = λpc(r, λ, T ) ≤ λE
[
P
{
F ≥ I ′(λ)T l(r)|I ′(λ)

}]
≤ J1 + J2 ,

where

J1 = E
[ λ

I ′(λ)
1
(
I ′(λ) ≥ λ(I ′(1)− ε)

)
I ′(λ)G

(
I ′(λ)T l(r)

)]
J2 = λE

[
1
(
I ′(λ) < λ(I ′(1)− ε)

)]
.

Since E[F ] =
∫∞

0 G(s) ds < ∞, I ′(λ)G
(
I ′(λ)T l(r)

)
is uniformly bounded in I ′(λ) and

I ′(λ)G
(
I ′(λ)T l(r)

)
→ 0 when I ′(λ) → ∞. Moreover, one can construct a probability space such that

I ′(λ) → ∞ almost surely as λ → ∞. Thus, by Lebesgue’s dominated convergence theorem we have
limλ→∞ J1 = 0.

For J2 and t > 0 we have

J2 ≤ λP0{ e−tI′(λ) ≥ e−λt(I
′
(1)−ε) }

≤ λE0
[
e−tI

′(λ)+λt(I
′
(1)−ε)]

= λ exp
{
λ
(
t(I ′(1)− ε)− 2π

∞∫
a

s
(
1− LF (t/l(s))

)
ds
)}

.

Note that the derivative of t(I ′(1)− ε)− 2π
∫∞
a s

(
1− LF (t/l(s))

)
ds with respect to t at t = 0 is equal to

I
′(1)− ε− I ′(1) < 0. Thus, for some small t > 0, J2 ≤ λe−λC for some constant C > 0. This shows that

limλ→∞ J2 = 0, which concludes the proof.

16.3.1.3 Best Transmission Distance Given Some Transmitter Density

Assume now some given intensity λ1 of transmitters. We look for the distance r which maximizes the mean
density of progress, or equivalently the mean progress prog(r, λ1, T ) = r pc(r, λ1, T ). We denote by

rmax = rmax(λ) = arg max
r≥0

prog(r, λ, T )

the best transmission distance for the density of transmitters λ whenever such a value exists and is unique.
Let

ρ = ρ(λ) = prog(rmax(λ), λ, T )

be the optimal mean progress.
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Proposition 16.3.6. In the Poisson bipolar network model GI
0+M/GI (with a general fading) of Section 16.2.1,

with OPL 3 function and W = 0

rmax(λ) =
const3
T 1/β

√
λ
,

ρ(λ) =
const4
T 1/β

√
λ
,

where the constants const3 and const4 do not depend on R, T, µ, provided rmax is well defined. If F is
exponential (i.e. for Rayleigh fading) and l(r) given by (16.1) then const3 = 1/

√
2K(β) and const4 =

1/
√

2eK(β).

Proof. The result for general fading follows from Lemma 16.2.9. The constants for the exponential case can
be evaluated by (16.8).

Remark: We see that the optimal distance rmax(λ) from transmitter to receiver is of the order of the distance
to the nearest neighbor of the transmitter, namely 1/(2

√
λ), when λ → ∞. Notice also that for Rayleigh

fading and l(r) given by (16.1) we have the general relation:

2r2λmax(r) = rmax(λ)2λ. (16.27)

As before, one can show that for a general model, under some regularity conditions, prog(r, λ, T ) is
continuous in r and that the maximal mean progress is attained for some positive and finite r. We skip these
technicalities.

16.3.1.4 Degeneracy of Two Step Optimization

Assume for simplicity a W = 0 and OPL 3 path-loss (16.1). In Section 16.3.1.1, we found that for fixed r,
the optimal density of successful transmissions dsuc is attained when the density of transmitters is equal to
λ1 = λmax = const1/(r2T 2/β). It is now natural to look for the distance r maximizing the mean progress
for the network with this optimal density of transmitters. But by Proposition 16.3.4

sup
r≥0

prog(r, λmax, T ) = sup
r≥0

r pc(r, λmax, T )

= sup
r≥0

r
dsuc(r, λmax, T )

λmax

= sup
r≥0

r
const2
const1

=∞

and thus the optimal choice of r consists in taking r = ∞, and consequently λmax = 0. From a practical
point of view, this is not of course an acceptable answer. Even if r = ∞ might be a consequence of taking
W = 0 the above observation might suggest that for a small W > 0 a (possibly) finite optimal value of
r would be too large from a practical point of view. In a network-perspective, one might better optimize a
more “social” characteristic of the MANET like e.g. the density of progress dprog = λrpc(r, λ, T ) first in λ
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and then in r. However in this case one obtains the opposite degenerate answer:

sup
r≥0

dprog(r, λmax, T ) = sup
r≥0

r dsuc(r, λmax, T )

= sup
r≥0

r
const2
r2T 2/β

= 0 ,

which is attained for r = 0 and λmax =∞.
The above analysis shows that a better receiver model of Aloha MANET is needed to study the joint

optimization in the transmission distance and in λ. We will propose such models in Section 16.5, where
the receivers are no longer sampled as independent marks of the Poisson p.p. of potential transmitters, but
belong to the point process of potential transmitters and are chosen amongst the nodes from which the Aloha
mechanism prevents transmission during the time slot considered. As we shall see in Section 16.5.3 these
degeneracies may then vanish.

16.3.2 Optimization of the Density of Transport

16.3.2.1 Best MAP Given Some Transmission Distance

Define

λtransmax = arg max
0≤λ<∞

dtrans(r, λ)

whenever such a value of λ exists and is unique. We have the following result.

Proposition 16.3.7. In the Poisson bipolar network model M
0+M/M of Section 16.2.1 with Rayleigh fad-

ing, OPL 3 path-loss model (16.1) and W = 0, the unique maximum λtransmax of the density of transport
dtrans(r, λ) is attained at

λtransmax =
x∗(β)
r2K(β)

(16.28)

where x∗(β) is the unique solution of the integral equation

∞∫
0

e−xv
v
β
2
−1

1 + v
β
2

dv = x

∞∫
0

e−xv
v
β
2

1 + v
β
2

dv . (16.29)

Proof. One obtains this characterization by differentiating (16.15) w.r.t. λ1.

Example 16.3.8. Consider the following model: r = 1, fading is Rayleigh with parameter µ = 1; atten-
uation is OPL 3 with A = 1 and β = 4. One finds a unique positive solution to (16.29) which gives
λtransmax ≈ 0.157. The associated mean throughput per node is τ(r, λtransmax ) ≈ 0.898. If one defines T ∗ by
the Shannon-like formula τ(r, λtransmax ) = log(1 + T ∗), one finds T ∗ ≈ 0.898, which is a much lower SINR
target than what is usually retained within this setting.
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16.3.2.2 Best Transmission Distance Given a Density of Transmitters

Assume now some given intensity λ1 = λp of transmitters. We look for the distance r which maximizes the
mean density of transport, or equivalently the mean throughput τ(r, λ1). We denote by

rtransmax = rtransmax (λ) = arg max
r≥0

rτ(r, λ)

the best transmission distance for this criterion, whenever such a value of r exists and is unique.

Proposition 16.3.9. In the Poisson bipolar network model of Section 16.2.1 with Rayleigh fading, path-loss
model (16.1) and W = 0, the unique maximum of the density of transport dtrans(r, λ) is attained at

rtransmax =

√
y∗(β)
λK(β)

, (16.30)

where y∗(β) is the unique solution of the integral equation

∞∫
0

e−yv
v
β
2
−1

1 + v
β
2

dv = 2y

∞∫
0

e−yv
v
β
2

1 + v
β
2

dv . (16.31)

Proof. One obtains this characterization by differentiating (16.15) w.r.t. r.

We will not pursue this line of thought any further. Let us nevertheless point out that the last results can
be extended to more general fading models and also that the same degeneracies as those mentioned above
take place.

16.3.3 Spatial Reuse in Optimized Poisson MANETs

In wireless networks, the MAC algorithm is supposed to prevent simultaneous neighboring transmissions
from occurring, as often as possible, since such transmissions are bound to produce collisions. Some MAC
protocols (as e.g. CSMA considered in Section 17.1) create exclusion zones to protect scheduled transmis-
sions. Aloha creates a random exclusion disc around each transmitter. By this we mean that for an arbitrary
radius there is some non-null probability that all the nodes in the disk with this radius do not transmit at a
given time slot.

Definition 16.3.10. We define the mean exclusion radius as the mean distance from a typical transmitter to
its nearest concurrent transmitter

Rexcl = E0
[
min
i 6=0
{|Xi| : ei = 1}

]
.
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Proposition 16.3.11. For the Poisson MANET network using Aloha of Section 16.2.1 we have

Rexcl = Rexcl(λ1) =
1

2
√
λ1

=
1

2
√
λp

. (16.32)

Proof. The probability that the distance from the origin to the nearest point in the Poisson p.p. Φ1 of intensity
λ1 = λp is larger than s is equal to e−λ1πs2 (cf. Example 1.4.7 in Volume I). Thus we have Rexcl =∫∞

0 e−λ1πs2 ds.

Here are two questions pertaining to an optimized scenario and which can be answered using the results
of the previous sections:

• If r is given and p is optimized, how does the resulting Rexcl compare to r?
• If λ is given and r is optimized, how does the resulting r compare to Rexcl?

We will in fact address these questions in a unified way using a notion of spatial reuse analogous to the
concept of spectral reuse used in cellular networks.

Definition 16.3.12. By the spatial reuse factor of the Poisson bipolar MANET model we understand the
ratio of the distance r between transmitter and receiver and the mean exclusion radius Rexcl.

So if the spatial density of transmitters in this Aloha MANET is λ1, then

Sreuse = Sreuse(λ1, r) =
r

Rexcl
= 2r

√
λ1. (16.33)

Here are a few illustrations.

Example 16.3.13. Consider the Poisson bipolar network model of Section 16.2.1. Assume general fading,
that the path-loss model OPL 3 and W = 0. Assume the fixed coding scenario of Section 16.2.2; i.e.,
the successful transmission requires the SINR at least T . Recall that the transmitter-receiver distance is r.
We deduce from Proposition 16.3.4 that the spatial intensity of transmitters that maximises the density of
successful transmissions is λmax = const1/(r2T 2/β). Hence by (16.32)

Rexcl(λmax) =
1

2
√
λmax

= r
T 1/β

2
√

const1
, (16.34)

so that at the optimum, the spatial reuse

Sreuse =
2
√

const1
T 1/β

, (16.35)

is independent of r. For example, for β = 4 and Rayleigh fading, we can use the fact that const1 = 1/K(β)
to evaluate the last expressions. For a SINR target of T = 10dB, Rexcl(λmax) ≈ 1.976r. Equivalently
Sreuse ≈ 0.506. In order to have a spatial reuse larger than 1, one needs a SINR target less than

(
2
√

2/π
)4

=
0.657, that is less than -1.82 dB.
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Example 16.3.14. Consider the Poisson bipolar network model of Section 16.2.1 with general fading, path-
loss model (16.1) andW = 0 and target SINR T . Assume that the spatial density of transmitters is fixed and
equal to λ. Let rmax(λ) denote the transmitter-receiver distance which maximizes the mean progress. We get
from Proposition 16.3.6 that at the optimum r,

Sreuse =
const3
2T 1/β

, (16.36)

for all values of λ. For β = 4 and Rayleigh fading, if we pick a SINR target of 10 dB, then Sreuse ≈ 0.358
only. Similarly, Sreuse > 1 iff T < (2/K(β))β/2. For β = 4, this is iff T < 0.164 or equivalently T less
than -7.84 dB.

Example 16.3.15. Assume the Poisson bipolar network model of Section 16.2.1 with Rayleigh fading,
path-loss model (16.1) and W = 0. Consider the optimal coding scenario with Shannon throughput of
Section 16.2.3. The distance between transmitter and receiver is r. We deduce from Proposition 16.3.7 that
in terms of density of transport, the best organization of the MANET is that where the spatial intensity of
transmitters is λtransmax = x(β)/r2K(β). Hence, at the optimum,

Rexcl = r
1
2

√
K(β)
x∗(β)

, (16.37)

so that

Sreuse = 2

√
x∗(β)
K(β)

, (16.38)

a quantity that again does not depend on r. For β = 4, one gets x∗(β) ≈ 0.771, so that Rexcl ≈ 1.27r and
Sreuse ≈ 0.790.

Example 16.3.16. Consider the same scenario as in the last example but assume now that the intensity of
transmitter is λ fixed. Proposition 16.3.9 shows that in order to maximize the mean throughput, the optimal
scenario is one where the transmitter-receivers distance rtransmax is such that

Sreuse = 2

√
y∗(β)
K(β)

. (16.39)

For β = 4, y∗(β) ≈ 0.122 and Sreuse ≈ 0.314.

16.4 Opportunistic Aloha

In the basic Spatial Aloha scheme, each node tosses a coin to access the medium independently of the
fading variables. It is clear that something more clever can be done by combining the random selection of
transmitters with the occurrence of good channel conditions. The general idea of Opportunistic Aloha is to
select the nodes with the channel fading larger than a certain threshold as transmitters in the reference time
slot. This threshold may be deterministic or random (we assume fading variables to be observable which
is needed for this scheme to be implementable; for more details on implementation issues see (Baccelli,
Blaszczyszyn, and Mühlethaler 2009a)).
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16.4.1 Model Definition

More precisely, in a Poisson MANET, Opportunistic Aloha with random MAC threshold can be described
by an independently marked Poisson p.p. Φ̃ = {(Xi, θi, yi,Fi)}, where {(Xi, yi,Fi)} is as described in
items (1)–(4) on the enumerated list in Section 16.2, with item (2) replaced by:

(2’) The medium access indicator ei of node i (ei = 1 if node i is allowed to transmit and 0 otherwise)
is the following function of the virtual power F ii : ei = 1(F ii > θi), where {θi} are new random
i.i.d. marks, with a generic mark denoted by θ. Special cases of interest are

– that where θ is constant,

– that where θ is exponential with parameter ν.

In this latter case one can obtain a close-form expression for the coverage probability.

We still assume that for each i, the components of (F ji , j) are i.i.d. Note that {ei} are again i.i.d. marks of
the point process Φ̃ (which of course depend on the marks {θi, F ii }).

In what follows we will also assume that for each i the coordinates of (F ji , j) are i.i.d. (cf. assumption (4)
of the plain Aloha model of Section 16.2).

The set of transmitters is hence a Poisson p.p. Φ1 (different from that in Section 16.2) with intensity
λP(F > θ) (where F is a typical F ii and θ a typical θi, with (F, θ) independent). Thus in order to compare
Opportunistic Aloha to the plain Spatial Aloha described in Section 16.2, one can take p = P{F > θ },
where p is the MAP of plain Aloha, which guarantees the same density of (selected) transmitters at a given
time slot.

16.4.2 Coverage Probability

Note that the virtual power emitted by any node to its receiver, given it is selected by Opportunistic Aloha
(i.e. given ei = 1) has for law the distribution of F conditional on F > θ. Below, we will denote by Fθ a
random variable with this law.

However, by independence of (F ji , j), the virtual powers F ji , j 6= i, toward other receivers are still dis-
tributed as F . Consequently, the interference I1

i experienced at any receiver has exactly the same distribution
as in plain Aloha. Hence, the probability for a typical transmitter to cover its receiver can be expressed by
the following three independent generic random variables

p̂c(r, λ1, T ) = P{Fθ > Tl(r)(I1 +W ) } , (16.40)

where I1 is the generic shot-noise generated by Poisson p.p. with intensity λ1 = P{F > θ}λ and (non-
conditioned) fading variables Fj (as in (16.3)). Note that using Kendall-like notation of Section 5.3 in Vol-
ume I we can see p̂c(r, λ1, T ) as the coverage probability is some GI1

W+M/GI2
model, in which the distribution

of interfering virtual powers (GI2) is not identical to this of the useful signal (GI1).

16.4.2.1 Rayleigh Fading and Exponential Threshold Case

We begin our analysis of Opportunistic Aloha by a comparison of p̂c(r, λ1, T ) and pc(r, λ1, T ) of plain
Aloha when all parameters (T , W , r, etc.) are the same. To get more insight we assume first Rayleigh
fading. In this case F is exponential with parameter µ and since θ is independent of F , by the lack of
memory property of the exponential variable, given that F > θ the variables θ and F − θ are independent.
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Moreover, the conditional distribution of F − θ given F > θ is also exponential with parameter µ. Denote
by θ̃ the conditional law of θ given that F > θ. Consequently in the Rayleigh fading case (16.40) can be
rewritten as

p̂c(r, λ1, T ) = E
[
e−µ(T l(r)(I

1+W )−eθ)+
]
, (16.41)

where I1,W, θ̃ are independent r.v’s with distributions described above and a+ = max(a, 0). Compar-
ing (16.41) to the middle expression in (16.5) it is clear that the opportunistic scheme does better than plain
Aloha with MAP p such that p = P(F > θ) = E

(
e−µθ

)
= Lθ(µ). Indeed, the intensity of transmitters is

the same in both cases, and thus the laws of I1 coincide in both formulas.
In order to evaluate how much better Opportunistic Aloha does in the Rayleigh case, we will now focus

on the case when θ is exponential (of parameter ν). Note that then θ̃ is also exponential of parameter µ+ ν.
This is thus a M1

W+M/M2
model.

Proposition 16.4.1. Assume the Poisson bipolar network model of Section 16.2.1 with Opportunistic Aloha
MAC given by (2’) in Section 16.4.1. Assume Rayleigh fading (exponential F with parameter µ) and expo-
nential distribution of θ with parameter ν. Then

p̂c(r, λ1, T ) =
µ+ ν

ν
LI1(µT l(r))LW (µT l(r))− µ

ν
LI1((µ+ ν)T l(r))LW ((µ+ ν)T l(r)) ,

where LI1 is given by (16.6) with λ1 = λν/(µ + ν). If moreover W ≡ 0 and the OPL 3 model (16.1) is
assumed, then

p̂c(r, λ1, ν) =
µ+ ν

ν
exp{−λ1T

2/βr2K(β)} − µ

ν
exp
{
−λ1

(
(µ+ ν)T

µ

)2/β

r2K(β)
}
,

with λ1 as above.

Proof. Note that Φ1 is a Poisson p.p. of intensity λν/(ν + µ) and θ̃ is exponential of parameter µ + ν.
Using (16.41) we have hence

p̂c(r, λ1, T )

= E
[ T l(r)(I1+W )∫

0

(µ+ ν)e−(µ+ν)xe−µ(T l(r)(I
1+W )−x)dx

]
+ E

[ ∞∫
T l(r)(I1+W )

(µ+ ν)e−(µ+ν)xdx
]

=
µ+ ν

ν
E
[
e−µT l(r)(I1+W ) − e−(µ+ν)T l(r)(I1+W )

]
+ E

[
e−(µ+ν)T l(r)(I1+W )

]
,

which completes the proof.

Note that, as expected, when letting ν tend to infinity, under mild conditions, the first expression of the last
proposition tends to LI1(µT l(r))LW (µT l(r)), namely the formula (16.7) of plain Aloha with λ1 = λ or
equivalently p = 1.

16.4.2.2 General Case

For a general fading and distribution of θ (for instance deterministic θ, in which case obviously θ̃ = θ) the
following result can be proved along the same lines as Proposition 16.2.4.
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Proposition 16.4.2. Assume the Poisson bipolar network model of Section 16.2.1 with Opportunistic Aloha
MAC given by (2’) in Section 16.4.1 for some general distribution of F and θ (a GI1

W+M/GI2
model). Take the

same assumptions as in Proposition 16.2.4 except that the condition on F is replaced by the following one

• E[Fθ] <∞ and Fθ admits a square integrable density.

Then

p̂c(r, λ1, T ) =

∞∫
−∞

LI1 (2iπl(r)Ts)LW (2iπl(r)Ts)
LFθ(−2iπs)− 1

2iπs
ds . (16.42)

Proof. It follows immediately from Equation (16.40) and Corollary 12.2.2 in Volume I in the Appendix.

In the case of Rayleigh fading and deterministic θ, the last theorem can be used since Fθ is then the
convolution of a deterministic (equal to θ) and an exponential (with parameter µ) law, which satisfies the
assumptions of the proposition. In this case LFθ(s) = e−sθ µ

µ+s . Obviously it can be also used when θ is ex-
ponentially distributed with intensity ν. In particular for Rayleigh fading we have thenLFθ(s) = µ+ν

µ+ν+s
µ
µ+s .

Example 16.4.3. Assume Rayleigh fading. In Figure 16.2 we plot the density of successful transmissions
dsuc in function of the parameter ν for three different scenarios:

(1) Opportunistic Aloha with a deterministic threshold θ with value 1/ν, where dsuc =
λ1p̂c(r, λ1, ν), with λ1 = λe−

µ
ν and p̂c(r, λ1, ν) given by Proposition 16.4.2;

(2) Opportunistic Aloha with a random exponential threshold with parameter ν, where dsuc =
λ1p̂c(r, λ1, ν), with λ1 = λν

µ+ν and p̂c(r, λ, ν) given by Proposition 16.4.1;
(3) Plain Aloha where dsuc = 1/(eK(β)r2T 2/β) is the optimal density of successful transmissions

as obtained in Proposition 16.3.2 (this is of course a constant in ν).

In the particular case considered in this figure, the density of transmitters covering their target receiver is
approx. 56% larger in the optimal opportunistic scheme with exponential threshold than in plain Aloha and
134% larger in the deterministic case.

It may look surprising that the curves for the random exponential and the deterministic threshold cases
(1 and 2 above) differ so much. One should bear in mind the fact that the two associated MAPs are quite
different: p = ν

µ+ν in the former case and p = e−
µ
ν in the latter.

Example 16.4.4 (Rayleigh versus Rician fading). Figure 16.3 compares the density of success for
Rayleigh and Rician fading in the plain Aloha case. For this, we use the representations of Proposition
16.2.2 and Proposition 16.2.4 respectively. In the Rayleigh case, F is exponential with mean 1. In the Rician
case F = q + (1− q)F ′, with 0 ≤ q ≤ 1, where F ′ is exponential with mean 1 and q represents the part of
the energy received on the line-of-sight. The density of success is plotted in function of p. We again observe
that higher variances are beneficial for high densities of transmitters (which is here equivalent to the far field
case) and detrimental for low densities. However here, in each case, there is an optimal MAP, and when
properly optimized, Spatial Aloha does better for lower variances (i.e. for Rician fading with higher q).
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Fig. 16.3 Density of successful transmissions dsuc for plain Aloha in function of p in the Rayleigh and the Rician (with q = 1/2 and q = .9)
fading cases; λ = r = 1, W = 0, and T = 10dB, β = 4.

Figure 16.4 compares the density of success of Opportunistic Aloha for Rayleigh and Rician (q = .5)
fading. (The Rician case with q = .9 has thresholds θ larger than .9 and leads to very small densities
of success; it is not displayed.) The two curves are based on Proposition 16.4.2. Note first that for the two
considered cases the density of transmitters are quite different: (exp(−θ) in the Rayleigh case and exp(−2θ)
in the Rician case, for θ > 1/2), which explain why the shapes of the curves are so different. Here, we see
the opposite phenomenon compared to what was observed above: when properly optimized, Opportunistic
Aloha does better when the fading variance increases, namely does much better for Rayleigh fading than for
Rician fading with q = 0.5. This is in fact quite natural since the aim of Opportunistic Aloha is to leverage
diversity: more fading diversity/variance is hence beneficial to this protocol when properly tuned.
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(with q = 1/2) fading cases; other parameters as on Figure 16.3.

16.4.3 Shannon Throughput

We consider now the adaptive coding scenario with the Shannon throughput introduced in Section 16.2.3.
The following result on the throughput of Opportunistic Aloha is a corollary of Proposition 16.4.2 and
formula (16.13).

Corollary 16.4.5. Under assumptions of Proposition 16.4.2, the mean Shannon throughput of the typical
transmitting node can be expressed as:

τ̂ =

∞∫
0

∞∫
−∞

LI1 (2iπvsl(r))LW (2iπvsl(r))
LFθ(−2iπs)− 1

2iπs(1 + v)
dsdv . (16.43)

Since the assumptions of the last result hold in both deterministic and exponential θ case given Rayleigh
fading, we can use (16.43) to evaluate the density of throughput in both cases.

Example 16.4.6. Figure 16.5 plots the density of throughput dthrou for Rayleigh fading and the same three
cases of θ as in Example 16.4.3. In the particular case considered in this figure, the density of throughput is
approx. 48% larger in the optimal opportunistic scheme with exponential threshold than in plain Aloha and
93% larger in the deterministic case.

Remark: The deterministic threshold case seems to always outperform the exponential threshold case when
both are tuned optimally.

16.5 Beyond the Poisson Bipolar Model

In this section we will consider a few possible scenarios where the receiver of a given transmitter is not
necessarily at distance r, as in the Poisson bipolar model (cf. Section 16.2.1) considered so far. In practice,
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some routing algorithm (cf. Section 24.3.1.2) specifies the receivers(s) (relay node(s)) of each given trans-
mitter. The joint analysis and the joint design of MAC and routing are difficult tasks even if we assume
the simplest MAC (Aloha). We will come back to such cross-layer routing schemes in Chapter 21. In this
section we make a first step in this direction by proposing models based on simplifying assumptions on the
routing layer. Specifically, we will assume one of the following routing principles:

• Each transmitter selects its receiver as close by as possible. We saw in Section 16.3.1.4, in one
of the two-step optimizations (with respect to λ and then r), that it is in some sense best for a
transmitter to select his receiver as close by as possible. This justifies the class of roting models
which is considered in Section 16.5.1 and which consist in making as small as possible hops.
• Each transmitter targets all available (potential) receivers. This assumption, of interest in multi-

cast scenarios, will be considered in Section 16.5.2.
• Each transmitter targets the most distant successful receiver. In this scenario, as in the previous

one, each transmitter targets all available receivers; however, some selection policy is applied
among the nodes which successfully receive the packet. One selects the node optimizing the
packet progress in a given direction as the relay node. All other nodes will discard the packet
(this is not a broadcast scheme). This opportunistic scenario, in which no specific receiver is
prescribed in advance by the routing algorithm, and where one selects the best hop at the given
time step, will be considered in Section 16.5.3.

The above routing principles can be considered in conjunction with the following assumptions regarding
receiver locations.

• The independent receiver model, where the potential receivers form a stationary p.p. Φ0 with
intensity λ0, independent of the transmitter p.p. Φ. This model, considered in Section 16.5.1.1,
corresponds to the situation where the nodes of Φ transmit to randomly located nodes (access
points or relay stations) which are external to the MANET. Several further specifications of this
model are of interest. For example:
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– The Poisson independent receiver model, where Φ0 is some homogeneous Poisson p.p.

– The Honeycomb independent receiver model, where Φ0 is some stationary hexagonal
grid; cf. Example 4.2.5 in Volume I.

– The Poisson + periodic independent receiver model, where Φ0 is the superposition of two
independent point processes, a Poisson p.p. of intensity λ0− ε > 0, and a stationary grid
(e.g. the hexagonal one) of intensity ε > 0. The presence of the periodic stations provides
an upper-bound on the distance to the nearest neighbor, which can be arbitrarily large in
the pure Poisson receiver model. We will clearly see the advantage of this solution in
Section 16.6.

• The MANET receiver model, where the transmitters of the MANET Φ choose their receivers in
the original set Φ of nodes of the MANET. Two scenarios will be considered in Section 16.5.1.2.

– The nodes of Φ not allowed to access the shared medium form the set of potential re-
ceivers; i.e., we have Φ0 = Φ0 = Φ \ Φ1. Note that this scenario assumes some kind of
MAC-aware routing, since the pattern of actual receivers depends on the current MAC
status of the nodes in MANET.

– All the nodes of the MANET are considered as potential receivers; i.e. Φ0 = Φ. In this
case each transmitter targets some nodes in the MAMET without knowing their MAC
status. This assumption requires additional specification of what happens if the picked
receiver is also transmitting.

16.5.1 Nearest Receiver Models

Assume that the potential receivers form some stationary p.p. Φ0, which is either external to Φ as in the
independent receiver model or a subset of Φ as in the MANET receiver model.

The common assumption of the present section is that each transmitter selects the nearest point of Φ0 as
its receiver.

Formally, this consists in replacing the assumption concerning the distribution of {yi} in (3) of the
definition of the Poisson bipolar model of Section 16.2.1 by:

(3’) The receiver yi of the transmitterXi ∈ Φ is the point yi = Y ∗i = arg minYi∈Φ0,Yi 6=Xi{|Yi−Xi|}.

In such a generic nearest receiver (NR) routing, we have to assume that the arg min is almost surely well
defined. The (technical) condition Yi 6= Xi that the receiver is not located at the same place as its trans-
mitter will automatically be satisfied for all the examples considered in what follows, except the model of
Section 16.5.1.2.

Note that Φ̃′ = {Xi, ei, yi = Y ∗i ,Fi} is no longer an independently marked p.p., since the marks {Y ∗i }
jointly depend on Φ0. By specifying the joint distribution of Φ and Φ0 we will have particular incarnations
of this generic model.

NR routing also requires some additional specifications on what happens if two or more transmitters
pick the same receiver. Our analysis applies to the following two situations: either the receivers are capable
of receiving more than one (in fact, an arbitrarily large) number of transmissions at the same time, or T > 1,
which excludes such multiple receptions (cf. Remark 16.5.7).
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16.5.1.1 Independent Receiver Models

In the independent receiver model, the nearest receiver yi is almost surely well defined for all i (cf.
Lemma 4.2.2 in Volume I).

It is easy to calculate the probability of successful reception pc(INR, λ1, T ) in this independent nearest
receiver (INR) model, provided one knows the distribution of the distance from the orign to the nearest
point of Φ0. For example:

Proposition 16.5.1. The coverage probability in the Poisson INR model of intensity λ0 is equal to

pc(Poisson INR, λ1, T ) = 2πλ0

∞∫
0

r exp(−λ0πr
2)pc(r, λp, T ) dr , (16.44)

where pc(r, λp, T ) is the probability of coverage at distance r evaluated for the Poisson bipolar model under
the same assumptions except for the receiver location.

Proof. One can easily evaluate the (tail of the) distribution function of the distance from the transmitter
X0 = 0 to its receiver Y ∗0 under P0 (recall, P0 is the Palm probability associated to the p.p. Φ of the nodes
in MANET; cf. Section 16.2.2)

P0{ |Y ∗0 | > r | e0 = 1 } = P0{ min
Yi∈Φ0

{|Yi|} > r | e0 = 1 }

= P0{Φ0{B0(r)} = 0 | e0 = 1 }
= P{Φ0{B0(r)} = 0 } = e−λ0πr2

, (16.45)

where Bx(r) is the ball of radius r centered at x and where the last but one equality is due to the indepen-
dence of Φ0 and Φ (cf. also Example 1.4.7 in Volume I). Thus the result follows when conditioning on |Y ∗0 |
and using the independence of Φ0 and Φ.

In the same vein, for the independent honeycomb receiver model

pc(Hex INR, λ1, T ) =
∫
C

pc(|x|, λp, T ) dx , (16.46)

where C is the hexagon centered at the origin of the plane of side length ∆ =
√

(2π
√

3)/λ0.
The other MANET performance metrics considered for the bipolar network model can be evaluated as

well. The general formulas (16.13), (16.14) for the mean Shannon throughput and its Laplace transforms
remain true with the appropriate coverage probabilities. Similarly the expressions (16.21) and (16.23), for
the spatial density of success and of throughput, remain valid. However, the evaluation of the mean progress
and transport, as well as their densities have to be modified, due to the fact that the distance to the receiver
is now a random variable. For example, for the Poisson INR model, we have the following corollary from
the proof of Proposition 16.5.1.

Proposition 16.5.2. In the Poisson INR model of intensity λ0, the mean progress and the mean transport
are respectively equal to:

prog(Poisson INR, λ1, T ) = 2πλ0

∞∫
0

r2 exp(−λ0πr
2)pc(r, λp, T ) dr , (16.47)

and
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trans(Poisson INR, λ1) = 2πλ0

∞∫
0

r2 exp(−λ0πr
2)τ(r, λ1) dr . (16.48)

With such modified mean progress and transport, the formulas for the spatial densities can be obtained by
multiplication by λ1 (cf. formulas (16.22) and (16.24) for the original bipolar model).

16.5.1.2 MANET Receiver Models

In the MANET receiver model, the following two situations aiming at making the smallest possible hops are
of particular interest:

• In the MANET Nearest Receiver (MNR) model, each transmitter picks the nearest node of Φ
which is a receiver at the considered time slot as its next relay.
• In the MANET Nearest Neighbor (MNN) model, we assume that each receiver picks the nearest

node of Φ as its receiver, regardless of whether the latter is authorized to emit or not at the
considered time slot. As already mentioned, this requires additional specification of what happens
if the picked receiver is also transmitting (i.e. if yi ∈ Φ1). For simplicity, in what follows we
suppose that T > 1, which makes the successful reception by the node that is transmitting
impossible (cf. Remark 16.5.7).

From the properties of independent thinnings of Poisson p.p. (cf. Proposition 1.3.5 in Volume I), for the
Aloha MAC, at a given time slot, the transmitters Φ1 and the nodes which are not authorized to transmit Φ0

form two independent Poisson point processes. Thus, the probability of successful reception in the MNR
model is equal to that for the Poisson INR model:

pc(MNR, λ1, T ) = pc(Poisson INR, λ1, T ) , (16.49)

with λ0 = (1− p)λ. This extends to other characteristics (mean progress, mean transport, spatial densities)
considered in Section 16.5.1.1.

In order to evaluate the probability of successful reception in the MNN model, we also condition on
the location of the nearest neighbor y0 = Y ∗0 . However this conditioning modifies the distribution of the
interferrers.

Proposition 16.5.3. The coverage probability in the MNN model is equal to

pc(MNN, λ1, T ) = 2πλp(1− p)
∞∫

0

r exp(−λπr2)p∗c(r, λp, T ) dr ,

where the conditional coverage probability p∗c(r, λp, T ) given the nearest node is at the distcnce r and is a
receiver can be expressed using independent random variables F,W, I∗1(r) as

p∗c(r, λp, T ) = P{F ≥ T l(r)(I∗1(r) +W ) }

with the shot-noise I∗1(r) having for Laplace transform

LI∗1(r)(s) = exp
{
−λ1π

∞∫
0

t
(

1− LF (s/l(t))
)

dt+ λ1

π/2∫
−π/2

∞∫
2r cos(θ)

t
(

1− LF (s/l(t))
)

dtdθ
}
. (16.50)
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Proof. We condition on the location of the nearest neighbor y0 = Y ∗0 of X0 = 0 under P0. By Slivnyak’s
theorem (cf. Theorem 1.4.5 in Volume I and also Remark 2.1.7 in Volume I), we know that, under P0, the
nodes of Φ \ {X0} are distributed as those of the homogeneous Poisson p.p. Thus the distance |Y ∗0 −X0| =
|Y ∗0 | has the same distribution as in the Poisson INR model with λ0 = λ; see (16.45). However, in the MNN
model, given some particular location of y0 = Y ∗0 , one has to take the following fact into account: there are
no MANET nodes (thus, in particular, no interferrers) in B0(|y0|). Consequently, under P0, given Y ∗0 = y0,
the value of I1

0 in (16.2) is no longer distributed as the generic SN I1 of Section 16.2.2, which was driven by
the stationary Poisson p.p. of intensity λ1, but as the SN of Φ1 given that there are no nodes of Φ inB0(|y0|).
Note that the location y0 at which we evaluate this last SN is on the boundary (and not in the center) of the
empty ball. By the strong Markov property of Poisson p.p. (cf. Example 1.5.2 and Proposition 1.5.3 in
Volume I), the distribution of a Poisson p.p. given that B0(|y0|) is empty is equal to the distribution of the
(non-homogeneous) Poisson p.p. with intensity equal to 0 in B0(|y0|) and λ1 outside this ball. Putting these
arguments together, and exploiting the rotation invariance of the picture concludes the proof.

Other characteristics can be evaluated in a way similar to what was done for the Poisson INR model in
Section 16.5.1.1.

In what follwos we will be interested in MNR model. In particular, in this model we want to optimize the
density of successful transmissions dsuc(MNR,λp, T ) and the density of progress dprog(MNR,λp, T ) in
the MAP p. Recall from Section 16.3.1.4, that the joint optimization of dprog(MNR,λp, T ) in r and λ (or
in p given λ) in the Poisson bipolar model degenerate. For simplicity we consider only Rayleigh fading. The
following result follows from (16.8).

Proposition 16.5.4. Consider the MNR model with Rayleigh fading, OPL 3 path loss model and no noise
(W = 0). The density of successful transmission and the density of progress in this model are equal to

dsuc(MNR,λp, T ) =
λp(1− p)

(1− p) + pT 2/βK(β)/π
, (16.51)

dprog(MNR,λp, T ) =

√
λp(1− p)

2
(

(1− p) + pT 2/βK(β)/π
)3/2

. (16.52)

It is easy to see that both densities dsuc and dprog attain their maximal values for some 0 < p < 1 that does
not depend on λ For example the density of success admits the following optimal tuning of the parameter p.

Corollary 16.5.5. Under the assumptions of Proposition 16.5.4 we have

arg max
0≤p≤1

dsuc(MNR,λp, T ) =
1

1 + T 1/β
√
K(β)/π

,

max
0≤p≤1

dsuc(MNR,λp, T ) =
λ(

1 + 1

T 1/β
√
K(β)/π

)(
1 + T 1/β

√
K(β)/π

) .
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16.5.2 Multicast Mode

In this section we consider the situation where each transmitter broadcasts some common data to many
receiving nodes (see Chapter 24). More precisely, as in the MNR model considered above, we assume that
the potential receivers Φ0 = Φ0 = Φ \ Φ1 are those nodes of the MANET Φ which are not authorized to
transmit at the considered time slot (a similar analysis can be done for other receiver models) and that each
transmitter of this time slot targets all the potential receivers of Φ0.

The model features an i.m. p.p. Φ̃ = {Xi, ei,Fi} with Poisson nodes Φ = {Xi} and their MAC indica-
tors {ei} as in Section 16.2.1, except that no prescribed receivers {yi} are considered; the virtual powers F ji
have the following modified interpretation:

(4’) F ji denotes the virtual power emitted by node i (provided ei = 1) towards node j in Φ0.

16.5.2.1 SINR-neighbors

Let us consider the coverage scenario of Section 16.2.2 in which a successful transmission requires a SINR
not smaller than some threshold T . More precisely, adapting Definition 16.2.1 to the present scenario, we
will say that Xj successfully captures the signal from Xi if

SINRij =
F ji /l(|Xi −Xj |)

W + I1
ij

≥ T , (16.53)

where I1
ij =

∑
Xk∈Φ1,k 6=i,j F

j
k/l(|Xk −Xj |).

Definition 16.5.6. Define the set of SINR-neighbors V (Xi) = V (Xi, Φ̃) of Xi ∈ Φ as the union of {Xi}
and of the subset of potential receivers of Φ0 which successfully capture the packet transmitted by Xi (if Xi

transmits at the given time slot):

V (Xi) = {Xi} ∪

{
{Xj : Xj ∈ Φ0 s.t. δ(Xi, Xj) = 1} ifXi ∈ Φ1

∅ otherwise,
(16.54)

with δ(Xi, Xj) the indicator of the SINR condition (16.53).

Remark 16.5.7. Nothing guarantees that the receivers of two different transmitters are different, so that
unless a receiver can capture two different packets at the same time, a new type of collision should be taken
into account. However, if T ≥ 1, no two transmitters will ever be successful with the same receiver. Indeed,
it follows from Lemma 16.5.9 that when T ≥ 1 (which is often the case in practice), if X1 and X2 both
belong to Φ1, then V (X1) ∩ V (X2) = ∅. Hence, even in the case where receivers cannot capture two
different packets at the same time, this type of collision actually never happens for such T .

In what follows we focus on the properties of the set of SINR neighbors of the typical node of the
MANET. For this we define the directed graph GSINR with set of nodes Φ and with directed edges connecting
each Xi to each of its neighbors V (Xi) (this graph was considered in Chapter 8 in Volume I).

The number Houti = card(V (Xi)) of SINR neighbors of node Xi in GSINR will be called the out-degree
of this node. The out-degree of Xi is the number of nodes which receive the packet transmitted by node Xi
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(if Xi transmits) plus 1 (due to the convention that Xi ∈ V (Xi)). Similarly, the in-degree Hini of Xj is the
number of transmitters captured by Xi at the given time slot plus 1.

Note that Houti and Hini may be considered as new marks of the nodes of Φ and that the process Φ̃
enriched by these mark is still stationary (cf. Definition 2.1.4 in Volume I).

Denote by hout and hin the expected out- and in-degree, respectively, of the typical node of Φ̃:

hout = E0[Hout0 ], hin = E0[Hin0 ].

Notice that hout (resp. hin) is also the spatial average of the node out-degrees (resp. in-degree) due to the
fact that our i.m. Poisson p.p. Φ̃ is ergodic.

The first key result regarding the mean degrees of GSINR follows from the mass transport principle:

Proposition 16.5.8. The mean in-degree of the typical node of graph GSINR and its mean out-degree are
equal; i.e. hin = hout = h.

Proof. This result should not be surprising. Each directed edge has two ends; call them respectively edge-
source and edge-destination. Heuristically (and this argument can be made precise using ergodic theory),
hin corresponds to the average number of edge-destinations per node, while hout the average number of
edge-sources per node. Since one edge-source corresponds exactly to one edge-destination both averages
should coincide.

We will prove this result formally using stationarity property of the marked point process
{Xi, ei,Houti ,Hini }; 2. Denote by Z2 the integer lattice. By Campbell’s formula (2.9 in Volume I) we have

λhout = λ

∫
[0,1)2

E0[Hout0 ] dx

= E
[ ∑
Xi∈[0,1)2

Houti

]
=

∑
v∈Z

E
[ ∑
Xi∈[0,1)2

∑
Xj∈[0,1)2+v

(1 + ei(1− ej)δ(Xi, Xj))
]
.

By the stationarity of the underlying marked point process, for each v ∈ Z2 we have

E
[ ∑
Xi∈[0,1)2

∑
Xj∈[0,1)2+v

(1 + ei(1− ej)δ(Xi, Xj))
]

= E
[ ∑
Xi∈[0,1)2−v

∑
Xj∈[0,1)2

(1 + ei(1− ej)δ(Xi, Xj))
]

and consequently

λhout =
∑
v∈Z

E
[ ∑
Xi∈[0,1)2−v

∑
Xj∈[0,1)2

(1 + ei(1− ej)δ(Xi, Xj))
]

= E
[ ∑
Xj∈[0,1)2

Hini
]

= λhin ,

which concludes the proof, since 0 < λ <∞.

2and an argument similar to this used in Section 4.3 in Volume I in the proof of the Neveu exchange formula
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Remark: The last lemma does not use the Poisson assumption. The result is applicable to all stationary i.m.
point processes with a finite intensity.

Before evaluating the mean (in- equal to out-) degree h of GSINR, let us show that it is finite. This is a
consequence of the following lemma where we show thatHini is bounded from above by a constant.

Lemma 16.5.9. For any of the OPL models OPL 1–OPL 3, the in-degree of any node of GSINR is bounded
from above by ξ = d1/T e+ 1.

Proof. Assume there is an edge to node Xj from nodes (Xi1 , . . . , Xik), for some k > 1. Then for all
p = 1, . . . , k,

F jip
l(|Xip −Xj |)

>
T

1 + T

 k∑
q=1

F jiq
l(|Xiq −Xj |)

 .

The strict inequality stems from the fact that the interference created by nodes other than (Xi1 , . . . , Xik)
is a.s. positive in our model for any attenuation function with infinite support. When summing up all these
inequalities, one gets that Tk < 1 + T , that is k ≤ d1/T e. Since, by our convention, the in-degree of an
isolated node is equal to 1 (there is an edge from X to X for all X) the in-degree of any node is bounded
from above by ξ = d1/T e+ 1.

Notice that the proof is based on arguments similar to those leading to the so called pole capacity of a
cellular network (cf. Example 6.2.3 in Volume I). Again, the Poisson assumption is not used.

Remark: The fact that the mean in and out-degree of the typical node are equal does not imply that the
distributions ofHout0 andHin0 are equal under P0. The in-degree of a node is a.s. bounded by some constant.
This differs significantly from what happens for its out-degree, which is a.s. finite (since its mean is finite)
but has a distribution with an infinite support on N. To understand why the last statement holds true, observe
that, under P0, with a positive probability, Φ̃ may have an arbitrary large cluster of receivers Xj (nodes
marked ej = 0) close to the transmitter X0 = 0 (marked e0 = 1) with the shot-noise at all these receivers
small enough to make SINR0j ≥ T .

Let us now evaluate h.

Proposition 16.5.10. The mean degree in GSINR is equal to

h = E0[card(V (0))] = 1 + 2πλp(1− p)
∞∫

0

rpc(r, λ1, T ) dr ,

where pc(r, λ1, T ) is the probability of coverage at distance r for the Poisson bipolar model.

Proof. Consider the typical node X0 = 0 under P0. We have

E0[card(V (0))] = 1 + E0
[
e0

∑
Φ03Xj 6=0

(1− ej)δ(0, Xj)
]

= 1 + E0
[
e0

∑
Φ03Xj 6=0

(1− ej)1(F j0 ≥ T l(|Xj |)(W + I1
0j)
]

(16.55)
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Now, we would like to use Campbell’s formula to replace the summation over points of Φ0 by an integral
with respect to the Lebesgue measure. However, under P0, our i.m. p.p. Φ̃ is not stationary and thus we
cannot directly use formula (2.9 in Volume I). Recall from the discussion in Section 16.2.2 that, under P0,
the nodes of our Poisson MANET and their marks follow the distribution of Φ̃∪ {(X0 = 0, e0,F0)}, where
Φ̃ is a copy of the original Poisson p.p. representing the stationary MANET and (e0,F0) is a new copy of
the mark independent of everything else and distributed like all other marks (ei,Fi) of Φ̃ under P. In view
of the definition of I1

ij (see after (16.53)), I1
0j in (16.55) and the mark of the point X0 = 0 are independent;

we can consider I1
0j as a mark I

′1
j of Xj . Also, considering F j0 = F

′j as a new mark of Xj ∈ Φ̃ (note
that the sequence {F j0 : j} is i.i.d.) and exploiting independence, we can rewrite (16.55) as follows using
Campbell’s formula (2.9 in Volume I):

E0[card(V (0))] = 1 + E0
[
e0

∑
Φ03Xj 6=0

(1− ej)1(F j0 ≥ T l(|Xj |)(W + I1
0j)
]

= 1 + pE[
∑

Φ03Xj

(1− ej)1(F
′j ≥ T l(|Xj |)(W + I

′1
j )
]

= 1 + λp(1− p)
∫
R2

P0{F ′0 ≥ T l(|x|)(W + I
′1) } dx

= 1 + 2πλp(1− p)
∞∫

0

rpc(r, λ1, T ) dr ,

where the last equality follows from the fact that F
′0, I

′1 have the same distributions as the generic variables
F, I1 considered in Section 16.2.2.

In the case of Rayleigh fading, by Proposition 16.2.2, we obtain the following more explicit result:

Corollary 16.5.11. For Rayleigh fading, the mean degree of the typical node of the graph GSINR is equal to

h = E0[card(V (0))] = 1 + λp(1− p)2π
∞∫

0

LW (µT l(r)) exp
{
−2πλp

∞∫
0

v

1 + l(v)/(T l(r))
dv
}
rdr .

In particular, for W ≡ 0 and OPL 3,

h = 1 +
(1− p)π
T 2/βK(β)

, (16.56)

where K(β) is defined in (16.9).

We consider now the case where F has a general distribution.
Recall from Section 16.2.4 that p̄c(r) = pc(r, 1, T ) denotes the value of the probability of coverage

calculated in the Poisson bipolar MANET model with T ≡ 1, λ1 = 1,W ≡ 0 and normalized virtual
powers distributed as F̄ = µF .

Using Proposition 16.5.10 and the scaling properties of the coverage probability expressed in Proposi-
tion 16.2.9, we get:
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Corollary 16.5.12. Assume W ≡ 0, OPL 3 and a general distribution of F . The mean degree of the typical
node of the graph GSINR is equal to

h = 1 +
(1− p)2π
T 2/β

∞∫
0

sp̄c(s) ds , (16.57)

where the constant
∫∞

0 sp̄c(s) ds does not depend on any parameter of the model other than the distribution
of the normalized virtual power F̄ .

This gives the dependence of the mean degree h in function of the basic model parameters. In particular,
we have the same invariance w.r.t. the node density λ as in the coverage probability.

16.5.2.2 Shannon Multicast Throughput

Consider a multicast scenario with an adaptive coding scheme leading to the Shannon throughput introduced
in Section 16.2.3. More precisely, we suppose that each transmitter Xi, ei = 1 broadcasts some information
using a multi-layer coding scheme that allows each receiver Xj , ej = 0 to receive this information with the
throughput Tij = log(1 + SINRij) (for instance in video broadcast, if the throughput is high, several layers
are send and the video signal is received with high resolution; if it is low, less layers are sent and the quality
is lower). Denote by T outi = ei

∑
Xj∈Φ0 Tij the total rate with which node Xi floods the network when it

is transmitting. Similarly, denote by T ini = (1 − ei)
∑

X∈Φ1 Tji the total rate with which receiver Xi can
receive information from all MANET nodes. Let τ in = E0[T in0 ] and τ out = E0[T out0 ].

The following result is another example of the mass transport principle and can be proved along the
same lines as Proposition 16.5.8.

Proposition 16.5.13. For the above multicast MANET model, τ in = τ out = τmcast.

The mean total multicast rate τmcast can be evaluated in terms of the mean Shannon throughput in
the corresponding bipolar model. The following result can be proved along the same lines as Proposi-
tion 16.5.10.

Proposition 16.5.14. The mean total throughput of a typical node in the multicast MANET model is equal
to

τmcast = 2πλp(1− p)
∞∫

0

rτ(r, λ1) dr ,

where τ(r, λ1) is the Shannon throughput evaluated for the Poisson bipolar model.

Using formula (16.13) and Proposition 16.5.10, τmcast can be further related to the coverage probability
pc(r, λ1, ·) and (interchanging the order of integration) to the mean degree of the multicast graph GSINR. In
particular, the following result follows from Proposition 16.5.14, formula (16.13) and the scaling properties
of the coverage probability expressed in Proposition 16.2.9.
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Corollary 16.5.15. Assume W ≡ 0, OPL 3 and a general distribution of F . The mean total throughput of
typical node in the multicast MANET model described above is equal to

τmcast = (1− p)βK(β)

∞∫
0

sp̄c(s) ds , (16.58)

where K(β) is defined in (16.9) and the constants
∫∞

0 sp̄c(s) ds do not depend on any parameter of the
model other than the distribution of the normalized virtual power F̄ . In particular, for Rayleigh fading
(exponential F )

τmcast =
(1− p)β

2
. (16.59)

16.5.3 Opportunistic Receivers – MAC and Routing Cross-Layer Optimization

In this section we focus on:

• The outage scenario, where a transmission requires a SINR larger than some threshold T ;
• The MANET receiver scenario, where the nodes Φ0 = Φ0 = Φ \ Φ1 which are not allowed to

access the shared medium form the set of potential receivers;
• The opportunistic routing scenario, where the receiver of a given transmitter is not prescribed in

advance but rather selected so as to maximize the packet progress in a given direction.

16.5.3.1 Receivers Maximizing Instantaneous Directional Progress

To consider directional progress we need to extend the i.m. p.p. Φ̃ by introducing marks di; the latter are
i.i.d. unit vectors in R2 representing directions in which the nodes aim to send their packets. The MANET
model considered in this section assumes an i.m. p.p. Φ̃ = {Xi, ei, di,Fi} with Poisson nodes Φ = {Xi}
and their MAC indicators {ei} as in Section 16.2.1, with the random cross-fading model with virtual powers
Fi (see (4’) of Section 16.5.2). In the opportunistic receiver selection:

(3”) The receiver yi of the transmitter Xi ∈ Φ is its SINR neighbor (cf. Definition 16.5.6) that maxi-
mizes the effective progress of the transmitted packet in the direction di

yi = arg max
Xj∈V (Xi)

{〈Xj −Xi, di〉} . (16.60)

Note that V (Xj) is non-empty (Xi ∈ V (Xi)) and almost surely finite (cf. Lemma 16.5.9). Then the
“arg max” in the definition of yi is almost surely well defined for all i (cf. also Lemma 4.2.2 in Volume I).

A major difference between this opportunistic mechanism and all previously considered cases is that it
has much more chance to lead to a successful transmission: for instance, assume that the direction d0 of node
X0 = 0 (under P0) is that of the x axis; then as soon as X0 has SINR neighbors with a positive abscissa,
the transmission is successful. Note that since Xi ∈ V (Xi) the maximal value of 〈Xj −Xi, di〉 in (16.60)
is at least 0 and the case when the arg max is attained on Xi is considered as an unsuccessful transmission.

Denote by Di the effective directional progress of the packet transmitted in the given time slot by trans-
mitter Xi:

Di = 〈yi −Xi, di〉 = max
Xj∈Φ0

{〈Xj −Xi, di〉+δ(Xi, Xj)} , (16.61)
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where a+ = a1(a > 0).
In what follows we focus on the mean effective directional progress of the packet transmitted by the

typical node of the MANET given it is transmitting in the tagged time slot:

prog(λ, p) = E0[D0 | e0 = 1]

and on the spatial density of this progress:

dprog(λ, p) = λp prog(λ, p) = λE0[D0] ,

where the notation is meant to stress the difference with the effective progress (16.19) and its density (16.22)
as considered in the bipolar network model.

16.5.3.2 Optimization of the Spatial Density of Directional Progress

One of the main objects of this subsection is

p∗ = arg max
0<p≤1

{dprog(λ, p)} , (16.62)

whenever the argmax is well defined.
In § 16.3.1.4 we saw that in the Poisson bipolar MANET model, the joint optimization of the density of

progress dprog(r, λ1, T ) in p and in the transmission distance r led to degenerate answers due to the fact that
in this model r is not related to the node density.

In contrast, the next lemma shows that the optimization of dprog(λ, p) w.r.t. p is not degenerate (i.e.
p = 0 is not the optimal solution). For simplicity we limit ourselves to the OPL 3 model and to Rayleigh
fading. This result can be extended under some conditions on moments of F and/or W .

Lemma 16.5.16. Assume the OPL 3 model and Rayleigh fading. Then limp→0 dprog(λ, p) = 0 and
dprog(λ, 1) = 0.

Proof. Note that D0 increases when the thermal noise decreases. Thus it is enough to prove the result for
W = 0, which we assume in what follows. We have

E0[D0 | e0 = 1] =

∞∫
0

P0{D0 > s | e0 = 1 } ds

=

∞∫
0

P0{V (0) ∩Bc
0(s) 6= ∅ | e0 = 1 } ds

≤
∞∫

0

min
{

1,E0[card(V (0) ∩Bc
0(s)) | e0 = 1]

}
ds . (16.63)

Following the same arguments as used to express E0[card(V (0))] in the proof of Proposition 16.5.10 and
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expression (16.8) we have

E0[card(V (0) ∩Bc
0(s)) | e0 = 1] = 2πλ(1− p)

∞∫
s

rpc(r, λ1, T ) dr

= 2πλ(1− p)
∞∫
s

r exp(−λpr2T 2/βK(β)) dr

=
π(1− p)
pT 2/βK(β)

exp(−λps2T 2/βK(β)) .

The last expression is smaller than 1 for

s ≥ s0(p) =

√
1

λpT 2/βK(β)

(
log
( π(1− p)
pT 2/βK(β)

))+

.

Using (16.63) we obtain

λpE0[D0 | e0 = 1] ≤ λps0(p) +
πλ(1− p)
T 2/βK(β)

∞∫
s0(p)

exp(−λps2T 2/βK(β)) ds

= λps0(p) +
π
√
λ(1− p)

√
pT 3/βK(β)3/2

∞∫
s0(p)
√
λpT 2/βK(β)

e−s
2

ds . (16.64)

Note that s0(1) = 0 and
∫∞

0 e−s
2

ds < ∞; thus expression (16.64) is equal to 0 for p = 1. In order
to evaluate the limit of this expression when p → 0 we will use the inequality

∫∞
x e−s

2
ds ≤ e−x

2
that

is true for all x ≥ 1/2. (To prove it use the fact that e−s
2 ≤ e−x

2+x−s for s ≥ x ≥ 1/2.) Note that
√
ps0(p) ∼

√
log(1/p)→∞ when p→ 0. Thus using (16.64) for sufficiently small p we have

λpE0[D0 | e0 = 1] ≤ λps0(p) +
π
√
λ(1− p)

√
pT 3/βK(β)3/2

exp
(
−s2

0(p)λpT 2/βK(β)
)

= λps0(p) +
√
λp

T 1/βK(β)1/2

which tends to 0 when p→ 0 since ps0(p) ∼
√
p log(1/p)→ 0. This completes the proof.

The following invariance of p∗ with respect to λ can be proved using some refinements of the arguments
used in the proof of Proposition 16.2.9.

Proposition 16.5.17. Assume W = 0, OPL 3 and a general distribution for F . Then the maximal density
of directional progress dprog(λ, p) is attained for the MAP p∗ = p∗(T ) satisfying√

p∗H(p∗, T ) = sup
0≤p≤1

√
pH(p, T ),

for some function H(p, T ) that does not depend on λ.
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Remark: Note that this proposition has an important practical implication: it implies that the parameter p
can be optimally tuned regardless of the spatial density of network nodes.

Proof. (of Proposition 16.5.17) The nodes of Poisson p.p. Φ̃ = {Xi} with intensity λ can be represented
as {Xi = X ′i/

√
λ }, where Φ′ = {X ′i} is a Poisson with intensity 1 (cf. Example 1.3.12 in Volume I). Let

Φ̃′ and Φ̃ be the respective marked versions of these p.ps. with (path-wise) the same marks (i.e. the mark of
each X ′i is equal to that of Xi). Note that under our OPL 3 and W = 0 assumptions, the SINR (in fact the
SIR) is invariant with respect dilations of the points of the p.p. Indeed,

l(|X ′i/
√
λ−X ′j/

√
λ|) = λβ/2l(|X ′i −X ′j |)

and the factor λβ/2 cancels out in the numerator and the denominator of the SINR expression in caseW = 0.
This means that the SINR neighbors V (Xi, Φ̃) are equal to 1/

√
λV (X ′i, Φ̃

′). Moreover, the dilation (our
scaling) is a conformal mapping (preserves angles). Consequently, the receivers yi chosen in V (Xi) accord-
ing to the maximal directional progress principle (16.60) are equal to y′i/

√
λ, where y′i are chosen according

to the same principle in V (X ′i, Φ̃
′). This concludes the proof.

The functions dprog(λ, p) andH(p, T ) are not known in closed form. In the next section we will develop
some bounds for them.

16.5.3.3 Modified Progress — Bounds on Mean Progress

Consider the following function of Φ̃ under P0, that we call modified progress.

D̃0 = max
Xj∈Φ0

{〈Xj , d0〉+pc(|Xj |, λp, T )} . (16.65)

The only difference between progress D0 and modified progress D̃0 is that one replaces the (random)
indicator δ(0, Xj) by the expectation of this indicator given Xj , namely pc(|Xj |, λ1, T ) in the max.
This modification will allow us to evaluate the mean values of p̃rog(λ, p) = E0[D̃0 | e0 = 1] and
dgprog(λ, p) = λp p̃rog(λ, p). It is also of practical interest as the latter gives a lower bound to the for-
mer:

Proposition 16.5.18. For all λ, p we have prog(λ, p) ≥ p̃rog(λ, p). In consequence dprog(λ, p) ≥
dgprog(λ, p).

Proof. Recall that by the property of the independent thinning of Poisson p.p. (cf. Proposition 1.3.5 in
Volume I), Φ̃1 and Φ̃0 form two independent Poisson p.p’s. Since under P0, givenXj , the indicator δ(0, Xj)
is a functional of Φ̃1 we have

E[D̃ | e0 = 1] = E0
[

max
Xj∈Φ0

{
〈Xj , di〉+pc(|Xj |, λp, T )

} ∣∣∣ e0 = 1
]

= E0
[

max
Xj∈Φ0

{
〈Xj , di〉+E0[δ(0, Xj) |Φ0]

} ∣∣∣ e0 = 1
]

= E0
[

max
Xj∈Φ0

{
E0[〈Xj , di〉+δ(0, Xj) |Φ0]

} ∣∣∣ e0 = 1
]

≤ E0
[
E0
[

max
Xj∈Φ0

{
〈Xj , di〉+δ(0, Xj)

} ∣∣∣Φ0
] ∣∣∣ e0 = 1

]
= E0[D0 | e0 = 1] .
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where the last but one step follows from the following simple fact: for any r.vs Z1, Z2, . . . we have
maxi{E[Zi]} ≤ maxi{E[maxi{Zi}]} = maxiE[maxi{Zi}].

We now focus on the evaluation of p̃rog(λ, p). For this, we will use the notation introduced in Sec-
tion 16.3.1.3, and in particular: rmax = rmax(λp) = arg maxr≥0{prog(r, λp, T )} and ρ = ρ(λp) =
prog(rmax(λ, p), λp, T )}.

For z ∈ [0, 1], let

G(z) =
2
r2

max

∫
{r≥0:ρz/(rpc(r))<1}

r arccos
( ρz

rpc(r)

)
dr , (16.66)

where the arguments pλ and T are omitted.

Remark 16.5.19. For the GI
0+M/GI model with OPL 3, Proposition 16.3.6 shows that G(z) does not depend

on the model parameters λ, p, T, µ. Indeed, in this case

G(z) =
2

const3

∫
{r≥0:const4z/(rp̄c(r))<1}

r arccos
(

const4z
rp̄c(r)

)
dr ,

with p̄c(·) the function defined in Lemma 16.2.9. In particular, for Rayleigh fading, we have

G(z) = 2
∫

{t:et/
√

2et≤1/z}

arccos
( zet√

2et

)
dt . (16.67)

The main result concerning D̃ is:

Proposition 16.5.20. We have

FD̃(z) = P0{ D̃ ≤ z | e0 = 1 } = e−λ(1−p)(rmax(λp))2G(z/ρ(λp)) (16.68)

and

p̃rog(λ, p) = E0[D̃ | e0 = 1] = ρ(λp)

1∫
0

1− e−λ(1−p)(rmax(λp))2G(z) dz . (16.69)

Proof. Note in (16.65) that under P0 given e0 = 1 and d0 the variable D̃ has the form of an extremal
shot-noise maxXi∈Φ0 g(Xi) with the response function g(x) = p|x|〈x, d0〉+.

Using Proposition 2.4.2 in Volume I, we get:

P(D̃ ≤ z) = exp
[
−λ(1− p)

∫
R2

1(g(x) > z) dx
]
.

Passing to polar coordinates, we get∫
R2

1(g(x) > z) dx = r2
maxG(z/ρ) ,

which completes the proof.
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Corollary 16.5.21. For the GI
0+M/GI model with OPL 3,

p̃rog(λ, p) =
const4

T 1/β
√
λp
H̃(p, T ) (16.70)

dgprog(λ, p) =
const4

√
λp

T 1/β
H̃(p, T ) , (16.71)

where

H̃(p, T ) =

1∫
0

1− exp
[(

1− 1
p

) G(z)
const3T 2/β

]
dz . (16.72)

Note that we have the same scaling of dgprog(λ, p) in the main parameters of the model as these of dprog(λ, p)
given in Proposition 16.5.17.

Corollary 16.5.22. Under the assumptions of Corollary 16.5.21, the maximal density of modified progress
dgprog(λ, p) is attained for the MAP p̃∗ = p̃∗(T ) satisfying√

p̃∗H(p∗, T ) = sup
0≤p≤1

√
pH̃(p, T ).

If such p̃∗ exists, it does not depend on λ. For Rayleigh fading, this is equivalent to

1∫
0

(
1 +

G(z)
p̃∗T 2/βC

)
exp
[(

1− 1
p̃∗

) G(z)
2T 2/βC

]
dz = 1 . (16.73)

Example 16.5.23. The aim of the present example is to numerically evaluate the G function defined in
(16.66) and efficiently trace the function dgprog(λ, p) in the M

0+M/M model with OPL 3. For this, we use the so
called Lambert W functions LW0 and LW1. These functions can be seen as inverse of the function t → tet

in the domains (−1,∞) and (−∞,−1) respectively; more precisely, for s ≥ −1/e, LW0(s) is the unique
solution of LW0(s)eLW0

(s) = s satisfying LW0(s) ≥ −1, whereas for 0 > s ≥ −1/e, LW1(s) is the
unique solution of LW1(s)eLW1

(s) = s satisfying LW1(s) ≤ −1. Let L0(s) = −1
2LW0(−s−2e−1) and

L1(s) = −1
2LW1(−s−2e−1) . The following representation of G is equivalent to that in (16.67):

G(z) = 2

L1(1/z)∫
L0(1/z)

(
L1(s)− L0(s)

)
ds ,

= 2

π/2∫
arcsin(z)

(
L1

(
sin s
z

)
− L0

(
sin s
z

))
ds .
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Fig. 16.6 Left: Plot of the function G∼ with points representing values of G. The total relative error 1
36

rP (G(z)−G∼(z))2

G2(z)
, where the

summation is taken over 36 points marked on the plot, is less then 1.27%. Right: Density of modified progress dp̃rog(λ, p) for the M
0+M/M

model with OPL 3. Here β = 3, λ = 1 and with T = {10, 13, 15}dB (curves from top to bottom). The optimal values (arg max,max) are
{(0.052, 0.0086), (0.035, 0.0055), (0.026, 0.0040)} respectively.

Moreover, the following function

G∼(z) = π(1− z)− 2 ln(z) arccos(z)

approximates G very well over the whole interval 0 < z < 1; cf. Figure 16.6 (Left). We use this approxi-
mation to calculate numerically the value of dgprog(λ, p). Figure 16.6 (Right) shows the results for β = 3,
λ = 1 and three values of the SINR threshold T = {10, 13, 15}dB. On the plot, we can identify the MAP
p̃∗ that maximizes the density of progress for a given T .

16.5.3.4 Location of the Optimal Receiver

Comparison to the Case with a Restricted Range for Receivers In what follows we show that each
transmitter can restrict its search for an optimal receiver to its vicinity. For this we show first that the optimal
density of progress can be approximated by that in a model where the domain of reception is restricted to
a certain neighborhood of the transmitter. By this we mean that we exclude in the definition of D or D̃ the
receivers lying outside some disk with a given radius R.

We have the following straightforward generalization of our previous results:

Proposition 16.5.24. Propositions 16.5.18 and 16.5.20 remain true if we take maxXi∈Φ0,|Xj |≤R(. . .) (with
max ∅ = 0) in (16.61) and (16.65). In this case the function G has to be modified by taking the integral
in (16.66) over the region {0 ≤ r ≤ R : ρz/(rpr) < 1}.

The case considered above will be referred to as the restricted range model in what follows.
We look for a reception radius R such that for a given p, the density of progress in the restricted range

model is close enough to that of the unrestricted range model. It is convenient to relate the reception radius
R to the intensity λ of transmitters. As we will see later on, it is convenient to take R = Krmax for some

43



constant K ≥ 0 (recall, that rmax = rmax(λp) is the distance at which the progress prog(r, λp, T ) =
rpc(r, λp, T ) in the corresponding bipolar model is maximal). Denote byGK the function defined by (16.66)
with the integral taken over {0 ≤ r ≤ Krmax : ρz/(rpc(r)) < 1} and by p̃rogK = p̃rogK(λ, p) the
associated mean modified progress in the restricted range model.

We have the following continuity result regarding p̃rogK and p̃rog = p̃rog(λ, p).

Proposition 16.5.25. For the GI
0+M/GI model with OPL 3 and P{F > 0 } > 0.

0 ≤ p̃rog − p̃rogK ≤ ρzK , (16.74)

for some function K 7→ zK , such that limK→∞ zK = 0. For Rayleigh fading, we can take zK =
Ke1/2−K2/2, for K ≥ 1.

Proof. Let p̄c(·) be the function defined in Lemma 16.2.9. By Proposition 16.5.10 and Lemma 16.5.9 we
know that

∫∞
0 rp̄c(r) dr < ∞. Moreover, by Proposition 16.3.5 and Proposition 2.2.6 in Volume I we

know that p̄c(r) is continuous in r. Thus, rp̄c(r) → 0 when r → ∞ and for any K ≥ 0, there exists zK
such that GK(z) = G(z) for z ≥ zK . Moreover zK → 0 when K → ∞. Thus (16.74) follows from
Propositions 16.5.20 and 16.5.24.

Example 16.5.26. Take for example, p = 0.035, T = 13dB and Rayleigh fading. In this case, the mean
modified progress in the unrestricted model is approximately p̃rog = 0.0055/0.035 = 0.157 (cf. Figure 16.6
Right), whereas the best mean range is attained for the range attempt rmax = 0.506 and is equal to ρ = 0.307.
In order to have a relative difference ε = 0.01 we find the minimal K ≥ 1 such that Ke1/2−K2/2 ≤
0.01 · 0.157/0.307 = 0.00513, which is K = 3.768. This means that in the model with reception radius
R = Krmax = 3.768 · 0.506 = 1.905, the mean modified progress (and its spatial density) is within 1% of
the optimal value of the mean modified progress obtained in the unrestricted model.

Comparison to Smallest Hop in a Cone Now we compare p̃rog to the situation when the receivers are
taken as the nearest non-emitting points in a cone pointing to the right direction and of some given angle.
More precisely, consider the following modification of the MNR model of Section 16.5.1.2. Let for a given
width 0 < α ≤ π of the cone

(3
′α) The receiver yi of the transmitter Xi ∈ Φ is the point

yi = Y ∗i = arg min
Xj∈Φ0,

〈Xj−Xi,di〉
|Xj−Xi|

≤α
2

{|Xj −Xi|} .

The mean effective progress progα(λ, p) = E0[〈y0, d0〉 | e0 = 1] in this case can be evaluated using the
same arguments as in the proof of Proposition 16.5.2 (cf. also (16.49).

Corollary 16.5.27. We have

progα(λ, p) = 2λ sin(α/2)

∞∫
0

r2 exp(−λ(1− p)αr2/2)pc(r, λp, T ) dr .
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Fig. 16.7 Density of directional progress for the M
0+M/M model with OPL 3 with β = 3, λ = 1, with T = 10dB. Comparison of the opportunistic

and the “smallest hop in a cone” cases.

For the M
0+M/M model with OPL 3, we have

progα(λ, p) =
Γ(3/2)√

λ

sin(α/2)(1− p)(
(1− p)α/2 + pT 2/βK(β)

)3/2
,

where K(β) is defined in (16.9).

Example 16.5.28. Figure 16.7 compares the density of modified progress dgprog(1, p) to the density of
“smallest progress in the cone” of width α; dprogα(1, p) = p progα(1, p) for various values of α when
T = 10dB and fading is Rayleigh. The optimal choice of α for dprogα(1, p) (over all p) is approximately
α = 0.72π; for this angle, the optimal MAP approximately p = 0.056, which gives dprogα(1, p) ≈ 0.0080,
to be compared to dgprog(1, p̃∗) = 0.0086 for p̃∗ = 0.052. So the gain is not much. But remember, p̃rog(λ, p)
is only a lower bound to the true opportunistic progress.

16.5.3.5 Impact of the Thermal Noise

The results of Proposition 16.5.17 and Corollary 16.5.21 (and actually of most of the quantitative results of
the recent sections) are obtained under the assumption W = 0. We now show that for a sufficiently small
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but positive W > 0, the spatial density of progress dprog(λ, p) is also of the order at least
√
λ as λ → ∞.

Hence, the conclusions of the last sections are not due to a singular behavior at W = 0.
Denote by prog(λ, p, w) the expected directional progress in the model with constant thermal noise

W = w. The main result is:

Proposition 16.5.29. For the GI
w+M/GI model with OPL 3 and constant MAP p,

dprog(λ, p, w) = λp prog(λ, p, w) = λp prog(λ, p, 0)−
√
λ o(wλ−α/2) ,

when wλ−α/2 → 0, provided prog(λ, p, 0) <∞.

Proof. We will use the same representation as in the proof of Proposition 16.5.17, in which the Poisson
p.p. Φ = {Xi} of intensity λ is constructed from a given Poisson p.p. Φ′ = {X ′i} of intensity 1 by taking
Xi = X ′i/

√
λ (cf. also Example 1.3.12 in Volume I). In this representation of the model, parameterized by

λ and w, we denote by D0(w, λ) the progress (16.61) of the packet sent by node X0 = 0 under P0. Note
that D0(w, λ) ≤ D0(0, λ) and

λp prog(λ, p, 0)− λp prog(λ, p, w) ≤ λE0
[
D0(0, λ)1(D0(0, λ) 6= D0(w, λ))

]
=
√
λE0

[
D0(0, 1)1(D0(0, 1) 6= D0(wλ−β/2, 1))

]
.

Our assumption imply that E0[D0(0, 1)] < ∞. The dominated convergence theorem shows that the ex-
pectation in the above expression tends to 0 provided wλ−β/2 → 0 (the a.s. continuity of D0(w, 1) in
w follows from the fact that under our assumptions, the SINR level-sets are almost surely closed sets, cf.
Corollary 5.2.1 in Volume I). This concludes the proof.

16.6 Local Delays

This section focuses on the packet model. The main aim of is to discuss the mean time to transmit a packet
under Aloha, which will be referred to as the local delay in what follows. This will require the discussion
of the underlying time-space structure. It turns out that this mean time very much depends on the receiver
model which is chosen and on the variability of the fading and noise over time.

16.6.1 Space-Time Scenarios

In what follows we add a time-dimension to the basic Poisson Bipolar model of Section 16.2.1 and to its
extensions considered in Section 16.5 (such as the independent Poisson receiver (INR) model, the MANET
nearest receiver (MNR) and the nearest neighbor (MNN) model, as well as the multicast model. The idea
(already described in Section 2.3.4 in Volume I) consists in assuming that the nodes of the MANET Φ = {Xi}
remain unchanged over time and that the marks of these nodes representing their MAC status and other
characteristics vary over time. More precisely, consider a common sequence of time slots n = 0, 1, . . .
(w.r.t. which all the nodes are perfectly synchronized) and consider the following extensions of the marks
introduced in Section 16.2:

(2s×t) ei(n) is the MAC decision of point Xi of Φ at time n; we will always assume that the random
variables ei(n) are i.i.d. in i and n; i.e. in space and time, with P{ ei(n) = 1 } = 1−P{ ei(n) =
0 } = p.
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(3s×t) yi(n) is the receiver of the node i at time n; this receiver may vary over time or not depending
on the receiver model. For example it will be fixed (yi(n) ≡ yi) in the basic Poisson Bipolar
model as well as in the MNN model (cf. (3’) with Φ0 = Φ). On the other hand, it will vary in all
the models where the choice of the receiver depends on the current MAC status, like for instance
in the MNR and multicast models. For the Poisson INR model one may consider both a fixed
Poisson receiver p.p. Φ0(n) = Φ0 or an i.i.d. sequence of Poisson point processes Φ0(n) in n
(which might be seen as what happens in the case of receiver Poisson p.p. with a high mobility –
see 1.3.10 in Volume I).

(4s×t) F ji (n) is the virtual power (comprising fading effects) emitted by node i to the receiver of node j
(or to node j in the MANET receiver model) at time n. We will adopt the following terminology
with respect to the variability of the virtual powers in time.

– By the fast fading case we understand the scenario when F ji (n) are i.i.d. in n (recall, that
the default option is that they are also i.i.d. in i, j).

– The slow fading case is that where F ji (n) ≡ F ji , for all n.

Remark: [Terminology] Let us stress that the terminology used here is proper to this monograph, where
the meaning is that it remains constant over a slot duration and can be seen as i.i.d. over different time
slots. This does not correspond to what is used in many papers of literature. In these papers, fast fading is
something not considered here where the channel conditions fluctuate much over a given time slot. What we
call slow fading here would be called shadowing in this literature and what we call fast fading here would
be be referred to as slow fading.

Regarding the noise variableW , one can consider both i.i.d.W (n) (fast noise) and constantW (n) ≡W
(slow noise) scenarios.

Note that the point process of transmitters Φ1(n) =
∑

i δXi1(ei(n) = 1) varies over time due to
the MAC decisions. So does the SN I1

i (n) =
∑

Xj∈eΦ1(n), j 6=i F
i
j (n)/l(|Xj − yi(n)|) of Φ̃1(n) \ {Xi}

representing the interference at the receiver of the node Xi.
Denote by δi(n) the indicator that (16.2) holds at time n (with F , I and W considered at time n);

namely, that location yi(n) (prescribed by the appropriate receiver model) is covered by transmitter Xi with
the required quality at time n.

16.6.2 Local Delay

We will give now a general definition of the local delay of the typical node to be considered in all our
receiver models except the multicast model of Section 16.5.2.

Definition 16.6.1. In all single receiver models, the local delay of the typical node is the number of time
slots needed for node X0 = 0 (considered under the Palm probability P0 with respect to Φ) to successfully
transmit:

L = L0 = inf{n ≥ 1 : δ0(n) = 1} .

This random variable depends on the origin of time (here 1) but we focus on its law below, which does not
depend on the chosen time origin.

The main objective of the remaining part of this section is to study the mean local delay E0[L]. In
particular, to show that it can be finite or infinite depending on the receiver model and fast or slow fading
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and noise model. Even more surprising, for some models it can exhibit the following phase transition:
E0[L] <∞ or E0[L] =∞ depending on the model parameters (as p, distance r to the receiver, or the mean
fading 1/µ). It will be referred to as the wireless contention phase transition in what follows.

Let S denote all the static elements of the network model: i.e. the elements which are random but which
do not vary with time n. In all models, we have Φ ∈ S. Moreover, in the slow fading model, we have
{Fi} ∈ S and similarly in the slow noise model, W ∈ S. In the case of fixed Poisson INR and MNN model,
we also have Φ0 ∈ S.

Given a realization of all the elements of S, denote by

πc(S) = E0[e0(1)δ0(1) | S] (16.75)

the conditional probability, given S , that X0 is authorized by the MAC to transmit and that this transmission
is successful at time n = 1. Note that due to our time-homogeneity this conditional probability does not
depend on n. The following result allows us to express E0[L].

Lemma 16.6.2. In all the receiver models considered above, assuming that the elements which are not static
(i.e. which are not in S) are i.i.d., we have

E0[L0] = E0
[ 1
πc(S)

]
. (16.76)

Remark: One can interpret πc(S) as the (temporal) rate of successful packet transmissions (or the through-
put) of node X0 given all the static elements of the network. Its inverse 1/πc(S) is the local delay of this
node in this environment. In many cases, this throughput will be a.s. positive (so that we will have a.s. finite
delays) for all static environments. If this last condition holds true, by Campbell’s formula, almost surely, all
the nodes have a positive throughput and finite delay. However, the spatial irregularities of the network imply
that this throughput varies from node to node, and in a Poisson configuration, one can find nodes which have
an arbitrarily small throughput (and consequently an arbitrarily large delay). The mean local delay E0[L] is
the spatial average of these individual local delays. A finite mean indicates that the fraction of nodes in bad
shape (for throughput or delay) is in some sense not significant. In contrast, E0[L] = ∞ indicates that an
important fraction of the nodes are in a bad shape. This is why the finiteness of the mean local delay is an
important indicator of a good performance of the network.

Proof. (of Lemma 16.6.2) Since the elements that are not in Sdo not change over time, given a realization
of the elements of S, the successive attempts of node X0 to access to the channel and successfully transmit
at time n ≥ 1 are independent (Bernoulli) trials with probability of success πc(S). The local delay L = L0

is then a geometric random variable (the number of trials until the first success in the sequence of Bernoulli
trials) with parameter πc(S). Its (conditional) expectation (given S) is known to be

E0[L | S] =
∑
n≥1

P0{L ≥ n | S }

=
∑
n≥1

(1− πc(S))n−1

=
1

πc(S)
.

The result follows by integration with respect to the distribution of S .
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Example 16.6.3. In order to understand the reasons for which E0[L] may or may not be finite, consider first
the following two extremal situations. Suppose first that the whole network is independently re-sampled at
each time slot (including node locations Φ, which is not our default option). Then S is empty (the σ-algebra
generated by it is trivial) and the temporal rate of successful transmissions is equal to the space-time average
rate πc(S) = E0[e0(1)δ0(1)] = p pc, where pc is the coverage probability considered for the static model.
Consequently, in this case of extreme variability (w.r.t. time), we have E0[L] = 1/pc <∞ provided pc > 0,
which holds true under very mild assumptions.

On the other hand, if nothing varies over time (including MAC status, which again is ruled out in our
general assumptions), we have πc(S) = e0(1)δ0(1) (because the conditioning on S determines e0(1)δ0(1)
in this case). In this case under very mild assumptions (e.g. if p < 1), this temporal rate e0(1)δ0(1) is zero
with positive probability, making E0[L] = ∞. Note that in this last case, some nodes in the MANET will
succeed in transmitting packets every time slot, whereas others will never succeed. Having seen the above
two extremal cases, it is not difficult to understand that the mean local delay will depend very much on how
much the time-variability “averages out” the spatial irregularities of the distribution of nodes in the MANET.

Note that by Jensen’s inequality,

E0[L] ≥ 1
E0[πc(S)]

=
1
pc
.

The inequality is in general strict and we may have E0[L] =∞ while pc > 0.
In the remaining part of this section we will study several particular instances of space-time scenarios.

16.6.3 Local Delays in Poisson Bipolar Models

In the Poisson bipolar model, we assume a static repartition for the MANET nodes Φ and for their receivers
{yi}. The MAC variables ei(n) are i.i.d. in i and n. All other elements (fading and noise) will be subject to
different time-scenarios.

16.6.3.1 Slow Fading and Noise Case

Let us consider first the situation where {Fi} and W are static.

Proposition 16.6.4. Assume the Poisson Bipolar network model with slow fading and slow noise. If the
distribution of F,W is such that P{WTl(r) > F } > 0, then E0[L] =∞.

Proof. We have

πc(S) = pE0[e0(1)δ0(1) | S]

= pP0{F 0
0 ≥ T l(r)(W + I1

0 (0)) | S}
≤ p1(F 0

0 ≥ T l(r)W ) .

This latter indicator is equal to 0 with non-null probability by our assumption. Using (16.76) we conclude
that E0[L] =∞.

16.6.3.2 Fast Fading Case

The following auxiliary result will be useful when studying fast Rayleigh fading.
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Lemma 16.6.5. Consider the Poisson shot-noise I =
∑

Xi∈ΦGi/l(|Xi|), where Φ is some homogeneous
Poisson p.p. with intensity α on R2, Gi are i.i.d. random variables with Laplace transform LG(ξ) and l(r) is
any response function (in our case it will be always the OPL function). Denote by LI(ξ |Φ) = E[e−ξI |Φ]
the conditional Laplace transform of I given Φ. Then

E
[ 1
LI(ξ |Φ)

]
= exp

{
−2πα

∞∫
0

v
(

1− 1
LG(ξ/l(v))

)
dv
}
.

Proof. By the independence of Gi given Φ, we have

E[e−ξI |Φ] =
∏
Xi∈Φ

E[e−ξLG(ξ/l(|Xi|))]

=
∏
Xi∈Φ

LG(ξ/l(|Xi|))

= exp
{∑
Xi∈Φ

log(LG(ξ/l(|Xi|)))
}
.

Taking the inverse of the last expression and using the known formula for the Laplace transform of the
Poisson p.p. (cf. Proposition 1.2.2 in Volume I), we obtain

E
[ 1
LI(ξ |Φ)

]
= exp

{
−α

∫
R2

(
1− e− log(LG(ξ/l(|x|)))

)
dx
}
. (16.77)

Passing to polar coordinates completes the proof.

Remark: The extension of the above result to a non-homogeneous Poisson p.p. Φ is straightforward and
consists in replacing the integral α

∫
R2(. . .) dx with respect to the Lebesgue measure α dx on R2 in (16.77)

above, by the integral of the same function with respect to the intensity measure of the considered non-
homogeneous Poisson p.p. This extension will be useful when we will consider the local delay in the MNN
model in Section 16.6.4, where the conditioning on the distance to the receiver modifies the intensity of the
process of interferrers (cf. Proposition 16.5.3) or in the MNN model with closest receiver in a cone (see
Remark 16.6.14 below).

Coming back to local delays, let us consider now the situation where the random variables {Fi(n)} are
i.i.d. in n. We consider only the Rayleigh fading case.

Proposition 16.6.6. Assume the Poisson Bipolar network model with fast Rayleigh fading. In the case of
fast thermal noise, we have

E0[L] =
1
p
DW (T l(r)) exp

{
2πpλ

∞∫
0

vT l(r)
l(v) + (1− p)T l(r)

dv
}
,

where

• DW (s) = DslowW (s) = LW (−s) for the slow noise case,
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• DW (s) = DfastW (s) = 1/LW (s) for the fast noise case.

Proof. In the fast Rayleigh fading case, we have πc(S) = P{F ≥ T l(r)(W + I1) |Φ} for the fast noise
case and πc(S) = P{F ≥ T l(r)(W + I1) |Φ,W} for the slow noise model. Using the assumption on F ,
we obtain

πc(S) = LW (µT l(r))E[e−µT l(r)I
1 |Φ]

in the fast noise case and
πc(S) = e−µWTl(r)E[e−µT l(r)I

1 |Φ]

for the slow noise case. The result then follows from (16.76) and Lemma 16.6.5 with G = eF . Note that in
this case LG(ξ) = 1− p+ pLF (ξ), which gives LeF (ξ) = 1− p+ pµ/(µ+ ξ).

Remark 16.6.7 (Wireless contention phase transition for the local delay). Proposition 16.6.6 shows
that in the fast fading and noise case, E0[L] < ∞; indeed,

∫∞
0 v/l(v) dv < ∞. However for the fast

fading, slow noise case the finiteness of the local delay depends on whether W has finite exponential
moments of order T l(r)µ. This is a rather strong assumption concerning the tail distribution function of W .
Often this moment is finite only for some sufficiently small value of T l(r)µ. For example, let us assume
exponential noise with mean 1/ν. Then LW (−ξ) = ν/(ν − ξ) < ∞ provided T l(r)µ < ν and infinite
for T l(r)µ > ν. This means that in the corresponding Poisson Bipolar MANET with a Rayleigh fading,
exponential noise, we have the following phase transition: the local delay is finite whenever T l(r) < ν/µ

and infinite otherwise. Here are a few incarnations of this phase transition:

• For fixed mean transmission power µ−1 (we recall that a typical situation is that where fading
has mean 1 and where µ−1 is actually the effective transmission power) and mean thermal noise
ν−1, there is a threshold on the distance r between transmitter and receiver below which mean
local delays are finite and above which they are infinite;
• For fixed mean thermal noise ν−1 and fixed distance r, there is a threshold on mean transmission

power µ−1 above which mean local delays are finite and below which they are infinite;
• For fixed mean transmission power µ−1 and fixed distance r, there is a threshold on mean thermal

noise power ν−1 below which mean local delays are finite and above which they are infinite.

The fact that all transmissions contend for the shared wireless channel may lead to infinite mean local delays
if the system is stressed by either of the phenomena listed above: too distant links, a too high thermal noise
or a too transmission power.

Remark 16.6.8 (Restart). There is a direct interpretation of the local delay in terms of the so called Restart
algorithm: assume a file of random size B is to be transmitted over an error prone channel. Let {An}n≥1

be the sequence of channel inter-failure times. If A1 > B (resp. A1 ≤ B), the transmission succeeds
(resp. fails) at the first attempt. If the transmission fails at the first attempt, one has to restart the whole file
transmission in the second attempt and so on. Let

N = inf{n ≥ 1 s.t. An > B}
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be the first attempt where the file is successfully transmitted. In the classical Restart scheme, the sequence
{An}n>0 is assumed to be i.i.d. and independent ofB. It can then be proved (see (Asmussen, Fiorini, Lipsky,
Rolski, and Sheahan 2008)) that when B has infinite support and An is light tailed (say exponential), then
N is heavy tailed. This observation comes as a surprise because one can get heavy tails (including infinite
first moments) in situations where B and An are both light tailed.

Consider the fast fading, slow noise case (and ignore the interference for simplicity) Then the local
delay can be seen as an instance of this algorithm with the following identification: An = F 0

0 (n)e0(n) and
B = TWl(r). Later, in some nearest-receiver models we will see other incarnation of the above Restart
algorithm with deterministic W , where the role of the unboundedness of B is played by the distance to the
receiver; cf. Remark 16.6.15.

16.6.4 Local Delay in the Nearest Receiver Models

In this section we will study the Poisson INR and the MANET MNN model. We will work out formulas for
the mean local delay under the following conditions:

• fast Rayleigh fading,
• fast or slow noise,
• a fixed (i.e. not varying with time) pattern of potential receivers, which might by an independent

Poisson process (as in the Poisson INR model) or the MANET pattern itself (as in the MNN
model)).

Proposition 16.6.9. Assume fast Rayleigh fading and a fixed pattern of potential receivers.

• In the Poisson INR model, we have

E0[L] =
2πλ0

p

∞∫
0

re−πλ0r2DW (µT l(r))DINRI (µT l(r)) dr , (16.78)

where

DINRI (s) = exp

2πλ

∞∫
0

ps

l(v) + (1− p)s
v dv

 (16.79)

and DW (s) is as in Proposition 16.6.6.
• In the MNN model, we have

E0[L] =
2πλ

p(1− p)

∞∫
0

re−πλr
2DW (µT l(r))DMNN

I (r, µT l(r)) dr , (16.80)

where

DMNN
I (r, s) = exp

λπ
∞∫

0

ps

l(v) + (1− p)s
v dv + λ

π
2∫

θ=−π
2

∫
v>2r cos θ

ps

l(v) + (1− p)s
v dvdθ


(16.81)

and DI(s) is as above (as in Proposition 16.6.6).
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Proof. The proof follows the same lines as that of Proposition 16.6.6; the only modification bears on the
conditioning on the distance r to the receiver; i.e. we have to use

E0[L] = E0[E0[L | S, r]] = E0
[ 1
πc(S, r)

]
.

Recall also from Proposition 16.5.3, that in the MNN model, we also have to take into account how the con-
ditioning on r modifies the density of the underlying Poisson point process of interferrers. See the Remark
after Proposition 16.6.5 on how to proceed in this situation.

Notice that the integrals in (16.79) and (16.81) are finite for any of the OPL 1-3 models. However, the
outer integrals (in r) in (16.78) and (16.80) may be infinite. In order to study this problem note first that we
have the following bounds in the MNN model:

Remark 16.6.10. In the MANET receiver case, we have the bounds(
DINRI (s)

)1/2
≤ DMNN

I (r, s) ≤ DINRI (s) . (16.82)

The two next subsections study the finiteness of the mean local delays in particular cases.

16.6.4.1 Noise Limited Networks

Consider some fixed Poisson receiver model where interference is perfectly cancelled (and only noise has to
be taken into account). In what follows we will consider the fast noise scenario.

Independent Poisson Receiver Model (Poisson INR) Consider first the Poisson INR model. For the fast
noise case, the next result follows from (16.78) with DI(s) = 1 and with DW given in Proposition 16.6.6:

Corollary 16.6.11. In the Poisson INR model with fast Rayleigh fading and fast noise, if interference is
perfectly canceled, then

E0[L] = 2πλ0

∞∫
0

r exp(−πλ0r
2)

pLW (µl(r)T )
dr.

Hence, E0[L] <∞ whenever

LW (ξ) ≥ η exp

{
−πλ0

(
ξ

µTAβ

)2/β
}(

ξ2(1+ε)/β
)
, ξ →∞, (16.83)

for some positive constants ε and η, and whenever some natural local integrability conditions also hold. This
condition requires that there be a sufficient probability mass of W in the neighborhood of 0. For instance,
under any of the OPL models, this holds true for a thermal noise with a rational Laplace transform (e.g.
Rayleigh) but not for a constant and positive one.

The condition is sharp in the sense that when

LW (ξ) ≤ η exp

{
−πλ0

(
ξ

µTAβ

)2/β
}(

ξ2(1−ε)/β
)
, x→∞, (16.84)

for some positive constants ε and η, then E0[L] =∞.
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MANET Nearest Neighbor (MNN) model In the MNN model (with 0 < p < 1), similar arguments show
that the same threshold as above holds with

LW (ξ) ≥ η exp

{
−πλ

(
ξ

µTAβ

)2/β
}(

ξ2(1+ε)/β
)
, ξ →∞, (16.85)

implying that E0[L] <∞ and a similar converse statement.

16.6.4.2 Interference Limited Networks

In this section we assume OPL 3, and W ≡ 0. We will analyze the Poisson INR and the MNN models
separately.

Independent Poisson Receiver Model In the Poisson INR case, using the fact that

2π

∞∫
0

pT l(r)
l(v) + (1− p)T l(r)

v dv = p(1− p)
2
β
−1
T

2
βK(β)r2,

with K(β) defined in (16.9), we get the following result from (16.78) and (16.79):

Corollary 16.6.12. In the Poisson INR model with W = 0, fast Rayleigh fading and OPL 3, we have

E0[L] = 2πλ0
1
p

∞∫
0

r exp
(
−πλ0r

2 + λθ(p, T, β)r2
)

dr ,

with
θ(p, T, β) =

p

(1− p)1− 2
β

T
2
βK(β) . (16.86)

Notice that θ(p, T, β) is increasing in p and in T . We hence get the following incarnation of the wireless
contention phase transition:

• If p 6= 0 and λ0π > λθ(p, T, β), then

E0[L] =
1
p

πλ0

πλ0 − λθ(p, T, β)

=
1
p

λ0

λ0 − λ 2
βΓ( 2

β )Γ(1− 2
β )p(1− p)2/β−1T 2/β

<∞ . (16.87)

• If either λ0π < λθ(p, T, β) or p = 0, then E0[L] =∞.

Remark 16.6.13 (Wireless contention phase transition). Here are a few comments on this phase transi-
tion.

• The fact that p = 0 ought to be avoided for having E0[L] <∞ is clear;
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• The fact that λ0 cannot be arbitrarily small when the other parameters are fixed is clear too as
this implies that:

– at any given time slot, the transmitters compete for too small a set of receivers;

– each targeted receiver is too far away from its transmitter.

• For T and β fixed, stability requires that receivers outnumber potential transmitters by a factor
which grows like p(1 − p)2/β−1 when p varies; if this condition is not satisfied, this drives the
system to instability because some receivers have too persistent interferrers nearby (for instance,
if p = 1, a receiver may be very close from a persistent transmitter which will most often succeed,
forbidding (or making less likely) the success of any other transmitter which has the very same
receiver).

MANET Nearest Neighbor Model Fix a, r ≥ 0. We have

∞∫
ar

pT l(r)
l(v) + (1− p)T l(r)

v dv =
1
2
r2p(1− p)

2
β
−1
T

2
βH(a, T (1− p), β/2) ,

with

H(a,w, b) =

∞∫
a2w−1/b

1
1 + ub

du. (16.88)

Let

J(w, b) =

π/2∫
θ=−π/2

H(2 cos(θ), w, b) dθ . (16.89)

From (16.80) and (16.81), we then get the same type of phase transitions as for the Poisson INR model
above:

• If p 6= 0
p

(1− p)1− 2
β

T
2
β

(
K(β)

2
+ J(T (1− p), β

2
)
)
< π, (16.90)

then E0[L] <∞;
• If

p

(1− p)1− 2
β

T
2
β

(
K(β)

2
+ J(T (1− p), β

2
)
)
> π, (16.91)

then E0[L] =∞.

We can use the bounds of Remark 16.6.10 to get the following and simpler conditions:

• If p 6= 0 and θ(p, T, β) < π then E0[L] <∞.
• If θ(p, T, β) > 2π then E0[L] =∞.
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Pole of the Attenuation Function We show below that this phase transition is not linked to the pole of
the OPL 3 model at the origin.

For this, consider the OPL 1 case with β = 4. Using (2.27 in Volume I) with t = µ(1− p)T l(r), we get
that in the fixed Poisson receiver model,

∞∫
0

pT l(r)
l(v) + (1− p)T l(r)

v dv =
p

1− p

[
− 1

2A2

√
(1− p)T l(r) arctan

(
(Ar0)2

√
1

(1− p)T l(r)

)

+
π

4A2

√
(1− p)T l(r) +

r2
0

2
(1− p)T l(r) + (Ar0)4(1− µ−1

(1− p)T l(r) + (Ar0)4

]
.

Hence, since l(r) = (Ar)4 for r ≥ r0, the dominant term in the last function is

exp
[
π

4
p√

1− p
√
Tr2

]
,

when r tends to∞. Let us take the instance of the Poisson receiver model: we get from (16.78) and (16.79)
that the mean delay is finite if p 6= 0 and

λ0 > λθ̂ = λ
π

2
p√

1− p
√
T

and infinite if either p = 0 or λ0 < λθ̂.

Remark 16.6.14. It is easy to extend the results of Proposition 16.6.9 to the case where one selects the
closest receiver in a cone rather than the closest receiver in the whole space. For instance, consider the MNN
model and assume the angle of the cone is π, then

E0[L] =
2πλ0

p

∞∫
0

re−πλ0r2LW (µT l(r))DI(r, T l(r)) dr , (16.92)

where DW (s) is as in Proposition 16.6.6 and

DI(r, s) = exp

πλ
∞∫

0

ps

l(v) + (1− p)s
v dv


× exp

2λ

π/4∫
θ=0

∞∫
0

r

cos(θ)
ps

l(v) + (1− p)s
v dv dθ


× exp

2λ

π/2∫
θ=π/4

∞∫
r cos(θ)

ps

l(v) + (1− p)s
v dv dθ

 .

We get the same phase transition phenomena as above, though with different multiplicative constants. This
is easily extended to the MANET receiver model.
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Remark 16.6.15 (Restart, cont.). We continue the analogy with the Restart algorithm described in Re-
mark 16.6.8. Consider the fast Rayleigh fading, with slow, constant noise W = Const in the contex of one
of the nearest receiver models. Then the local time of a packet can be seen as an instance of this algorithm
with the following identification: An = F 0

0 (n)e0(n) and B = TWl(D), where D is the (random) distance
between the node where the packet is located and the target receiver. The support of l(D) is unbounded (for
instance, in the Poisson receiver model, for all the OPL models, the density of D at r > 0 is exp(−λ0πr

2)r
for r large).

The interference limited case can be seen as an extension of the Restart algorithm where the file size
varies over time. More precisely, the model corresponding to dynamic split is that where at attempt n, the
file size is Bn = f(Φ, Cn), where Φ is the Poisson p.p. and {Cn}n>0 is an independent i.i.d. sequence (here
Cn is the set of fading variables and MAC decisions at time n).

16.6.5 Finite Mean Delays and Diversity

As we saw in the last subsection, the existence of big void regions as found in Poisson configurations
leads to the surprising property that the local delay is finite everywhere but may have a infinite spatial
average in rather classical scenarios. We describe below a few ways of getting finite mean local delay in fast
fading scenarios. All the proposed methods rely on an increase of diversity: more variability in fading, more
receivers and more mobility.

16.6.5.1 Heavy Tailed Fading

Weibul Fading Assume OPL 3 and deterministic W > 0, Recall from (16.83) that in this case the local
delay is infinite (due to the noise constraint) if one has the (fast) Rayleigh fading. However if we assume
that F is Weibull of shape parameter k i.e.

P[F > x] = exp(−(x/c)k),

for some c, with c and k positive constants, then the condition k < 2/β is sufficient to have E0[L] <∞ in
the noise limited scenario. Indeed then

P(F > l(r)WT ) = exp
{
−(l(r)TW/c)k

}
≥ exp

{
−(TW/c)k(Ar)2−ε

}
,

for r ≥ 1/A, and some ε > 0. Therefore the finiteness of E0[L] (with cancelled interference) follows from
the fact that the integral

∞∫
1/A

r exp
{
−πλ0r

2 + (TW/c)k(Ar)2−ε
}

dr

is finite.
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Lognormal Fading Assume now F is lognormal with parameters (µ, σ), that is log(F ) is N (µ, σ2)
(Gaussian of mean µ and variance σ2) and that W is constant. Then

P(F > x) = P
(

log(F )− µ
σ

>
log(x)− µ

σ

)

=
1√
2π

∞∫
log(x)−µ

σ

exp(−u2/2)du

∼ 1
(log(x)− µ)/σ

exp
(
−(log(x)− µ)2/2σ2

)
,

when x→∞. We also have

P(F > x) ≥ (log(x)− µ)/σ
1 + (log(x)− µ)2/σ2

exp
(
−(log(x)− µ)2/2σ2

)
for all x > 0. Thus we get

E0[L] ≤ B +
2πλ0

p

∫
r,l(r)WT )>µ+C

r exp
(
−πλ0r

2
)

exp
(

(log(l(r)WT )− µ)2

2σ2

)
1 + log(x)−µ)2

σ2

log(x)−µ)
σ

dr

< ∞,

where B,C are finite positive constants.
Let us conclude that a fading with heavier tails may be useful in the noise limited scenario in that the

mean delay may be infinite for the Rayleigh case and finite for this heavier tailed case.

16.6.5.2 Networks with an Additional Periodic Infrastructure

The second line of thoughts is based on the idea that extra receiver should be added to fill in big void regions.
We assume again fast Rayleigh fading in conjunction with the “Poisson + periodic” independent receiver
model (cf. Section 16.5.1.1). In this receiver model we assume that the pattern of potential receiver consists
of Poisson p.p. and an additional periodic infrastructure. Since there is a receiver at distance at most, say, κ
from every point, the closest receiver from the origin is at a distance at most κ and

E0[L] =

κ∫
0

DW (µT l(r))DINRI (T l(r))D(dr) ,

where DW , DINRI are as in Proposition 16.6.9 and D(·) is the distribution function of the distance from the
origin to the nearest receiver in this model. This latter integral is obviously finite.

Notice that periodicity is not required here. The only important property is that each location of the plane
has a node at a distance which is upper bounded by a constant.

16.6.5.3 High Mobility Networks

It was already mentioned in Section 16.6.2 that if one can assume that the whole network is independently
re-sampled at each time slot (including node locations Φ, which is not our default option) — an assumption
which can be justified when there is a high mobility of nodes (see Section 1.3.3 in Volume I) — then
E0[L] = 1/pc <∞ provided pc > 0. This observation can be refined in at least two ways:

58



• Assume the Poisson INR model, with fixed potential receives, and high mobility of MANETS
nodes, i.e., with Φ = Φ(n) i.i.d. re-sampled at each n ≥ 1. Assume also fast noise and fading.
Then one can easily argue that

E0[L] = 2πλ0

∫
r>0

r exp(−πλ0r
2)

1
pLW (µl(r)T )LI1(µl(r)T )

dr.

The finiteness of the last integral can be assessed using arguments similar to those given above.
• Assume now the Poisson INR model, with i.i.d. potential receives Φ0(n) and static MANET Φ.

Assume also fast noise and fast fading. Then one can easily argue that

E0[L] = E0

 1

p2πλ0

∫∞
0 r exp(−πλ0r2)LW (µl(r)T )

∏
i 6=0

(
1− p+ p 1

1+T l(r)/l(|Xi|)

)
dr

 .
We found no closed form expression for the last expression. However, a convexity argument
shows that the R.H.S. is bounded from above by

2πλ0

∞∫
0

r exp(−πλ0r
2)

pLW (µl(r)T )
E0

 1∏
i 6=0

(
1− p+ p 1

1+T l(r)/l(|Xi|)

)
 dr .

This latter expression is precisely equal to (16.78), i.e., to the mean local delay in the (static)
Poisson INR model.

Remark: An important remark is in order. In the examples considered in this section, we perform (at least
some part of) the space average of the probability of success and then a time average to get the mean local
delay. This operation, which makes sense in the case of high mobility (of potential receivers, MANET
nodes) always leads to a finite mean local delay. In contrast, in the previous sections (case of static Φ and
Φ0) we perform the time average first and then the space average, and we get a different result, which can
for instance be infinite. We will return to the analysis of local delays in Part V.

16.6.5.4 Shannon Local Delay

One may argue that if the mean delays are infinite in § 16.6, it is primarily because of the coverage logic,
where one transmits full packets at time slots when the receiver is covered at the required SINR and where
one wastes all the other time slots. This results in a Restart mechanism (cf. Remark 16.6.8 and 16.6.8),
which in turn explains why we have heavy tails and infinite means. Adaptive coding offers the possibility of
breaking the coverage/Restart logic: it gives up with minimal requirements on SINR and it hence provides
some non-null throughput at each time slot, where this throughput depends on the current value of the SINR
(e.g. via Shannon’s formula as described on Section 16.2.3.

There is no difficulty extensing the scenario of Section 16.2.3 to the time dimension exactly as in Sec-
tion 16.6.1). Let T0 be the bit rate obtained by node X0 at time slot 0 within this framework (see (16.12)). It
is natural to define the Shannon local delay of node X0 as

LSh = LSh0 =
1

pE0[T0 | S]
,
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namely as the inverse of the time average of T0 given all the static elements (cf. Section 16.6.2). This
definition is the direct analogue of that of the local delay in the packet model. Using the same arguments as
in the analysis of expression (16.13), we obtain

E0[LSh] = E0

[
1∫∞

0 πc(v | S)/(v + 1) dv

]
, (16.93)

where πc(v |Φ) = πc(Φ) is defined in (16.75) and where we made the dependence on T = v explicit.
We now show two examples where E0[L] =∞ but E0[LSh] <∞.

Poisson Bipolar Model Consider the slow noise, fast Rayleigh fading scenario. We saw in Remark 16.6.7
that in this case, for Poisson bipolar, noise limited networks, a necessary condition for E0[L] < ∞ is that
the noise W has finite exponential moment E[e{WTl(r)µ] <∞. For the mean Shannon local delay, we have

E0[LSh] = E
[

1∫∞
0 e−Wvl(r)µ/(v + 1) dv

]
= E

[
W∫∞

0 e−vl(r)µ/(v/W + 1) dv

]
,

in the noise limited case. It is easy to see that the last expression is finite provided E[W ] < ∞ (which is
much less constraining than the finiteness of the exponential moment).

Poisson Nearest Neighbour Model Consider now the Poisson INR model, with fast Rayleigh fading.
Consider the interference limited case and OPL 3. It follows from the discussion after Corollary 16.6.12,
that if λ0π < λθ(p, T, β), where θ(·) is given by (16.86), then E0[L] = ∞. For the Shannon delay, in the
interference limited case, we have

E0[LSh] = 2πλ0
1
p

∞∫
0

re−λ0πr2
E0

[( ∞∫
0

1
v + 1

exp
{ ∑
Xi 6=X0

logLeF
(
µv(r/|Xi|)β

)}
dv
)−1]

dr

= 2πλ0
1
p

∞∫
0

re−λ0πr2
E0

[( ∞∫
0

1
v + rβ

exp
{ ∑
Xi 6=X0

logLeF
(
µv/|Xi|β

)}
dv
)−1]

dr .

Using the inequalities

∞∫
0

exp{. . . }
v + rβ

dv ≥ 1
2rβ

rβ∫
0

exp{. . . } dv +

∞∫
rβ

exp{. . . }
2v

dv

≥ min
( 1

2rβ
, 1
) ∞∫

0

min
( 1

2v
, 1
)

exp{. . . } dv

≥ min
( 1

2rβ
, 1
) 1/2∫

0

exp{. . . } dv .

Note that
∫∞

0 2r/(min(r−β, 2))e−λ0πr2
dr <∞. Using Jensen’s inequality, we get that for all Xi

logLeF
(
µv/|Xi|β

)
≥ −E[eF ]µv/|Xi|β = −pv/|Xi|β

60



for |Xi| > ρ, where ρ > 0 is some fixed constant. From this and from the inequality LeF ≥ 1 − p for
|Xi| ≤ ρ, we conclude that E0[LSh] <∞ provided

E0

[
exp
{
− log(1− p)Φ({Xi : |Xi| ≤ ρ})

}( 1/2∫
0

exp
{
−pv

∑
|Xi|>ρ

|Xi|−β
}

dv
)−1]

<∞ .

Using the independence property of the Poisson p.p., the fact that the Poisson variable Φ({Xi : |Xi| ≤ ρ})
has finite exponential moments, it remains to prove that

E0

[( 1/2∫
0

exp
{
−pv

∑
|Xi|>ρ

|Xi|−β
}

dv
)−1]

= E0
[ pJ

1− e−pJ/2
]
<∞ ,

where J =
∑
|Xi|>ρ |Xi|−β . Note that for J small, the expression under the expectation is close to 2,

whereas for J bounded away from 0, we have

E0
[ pJ

1− e−pJ/2
1(J > ε)

]
≤ (1− e−pε/2)pE0[J ] = (1− e−pε/2)2pπλ

∞∫
ρ

t1−β dt <∞

since β > 2. Note that the last inequality is essentially (modulo the problem of the pole of OPL 3 at 0)
equivalent to the finiteness of the mean of the shot-noise.

16.6.6 The Multicast Mode

In the multicast mode, we will denote by Lm the time for a packet of the typical node to be captured by at
least one among the potential receivers. This multicast local delay will be used in Part V and in particular
in opportunistic routing, where it will be important to check whether (and when) at least one receiver was
successful in capturing the transmitted packet.

The setting of the present section is the multicast mode of of Section 16.5.2, which is extended to the
space-time scenario described in Section 16.6.1. We only consider the fast fading case and we adopt the
following slight modification regarding the thermal noise, which will vary from receiver to receiver. More
precisely we will consider the following receiver dependent, fast noise assumption:

(5s×t) , where {Wi(n) : n ≥ 1} is an i.i.d. sequence, with generic random variable denoted by W , and
where Wi(n) represents the termal noise at node Xi at time n.

Denote by δ(Xi, Xj , n) the indicator that (16.53) holds with F , I considered at time n andW = Wj(n);
namely, the indicator that node Xj is covered by transmitter Xi with the required quality at time n.

Definition 16.6.16. The local multicast delay of the typical node is the number of time slots needed for
node X0 = 0 (considered under the Palm probability P0 with respect to Φ) to successfully transmit to some
node in Φ:

Lm = Lm0 = inf{n ≥ 1 : δ(X0, Xj , n) = 1 for some Xj 6= X0 ∈ Φ} .
The local multicast number of trials is the number of time slots at which X0 = 0 is authorized to transmit
by the MAC which are needed for a successful transmission to some node in Φ:

L̃m = L̃m0 = #{1 ≤ n ≤ Lm0 : e0(n) = 1} .
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Since the number of time slots between two tries is geometric of parameter p, the mean multicast local delay
E0[Lm] is obtained from E0[L̃m] by the formula

E0[Lm] =
E0[L̃m]

p
.

In particular both are finite of infinite at the same time, provided p > 0. As we shall see, the local multicast
number of trials is often more handy to analyze in the present context.

In what follows we restrict our attention to the noise limited case, namely we assume that interference is
perfectly cancelled and we give an explicit formula for the distribution function of the number of trials.

Proposition 16.6.17. Consider the multicast model with fast Rayleigh fading and receiver-dependent fast
noise as described above. Assume that the interference is perfectly cancelled (noise limited case) Then for
all q ≥ 0

P0[L̃m > q] = exp

−2πλ

∞∫
0

r

(
1−

(
1− (1− p)LW (µT l(r))

)q)
dr

 . (16.94)

Proof. As in the point-to point receiver models, conditioned on Φ, the number of trials until the first suc-
cessful transmission is a geometric random variable. Denote by πmc (Φ) the parameter of this variable (i.e.
the probability of success given Φ). Then

P{ L̃m ≥ q } = E0[(1− πmc (Φ))q] . (16.95)

Let us calculate 1 − πmc (Φ). Note that the latter is the probability that X0 is not able to cover any node at
time 0 given that it is authorized to transmit and given the location of all the nodes of Φ. In the noise limited
scenario, we can exploit the independence structure of the marks to evaluate this probability as follows:

1− πmc (Φ) = E0

[ ∏
Φ03Xj 6=X0

(
1− δ(X0, Xj)

) ∣∣∣∣Φ]
=

∏
Xj 6=X0

(
1− (1− p)P

{
F j0 > WjT l(|Xj |)

∣∣∣Φ})
= exp

{ ∑
Xj 6=X0

log
(

1− (1− p)LW (T l(|Xj |))
)}

,

where, for simplicity, we omitted the time parameter. Using (e.basic-multicast-trials) and the form of the
Laplace transform of the SN (see Propositions 1.2.2 in Volume I and 2.2.4 in Volume I), we get 16.94 after
passing to polar coordinates.

Corollary 16.6.18. Under the assumptions of Proposition 16.6.17, we have

E0[L] =
1
p

∞∑
q=1

exp

−2πλ

∞∫
0

r

(
1−

(
1− (1− p)LW (µT l(r))

)q)
dr

 .
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If we assume OPL 3,

E0[L] =
1
p

∞∑
q=1

exp

−πλ
∞∫

0

(
1−

(
1− (1− p)LW (µTAβvβ/2β)

)q)
dv

 .

Note that E0[L] is finite or infinite depending on whether the series on the R.H.S. in the above formulas
converges or diverges. In what follows we work out a sufficient condition for convergence in the OPL 3
case.

Define the function
f(v) = (1− p)LW (µTAβvβ/2) . (16.96)

Let vm(a) be the unique solution of f(v) = a
m for any fixed a; (the existence and uniqueness follow from

the monotonicity and continuity properties of the Laplace transform). If one denotes by L−1
W the inverse of

LW , then

vm(a) =

L−1
W

(
a

(1−p)m

)
µTAβ

2/β

.

Proposition 16.6.19. A sufficient condition for E0[L] <∞ is that the series∑
m

exp
{
−πλ(1− e−a)vm(a)

}
(16.97)

converges for some a > 0. For a = 1, a sufficient condition for this is that(
L−1
W (u)
µTAβ

)2/β

≥ − 1
πλ

log
(
η(u(1− p))1+ε

)
, u→ 0

for some positive constants η and ε, which holds true if

LW (x) ≥ κ

1− p
exp

(
− πλ

1 + ε

(
x

µTAβ

)2/β
)
, x→∞ , (16.98)

for some positive constants κ and ε.

Proof. For m large enough, for v such that f(v) << 1/m, the function

v → 1−
(

1− (1− p)LW (µTAβvβ/2)
)m

= 1− (1− f(v))m

is close to 0, whereas for f(v) >> 1/m, it is close to 1. We have∫
v>0

(1− (1− f(v)))m) dv ≥
vm(a)∫
v=0

(1− (1− f(v)))m) dv

≥
vm(a)∫
v=0

(1− (1− f(vm(a))))m) dv

= vm(a)
(

1−
(

1− a

m

)m)
≥ vm(a)

(
1− e−a

)
,
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where we used the monotonicity of LW (·) to obtain the second inequality and the bound (1−a/m)m ≤ e−a
to get the last one. This proves the first statement of the result. The other statements follow from it.

Here are two simple illustrations pertaining to these conditions.

Example 16.6.20 (Exponential Thermal Noise). If W is exponential with mean w, then

vm(1) =
1

A2 (µTw)2/β
(m(1− p)− 1)2/β

and the last series converges (as a corollary of the fact that (16.98) holds). This can be extended to the case
when W has a rational Laplace transform.

Example 16.6.21 (Deterministic Thermal Noise). If W is deterministic with mean w, then

f(v) = (1− p) exp(−wµTAβvβ/2) ,

so that

vm(1) =
1

A2 (µTw)2/β
(log(m(1− p)))2/β

and the series (16.97) diverges.
Let us show that this implies that E0[L] =∞. By direct monotonicity arguments,

∫
v>0

(1− (1− f(v))m) dv ≤ vm(1) +

∞∫
vm(1)

(1− (1− f(v))m) dv.

But for all α > 1, there exists an M such that for all m ≥M and for all v ≥ vm(1),

(1− f(v))m ≥ exp(−αmf(v)).

Hence, for all m ≥M ,∫
v>0

(1− (1− f(v))m) dv ≤ vm(1) +

∞∫
v=vm(1)

(1− exp(−αmf(v)) dv

≤ vm(1) +

∞∫
v=vm(1)

αmf(v) dv

= vm(1) +

∞∫
u=0

αmf(u+ vm(1)) du.

The second inequality follows from the fact that 1−exp(−x) ≤ x. Using now the fact that (u+vm(1))β/2 ≥
u + vm(1)β/2 (which follows from a convexity argument and from the fact that vm(1) > 1 for m large
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enough) and denoting by K the constant wµTAβ , we get that
∞∫

u=0

mf(u+ vm(1)) du =

∞∫
u=0

m(1− p) exp(−K(u+ vm(1))β/2)) du

≤
∞∫

u=0

m(1− p) exp(−Ku−Kvm(1)β/2) du =
1
K
,

since (1− p) exp(−Kvm(1)β/2) = 1/m. Hence∫
v>0

(1− (1− f(v))m) dv ≤ vm(1) +
1
K

and this implies that E0[L] =∞.

Remark 16.6.22 (Time-Space Boolean isolation). In line with the general idea that a noise limited net-
work can be seen as a Boolean model (see § 5.3 in Volume I), we can interpret the last results in terms of the
following time-space extension of Boolean isolation: we declare a node X ∈ Φ isolated if the local delay
of this node is infinite with positive probability, i.e. for all times n where X is a transmitter, for all nodes
Xj ∈ Φ0(n)

|X −Xj | > l−1

(
Fj(n)
Wj(n)

)
.

A sufficient condition for a network to have no isolated node is that the (multicast) local delay of a typical
node has a finite mean.

16.7 Conclusion

We conclude with a few extensions to be considered either later in the monograph or for future research.
The receivers considered in the MANET receiver model introduced in § 16.5.1.2 need not be the final

packet destinations. What was done in the present chapter is essentially one-hop analysis. This can however
be used to analyze the performance of multihop routing in a network with high node mobility; in this case,
the configurations of nodes in two different slots might be taken as independent and Poisson (see § 1.3.3
in Volume I and § 16.6.5.3); one can then use independence to analyze the fate of a packet along its route
in terms of spatial averages for the one-hop case. If this high mobility assumption cannot be made, multi-
hop analysis complicates considerably These routing issues will be considered in Part V and particularly in
Chapter 21.

Throughout the chapter, we assumed time to be slotted. Time-slots are required in e.g. TDMA (Time
Division Multiple Access) systems and one of the well known advantages of Aloha is that it does not require
slotted time. In order to model non-slotted Aloha, one has to take into account the fact that interference (and
thus SINR) can vary during a given transmission as some other transmissions may start or terminate. A more
detailed packet reception model is hence needed. For example, if one assumes a coding with some sufficient
interleaving, then one can consider that it is the averaged SINR, where the averaging is over the whole packet
reception period, that determines the success of reception. In this case a mathematical analysis of non-slotted
Aloha is possible e.g. along the lines presented in (Błaszczyszyn and Radunović 2007; Błaszczyszyn and
Radunović 2008); see also a forthcoming paper (Błaszczyszyn and Mühlethaler ).
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17
Carrier Sense Multiple Access

17.1 Introduction

As explained in §24.1.3, the general idea of Carrier Sense Multiple Access (CSMA) is to schedule transmis-
sions in such a way that nodes which are close by never transmit simultaneously. This is of course expected
to improve on Aloha where the rarity of the random channel access is the only mechanism for preventing
the simultaneous transmission of such nodes.

The physical description of the mechanisms allowing the nodes of a network to realize this exclusion
rule is as follows: one says that node y is in the contention domain of node x if the power received by x
from y is above some detection threshold. The neighbors of a node are the nodes in its contention domain.
Each node listens to the channel and senses an idle medium if there is no active transmitter in its contention
domain. CSMA stipulates that each node can transmit only if it senses an idle medium. However, a strategy
where a node transmits as soon as it senses an idle channel is not good since it may lead to a situation where
several nodes simultaneously start transmitting when their common neighbor terminates its transmission. To
prevent this, the following backoff mechanism is implemented. Each node senses the medium continuously
and it maintains a timer; if its medium is sensed busy, a node freezes its timer until the medium becomes
idle; when its medium is sensed idle, a node decreases its timer of one unit per time slot and it is only when
its timer expires that a node starts transmitting. After the transmission is completed, the timer is randomly
reinitialized. If the chance that timers of close by nodes expire at the same time is small enough and if
we neglect propagation delays, this mechanism leads to what is expected, namely a distributed mechanism
where when a node transmits, there is never an active transmitter in its contention domain. Note however
that due to non negligible propagation delays and other phenomena, collisions can nevertheless occur. Of
course the protocol is designed to cope with such collisions but we will consider this question here.

The first challenge of the present chapter is that of the representation of a snapshot of the the set of nodes
which simultaneously access the channel at some tagged time slot. It is clear that even if the initial set of
MANET nodes is some realization of a Poisson p.p. Φ, then the set of nodes which transmit at the tagged
time slot cannot be obtained by an independent thinning of Φ. Indeed, the latter is again a Poisson p.p. and
such a p.p. does in no way exclude the presence of nearby nodes as we know (see Chapter 1 in Volume I).
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In § 17.2, we propose to represent this exclusion rule by a Matérn hard-core model (see Section 2.1.3 in
Volume I).

The analytical framework proposed in § 17.2 allows us to derive closed form expressions for the density
of nodes accessing the shared medium at the tagged time slot in § 17.3 and for the probability that two
nodes of Φ at some given distance access the channel at the tagged time slot in § 17.4. We then show how
the expressions obtained for the last two quantities can be used for evaluating quantities similar to those
obtained in the Aloha case. In § 17.5, we focus on the bipolar network model and we derive the probability
that a transmitting node is successful in ’covering’ its receiver. This then allows us to optimize the density of
successful transmissions w.r.t. the main protocol parameter, namely the detection threshold. We exemplify
the potential of this analytical framework by compareing the performance of Aloha and CSMA when each
protocol is optimized (Aloha w.r.t. the MAP and CSMA w.r.t. the detection threshold).

17.2 Matérn-like Point Process for Networks using Carrier Sense Multiple Access

Let Φ̃ = {(Xi,mi,Fi)} be an i.m. Poisson p.p., with intensity λ on R2 that integrates a discrete cross-fading
model (cf. Example 2.3.9 in Volume I), where

(1) Φ = {Xi} denotes the locations of potential transmitters;
(2) {mi} are i.i.d. marks, uniformly distributed on [0, 1]
(3) {Fi = (F ji : j)}i where F ji denotes the virtual power emitted by node i (provided it is authorized

by the MAC mechanism) towards node Xj (this is similar to (4) of Aloha in Section 16.2). We
assume that the random variables F ji i, j are i.i.d., with mean 1/µ. We denote byG(t) = P{F ≤
t} the d.f. of a generic fading variable F .

We will specify later the locations of receivers to which the nodes {Xi} wish to transmit their packets.
For Xi ∈ Φ, let

N (Xi) = {(Xj ,Fj) ∈ Φ̃ : F ij/l(|Xi −Xj |) ≥ Po, j 6= i} , (17.1)

be the set of neighbors of node Xi. In this definition, Po > 0 is the detection threshold alluded to above and
l(·) is some OPL model (for example one of OPL1–OPL3).

The medium access indicators {ei}i are additional dependent marks of the points of Φ defined as follows:

ei = 1
(
∀Xj∈N (Xi)mi < mj

)
(17.2)

(note that P{mi = mj} = 0 for i 6= j). The point process

ΦM := {Xi ∈ Φ : ei = 1} , (17.3)

will be referred to as the Matérn CSMA point process. It defines the set of transmitters retained by CSMA
as a non independent thinning of the Poisson p.p. Φ.

Remark 17.2.1. A few important observations are in order:

• this model captures the key requirement that a retained node never has another retained node in
its contention domain.
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• The rationale for the above definition is that CSMA grants a transmission to a given node if this
node has the minimal back-off timer among all nodes in its contention domain. The assumption
that back-off timers are i.i.d. makes sense if the timers are initialized according to a memoryless
law (in place of uniform, one can take any other distribution with a density to get an equivalent
model).
• This construction leads to the following scenario: node x1 is not retained because of it detects

its neighbor x2; moreover node x2 in turn is not retained because it detects its neighbor x3 (i.e,
m1 > m2 > m3, where mi is the mark of xi). Consequently, in the above Matérn CSMA model
neither x1 nor x2 is retained. But if x3 is not the neighbor of x1, and if x3 does not detect any
of its neighbors then a more reasonable MAC would allow x1 and x3 to transmit simultaneously.
Such scenario shows that the Matérn CSMA model is conservative.

Unlike in Aloha, in this Matérn CSMA model, the probability of medium access of a typical node
p = E0[ei] is not given a priori and it has to be determined.

17.3 Probability of Medium Access

Denote by N̄ = N̄ (λ) the expected number of neighbours of the typical node; N̄ = E0[#N (0)]. By (17.1),
Slivnyak’s theorem and Campbell’s formula we have

N̄ = E0

[ ∑
(Xj ,F0

j )∈eΦ
1(F 0

j /l(|Xi−Xj |) ≥ Po)
]

= λ

∫
R2

P{F ≥ Pol(|x|) } dx = 2πλ

∞∫
0

(
1−G(Pol(r))

)
dr .

(17.4)

Example 17.3.1. Here are a few particular cases:

• for Rayleigh fading (exponential F with mean 1/µ)

N̄ = 2πλ

∞∫
0

e−Poµl(r)rdr .

• it is also easy to check that under OPL3, the last expression gives

N̄ =
2πλΓ(2/β)
β(Poµ)2/βA2

.

Proposition 17.3.2. Under the assumptions of the last section,

p = E0[e0] = (1− e−N̄ )/N̄ . (17.5)
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Proof. Under E0 let us condition on the event m0 = t. Given this condition we will express e0 as the value
of some extremal shot-noise (cf Section 2.4 in Volume I). For fixed t define

L(y, x, (m, f)) = 1
(
f ≥ Pol(|x− y|) andm < t

)
, (17.6)

where x, y ∈ R2, 0 ≤ m ≤ 1, f ≥ 0. Note that L(0, Xi, (mi, F
0
i )) = 1 iff the node at the origin (assuming

m0 = t) detects its neighbor (Xi, (miFi)) and this neighbor has a timer smaller than t. By (17.2)

e0 = 1

(
∀ (Xj ,mj ,Fj) ∈ Φ̃, L(0, Xj , (mj , F

0
j )) = 0

)
= 1(ZeΦ = 0) ,

where ZeΦ(0) is the following extremal shot-noise variable

ZeΦ(0) = max
(Xj ,mj ,Fj)∈eΦL(0, Xj , (mj , F

0
j )) .

Note that ZeΦ(0) takes only two values 0 or 1 and consequently

E0[e0|m0 = t] = P0{ZeΦ = 0|m0 = t } = P0{ZeΦ ≤ 0|m0 = t } .

By Slivnyak’s Theorem and Proposition 2.4.2 in Volume I we have

E0[e0|m0 = t] = exp
{
−λ
∫
R2

∞∫
0

1∫
0

1(L(0, x, (m, f)) = 1) dmG(df)}dx
}

= exp
{
−λt

∫
R2

(1−G(Pol(|x|)) }dx
}

= exp{−tN̄ } .

The result follows from (17.4) and deconditioning with respect to t.

Remark: Note by the ergodicity of the model that p represents some spatial average, namely an average
over all nodes of the Poisson configuration. More precisely λp is the density of the Matérn CSMA point
process of nodes authorized to transmit at a given time slot. However, it does not mean that any given node
will be selected by the MAC with the time frequency p, even if in different time slots the marks {mi} are
re-sampled in an i.i.d. manner.

Corollary 17.3.3. The probability p = p(λ) is asymptotically equivalent to 1/N̄ when λ tends to∞.

The last results can be extended in various ways. Consider for instance the conditional probability, under
E0, that node X0 = 0 is retained given that there is a another node of Φ at distance r from the origin.
Assuming Rayleigh fading, calculations similar to those made above show that this conditional probability
is equal to

pr =

1∫
0

e−tN̄
(
t
(

1− e−Poµl(r)
)

+ (1− t)
)

dt = p− e−Poµl(r)
(

1− e−N̄

(N̄ )2
− e−N̄

N̄

)
. (17.7)
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17.4 Probability of Joint Medium Access

Unfortunately, neither the distribution function nor the Laplace Transform of the Matérn CSMA p.p. are
known in closed form. This means that we cannot proceed to evaluate the probability of events of the form
(16.2) pertaining to coverage. In place, we study below the probability of joint medium access for several
nodes. If such a probability is known for an arbitrary number of points with arbitrary locations, then the
Laplace transform of ΦM and thus the distribution of the selected points is determined.

17.4.1 k fold Palm Distribution of the Poisson Point Process

The distribution of the independently marked Poisson p.p. Φ̃ given its has k points located at yi (i = 1, . . . , k)
is the so called k fold Palm distribution of Φ̃. For describing it, we need the following independent random
objects:

• an i.m. Poisson point process Φ̃ defined as in Section 17.2;
• the random variables {m̂i : i = 1, . . . , k}, which represent the timers of the k additional points

and which are assumed to be i.i.d. and uniformly distributed on [0, 1];
• the random vectors

– F̂j = (F̂ ij : i = 1, . . . k), j ≥ 1,

– Ĥi = (Ĥj
i : j ≥ 1), i = 1, . . . k,

– Hi = (Hj
i : j = 1, . . . k, j 6= i), i = 1, . . . k,

all with i.i.d. components with distribution G. F̂j , Ĥi and Hi respectively represent the vectors
of virtual powers emitted by the points of Φ̃ to the points {yi}, by the points of {yi} to Φ̃ and
from the points of {yi} to themselves.

Consider the following independently marked point process

Φ̂ =
{(

Xj ,
(
mj ,Fj , F̂j

))
: (Xj , (mj ,Fj)) ∈ Φ̃

}
∪
{(

yi,
(
m̂i,Hi, Ĥi

))
: i = 1, . . . , k

}
. (17.8)

The k fold Palm distribution of the i.m. Poisson p.p. Φ̃ at y1, . . . , yj is precisely the law of Φ̂.
Define the neighbors of yi in Φ̂ by

N (yi) = NΦ(yi) ∪Ny(yi) ,

where

NΦ(yi) = {Xj ∈ Φ : F̂ ij/l(|Xj − yi|) ≥ Po} ,
Ny(yi) = {yj : H i

j/l(|yj − yi|) ≥ Po, j = 1, . . . , k, j 6= i}

and its CSMA status êi by

êi = 1
(
∀ Xj ∈ NΦ(yi), m̂i < mj

)
1
(
∀ yj ∈ Ny(yi), m̂i < m̂j

)
, (17.9)

with the convention êi = 1 if N (yi) = ∅.
We can now prove the following result.
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Proposition 17.4.1. Let Φ̂ be the above i.m. point process. Assume t1 < · · · < tk. We have 1

P
{
∀ i = 1, . . . , k, êi = 1 | m̂i = t1, . . . , m̂k = tk

}
(17.10)

= exp
{
−λ

∑
J⊂{1,...,k}

(−1)#J+1tmini∈J

∫
R2

∏
i∈J

(
1−G

(
Pol(|x− yi|)

))
dx
} k∏

j=1

∏
i<j

G
(
Pol(|yi − yj |)

)
.

Proof. We express ∩ki=11(êi = 1) using some extremal shot-noise as in the proof of Proposition 17.3.2 and
use the first statement of Proposition 2.4.2 in Volume I.

Corollary 17.4.2. The probability that the k points y1, . . . , yk jointly access the medium in the Matérn
CSMA model given that the underlying Poisson p.p. has points at y1, . . . , yk is equal to

p(y1, . . . , yk) = k!
∫

[0,1]k

1(0 ≤ t1 < . . . , tk ≤ 1)P
{
∀ i = 1, . . . , k, êi = 1 | m̂i = t1, . . . m̂k = tk

}
dt1 . . . dtk .

We will need the following corollary of the last results:

Corollary 17.4.3. Assume Rayleigh fading. Conditionally on the facts that Φ̃ has two points at y1 and y2

with |y1−y2| = r and that y2 is retained in the CSMA Matérn point process, the probability of also retaining
node y1 is:

h(r) =
2

b(r)−N̄

(
1−e−N̄
N̄ − 1−e−b(r)

b(r)

) (
1− e−Poµl(r)

)
1−e−N̄
N̄ − e−Poµl(r)

(
1−e−N̄
(N̄ )2 − e−N̄

N̄

) , (17.11)

where N̄ is defined in (17.4) and

b(r) = 2N̄ − λ
∫

R+

2π∫
0

e
−Poµ

“
l(τ))+l(

√
τ2+r2−2rτ cos(θ))

”
τdθdτ. (17.12)

Proof. Consider the point process Φ̂ with k = 2 and with y1 and y2 as above. Given that the marks of y1

and y2 are t1 and t2 respectively, with t2 > t1, Proposition 17.4.1 gives

P
{
ê1 = 1, ê2 = 1 | m̂i = t1, m̂2 = t2

}
= eΨ

(
1− e−Poµl(r)

)
,

with

Ψ = λt1

∫
R2

e−Poµl(|x−y1|)e−Poµl(|x−y2|)dx− λt1
∫
R2

e−Poµl(|x−y1|)dx− λt2
∫
R2

e−Poµl(|x−y2|)dx

= −λt1
∫
R2

(
1−

(
1− e−Poµl(|x−y1|)

)(
1− e−Poµl|x−y2|

))
dx− (t2 − t1)N̄

= −λt1b(r)− (t2 − t1)N̄ .

1Changement dans la formule. D’accord?
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By deconditioning as indicated in Corollary 17.4.2, we get

P{ ê1 = 1, ê2 = 1 } =
2

b(r)− N̄

(
1− e−N̄

N̄
− 1− e−b(r)

b(r)

)(
1− e−Poµl(r)

)
.

The result then follows from (17.7).

Notice that limr→∞ b(r) = 2N̄ , so that (17.11) gives the following very much expected result:
limr→∞ h(r) = p = (1− e−N̄ )/N̄ . The h(.) function is plotted on Figure 17.1.

Fig. 17.1 The h function of Corollary 17.4.3. Here Po = 0.1, p ≈ 0.337, λ = 1, β = 4, A = 1, T = 1, µ = 10.

17.5 Coverage

The aim of this section is twofold: 1) we exemplify the use of the Matérn p.p. framework for evaluating the
probability of coverage of a receiver by its transmitter and the density of successful transmissions; 2) we
show how to optimize the latter in a way similar to that of the Aloha case.

17.5.1 Definition

The probabilistic setting of this section is that of §17.2 with Rayleigh fading (F is exponential with parameter
µ). Let x be a node of ΦM. With definitions similar to those in Section 16.2, a receiver located at z is covered
by x with level T if:

SINR(z) =
F/l(|x− z|)

W (z) +
∑

xi∈ΦM\x
Fi/l(|xi − z|)

> T , (17.13)
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with F , Fi, i ≥ 1, i.i.d. exponential random variables with parameter µ representing the virtual powers to
point z.

Example 17.5.1. For commercial WiFi devices, the transmitted power P = 1/µ is around 100mW. For
802.11b, a SINR level of T1 = 4dB is the minimum required for the receiver to be covered; it then gets
an instantaneous bit-rate of (at least) ρ1 =1 Mb/s. Similarly T2 = 7dB, T3 = 11dB and β4 = 16dB are
required for the higher bit-rates of ρ2 =2 Mb/s, ρ3 =5.5 Mb/s and ρ4 =11 Mb/s, respectively. If the SINR
at y is less than T1 = 4dB, the user is not covered.

By analogy with what was done in the bipolar model for the Aloha case (see § 16.2), we assume that each
transmitter has a single receiver at distance r and we look for the probability pc(r, Po) that a transmitter
covers his receiver with level T , where T is a constant. By this, we mean the probability that (17.13) be
satisfied given that x is granted the right to transmit by the MAC.

17.5.2 Poisson Approximation

Assume without loss of generality that x = 0, so that |z| = r. By the same arguments as in the Aloha case,

pc(r, Po) = P0(F/l(r)) ≥WT +
∑

xi∈ΦM\0
FiT/l(|xi − z|) | 0 ∈ ΦM)

= LW (µT l(r))E0
(

exp
(
−µT l(r)IΦM\0

(z)
)
| 0 ∈ ΦM

)
,

where P 0 denotes the Palm probability of the marked Poisson p.p. Φ̃. Since the (conditional) Laplace trans-
form of

IΦM\0
(z) =

∑
xi∈ΦM\0

Fi/l(|xi − z|)

is not known in closed form, we resort to an approximation based on Corollary 17.4.3 and which consists in
approximating the law of ΦM\0 conditional on the event {0 ∈ ΦM} by that of a non-homogeneous Poisson
point process of intensity λh with h the function defined in (17.11), that is

E0
(

exp
(
−sIΦM\0

(z)
)
| 0 ∈ ΦM

)
≈ exp

−λ ∫
R+

2π∫
0

τh(τ)

1 + µl
(√

τ2 + r2 − 2rτ cos(θ)
)
/s

dτdθ

 .

For instance, if W = 0 and OPL3 is used,

pc(r, Po) ≈ exp

(
−λ
∫

R+

∫ 2π
0

τh(τ)

1+
(τ2+r2−2rτ cos(θ))β/2

Trβ

dτdθ

)
. (17.14)

17.5.3 Optimization

We proceed as in the Aloha case. For some given transmission distance r, we look for the value of the
detection threshold Po which maximizes the density of successful transmissions which, in this setting, is
equal to:

dsuc(r, Po) = λppc(r, Po) (17.15)

with p the probability for a node to be granted access to the channel given in (17.5).
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Example 17.5.2 (Numerical Example). Figure 17.2 plots the numerical values of dsuc(1, Po) in function
of Po. The underlying model is OPL3 withW ≡ 0 and the parameters are λ = 1, µ = 10,A = 1 and β = 4.
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Fig. 17.2 The density of successful transmissions as defined in (17.15) for r = 1 as a function of Po. Here λ = 1, β = 4,A = 1, T = 1, µ = 10.

The optimal value P ∗o of Po is appr. 4.10−2, which leads to a value for the probability of transmission
p of appr. 0.22 and an optimal density of successful transmissions dsuc(1, P ∗o ) of appr. 0.095. Using the
formulas of Proposition 16.3.2, we get that the corresponding values for Aloha with the same parameters
are p ≈ 0.20 and dsuc(1, λmax) ≈ 0.075. So the adaptive nature of CSMA leads to a gain of appr. 25% in
terms of density of successful transmissions compared to Aloha.

17.6 Conclusion

We conclude with a few words on what more could be done with the tools developed in this chapter and
what should be done to refine the model.

We have shown that Matérn-like point processes offer a conservative computational framework for the
evaluation of the channel acces probability and of the density of successful transmissions in large CSMA
networks with randomly located nodes. This framework could also be used for evaluating other per-node
or social MANET performance metrics (e.g. pertaining to throughput or transport). For the slotted CSMA
case (which is used for instance in 802.15.4), the time-space analysis of § 16.6 could also in principle be
extended.

A first model refinement would focus on the Request To Send – Clear to Send (RTS-CTS) mechanism.
This mechanism, which is used in the 802.11 (WiFi) protocols, consists in checking the presence of con-
tenders at the receiver rather than at the transmitter. The geometry of this mechanism should be amenable to
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an analysis similar to the one performed here. It is only when the typical distance between transmitter and
receiver is small compared to the mean distance between two nodes of Φ, that the model without RTS-CTS
(considered above) can be considered as a reasonable approximation of the situation with RTS-CTS.

A second and more challenging refinement would consist in the design of more accurate (i.e. less conser-
vative) hard core models (see Remark 17.2.1). Models based on e.g. Gibbs fields can be contemplated (see
the bibliographical notes) but they do not lead to closed form expressions, at least in the random location
networks considered here.

Non slotted CSMA is more appropriate for the modeling of 802.11. For a Gibbsian analysis of this class
of MAC on the grid, see (Durvy, Dousse, and Thiran 2009) and the references therein.
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18
Code Division Multiple Access

18.1 Code Division Multiple Access in Cellular Networks

This chapter is devoted to the modeling of the Code Division Multiple Access (CDMA). As explained
in Chapter 24, in contrast with Aloha or CSMA where some transmitters are prevented from accessing the
channel, in CDMA, all simultaneously access the shared medium and use a direct-sequence spread-spectrum
mechanism (see Section 23.3.3) to cope with interference.

The two main novelties of this chapter are

(1) the fact that we take power control (see § 24.2 in Chapter 24), into account, which means that each
transmission power is adjusted so as to satisfy the required SINR at the corresponding receiver
and no more. We already saw that is was not always possible to solve this power control problem;

(2) the fact that we consider a cellular network (see § 24.3.2 in Chapter 24) rather than a MANET
(as in the last two chapters). Such a network features base stations (BS) and mobiles connected to
these base stations. Both on the uplink (UL) and the downlink (DL), we assume that each mobile
is served by exactly one BS.

Section 18.2 is focused on the algebraic framework for stating the power control problem. It gives both
a necessary and sufficient and a sufficient condition for the feasibility of power control within this cellular
network setting. The sufficient condition is shown to lead to distributed power control mechanisms.

The stochastic setting , which is described in § 18.3, is based on a bi-variate p.p. model with a fisrt
p.p. representing the set of BSs and a second one representing the set of mobile users. We use the Voronoi
tessellation w.r.t. the former to define the cells. The main general results are i) a 0-1 law stating that for a
given infinite plane cellular network model, power control is feasible with probability either 0 or 1; ii) a
proof of the fact that for all models based on a Poisson user p.p. the feasibility probability is 0.

When power control is not feasible, some admission (or rate) control protocol has to be used to reduce
the configuration of mobiles (or to decrease their SINR target) so as to reach a new configuration (or new
SINR targets) which is (are) feasible. This is the main object of § 18.4 where we consider the case of large
homogeneous networks represented by such bi-variate point processes and where we investigate:
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• the relations between the density of BS’s and the density of mobiles which can be served at a
given bit-rate;
• the optimal way to share bandwidth between users when the latter have no minimal bit-rate

requirements.

18.2 Power Control Algebra in Cellular Networks

We first revisit the power control problem introduced in § 24.2 of Chapter 24 in the particular setting of
cellular networks.

18.2.1 Notation

We will use the following notation concerning BS locations and path loss:

• {Xu}u denotes the locations of BSs;
• {Y u

m} = Su denotes the locations of the mobiles served by BS u.
• l↓um is the path-loss (possibly including some fading model) of the signal on the downlink Xu →
Y u
m,

• l↑um is the path-loss (possibly including some fading model) of the signal on the uplink Y u
m → Xu.

We assume a direct-sequence spread-spectrum coding (see Section 23.3.3) with some interference can-
cellation (see Section 23.3.4). Although this is not critical for our analysis, we will assume that this inter-
ference cancellation factor is equal to 1 on the UL as well as on the DL between two different BSs. We will
denote by

• αu the DL-interference cancellation factor between mobiles of the same BS u. We will also use
the notation

αuv =

{
αu if u = v

1 if u 6= v;

• ξum the SINR target for mobile Y u
m. We will use the notation ξ↓um, ξ↑um if it is necessary to distin-

guish between the DL and the UL. Moreover, for each SINR ξ , we define a modified SINR ξ
′

by

ξ′↓
u

m
=

ξ↓
u
m

1 + αuξ↓
u
m

, ξ′↑
u

m
=

ξ↑
u
m

1 + ξ↑
u
m

, (18.1)

• P↓um the power of the dedicated BS u for the channel u→ m;
• P↑um the power transmitted by mobile m to BS u;
• P̃ u the maximal total power allowed for BS u;
• Qu the total power of the common channels (used for signaling),
• P u = Qu +

∑
m P↓

u
m denotes total power transmitted by BS u;

• P̃ um the maximal power allowed for mobile m ∈ Su;
• W u, W u

m, the power of the thermal noise at BS u and at mobile m ∈ Su, respectively.

18.2.2 Feasibility of Power Control with Power Constraints

We now describe the power control problems with power constraints (the so called feasibility problems).
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Downlink We will say that the (downlink) power control with power limitations is feasible if there exist
nonnegative, finite powers P↓um for all base stations u and mobiles m, which satisfy the following two
conditions:

(1) SINR condition:
P↓
u
m/l↓

u
m

W u
m +

∑
v αuv(Qv +

∑
n∈Sv P↓

v
n)/l↓vm

≥ ξ′↓
u

m
, ∀u,m ∈ Su . (18.2)

(2) total power limitation condition: ∑
m∈Su

P↓
u
m +Qu ≤ P̃ u, ∀u.

We will say that the downlink power control problem (without power limitations) is feasible if there exist
nonnegative powers P↓um such that condition (1) is satisfied.

Consider the square matrix A = (auv), auv = αuv
∑

m∈Su ξ
′
↓
u

m
l↓
u
m/l↓

v
m, the vector b = (bu), bu =

Qu +
∑

m∈Su ξ
′
↓
u

m
W u
ml↓

u
m and the identity matrix I, all of the same dimension as equal to the number of

BS’s (which is possibly infinite).

Lemma 18.2.1. The feasibility of the DL power control problem without power constraint is equivalent to
the existence of finite, non-negative solutions P = (Pu) of the following linear inequality

(I− A)P ≥ b . (18.3)

Proof. Assume that there exists a finite solution P↓um to (18.2). Then

P↓
u
m ≥ l↓

u
mξ
′
↓
u

m
(W u

m +
∑
v

αuvQ
v) +

∑
n∈Sv

P↓
v
nl↓

u
m/l↓

v
mξ
′
↓
u

m
∀u,m ∈ Su .

By summing this set of inequalities over the mobiles m ∈ Su, we get that Pu =
∑

n∈Su P↓
u
n is a finite

solution of (18.3).
Conversely, assume that (18.3) admits a finite solution P = (Pu). Then

P↓
u
m = l↓

u
mξ
′
↓
u

m
(W u

m +
∑
v

αuvQ
v) + Pvl↓

u
m/l↓

v
mξ
′
↓
u

m
∀u,m ∈ Su

is a finite solution of (18.2) since for all v,
∑

n∈Sv P↓
v
n = Pv.

The existence of finite positive solutions of (18.3) depends on the spectral radius of the non-negative
matrix A. Since we want to treat the case when there is a countably infinite number of BSs, we will define
the spectral radius of A in the case where this matrix is of infinite dimension (see (Kitchens 1998) for
details).

Let us denote by An = (anuv) the nth power of A, with A0 = I the identity matrix. Moreover, let
A∗ = (a∗uv) =

∑∞
n=0 An. Note that An (for all n ≥ 0) and A∗ are well defined, but that they may have

some or all their entries infinite. If ξ′↓
u

m
> 0 and #Su > 0 for all u,m, then anuv > 0 for all n > 1.

Thus excluding the case of BSs serving no mobiles (and mobiles requiring ξ′↓
u

m
= 0), we get a positive and

therefore irreducible matrix A for which all the power series Auv(z) =
∑n

n=0 a
n
uvz

n for u, v = 1, 2, . . .
have a common convergence radius 0 ≤ R < ∞ called the convergence radius of A. The reciprocal 1/R
is called the Perron value of A or the spectral radius ρ(A) of A (if A is finite, it is the Perron-Frobenius
eigenvalue of A). Moreover Auv(R) <∞ for all u 6= v, and Auu(R) is either finite for all u (in which case
A is said to be transient) or infinite for all u (in which case A is said to be recurrent).
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Lemma 18.2.2. The condition ρ(A) ≤ 1 is necessary for the downlink power allocation problem without
power constraint to be feasible. In case of equality, A has to be transient and b = 0. Then, any solution
of (18.3) is of the form A∗(b + ξ) + z, where ξ ≥ 0 and z ≥ 0 s.t. z = Az, with the last term existing only
in the infinite-dimensional case.

Remark: It may happen that A∗ has all its entries finite and that the minimal solution A∗ b has all its entries
infinite. With this precaution, and excluding b = 0, we will say for short that (18.3) has solutions iff the
spectral radius of A is strictly less than one.

Note that any solution P = (Pu) of (18.3) has the following coordinate-wise solidarity property: if for
any u, Pu =∞, then Pu =∞ for all u.

The successive iterations Ψn of the linear operator Ψ defined by Ψ(s) = As + b tend coordinate-wise
with n→∞ to a solution A∗b + z and Ψn(0) increases to the minimal solution.

The condition ρ(A) is difficult to verify, in particular when the number of BSs is large. This explains the
use of the following two sufficient conditions.

Lemma 18.2.3. (1) If for each BS u ∑
m∈Su

∑
v

αuvξ
′
↓
u

m
l↓
u
m

l↓
v
m

< 1, (18.4)

then the DL power control problem without power limitation is feasible.
(2) If for each BS u ∑

m∈Su

(
W u
m +

∑
v

αuvP̃
v

l↓
v
m

)
l↓
u
mξ
′
↓
u

m

P̃ u
≤ 1− Qu

P̃ u
, (18.5)

then the DL power control with power limitation is feasible.

Proof. A sufficient condition for the spectral radius of A to be less to be less than 1, is the substochasticity
of A (i.e. all its line-sums are less than 1). This last condition is equivalent to (18.4). Condition (18.5) is
equivalent to saying that (I − A)P̃ ≥ b where P̃ = (P̃ u). This is obviously sufficient for the existence of
solutions of (18.3) which satisfy the total power condition.

It can also be shown that if P̃ = (P̃ u) satisfies (18.3) then P↓um = P̃ uf↓
u
m with

f↓
u
m =

(
W u
m +

∑
v

αuvP̃
v/l↓

v
m

)
l↓
u
mξ
′
↓
u

m
, m ∈ Su

is the minimal solution of the DL power control problem with power limitation.

Uplink We will say that the UL power control with power constraint is feasible if there exist nonnegative,
finite powers P↑um such that the following two conditions are satisfied:

(1) SINR condition:
P↑
u
m/l↑

u
m

W u +
∑

v

∑
n∈Sv P↑

v
n/l↑

u
n

≥ ξ′↑
u

m
, ∀u,m ∈ Su. (18.6)
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(2) power limitation condition:
P↑
u
m ≤ P̃

u
m, ∀u and m ∈ Su.

We will say that the UL power control without power constraint is feasible if there exist nonnegative powers
P↑
u
m such that condition i) is satisfied.

Let J = (Ju) be the vector with entries Ju = W u +
∑

v

∑
n∈Sv P↑

v
n/l↑

u
n, W the vector (W u) and

let B = (buv) be the square matrix with entries buv =
∑

n∈Sv ξ
′
↑
v

n
l↑
v
n/l↑

u
n, all with dimension equal to the

number of BSs.
Simple algebraic manipulations similar to those in the proof of Lemma 18.2.1 show that the feasibility

of the UL power control problem without power constraint is equivalent to the existence of a non-negative
finite solution J = (Ju) to the inequality

(I− B)J ≥W. (18.7)

Thus, we have the following result (cf. Lemma 18.2.2 for a more precise statement).

Lemma 18.2.4. The uplink power allocation problem without power constraint is feasible if and only if the
spectral radius of B is less than 1.

Again, the substochasticty of B is a sufficient condition for the feasibility of the UL power allocation problem
without power constraint.

Lemma 18.2.5. If for each BS u ∑
m∈Su

∑
v

ξ′↑
u

m
l↑
u
m

l↑
v
m

< 1 (18.8)

then the uplink power control without power limitation is feasible.

Taking the maximal power constraint of mobiles into account is more tricky than in the DL case and we do
not present this here (some conditions can be found in (Baccelli, Błaszczyszyn, and Karray 2004)).

Decentralization of power control We will say that a power control condition COND is decentralized
if it is of the form

COND ≡ ∀uCOND(u) ,

where COND(u) is a condition that depends on the locations and parameters of the mobiles {m ∈ Su}
and possibly on the locations and parameters of all other BSs, but not on the number, the location and the
parameters of {n ∈ Sv} for v 6= u. The conditions based on the spectral radius of the matrix A or B are not
decentralized. The conditions (18.4), (18.5) and (18.8) are decentralized and in each case, COND(u) has
the following linear form

COND(u) ≡
∑
m∈Su

fm ≤ Cu , (18.9)

where fm = fum is some virtual load associated to mobile m of BS u (which depends on the considered
condition) and Cu is the maximal virtual load of the BS allowed by this condition:
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• For condition (18.5), the DL load brought by mobile m ∈ Su is:

f↓
u
m =

(
W u
m +

∑
v

αuvP̃
v

l↓
v
m

) l↓umξ′↓um
P̃ u

(18.10)

and the maximal total load authorized by (18.5) is equal to Cu = 1 − Qu/P̃ u. Taking P̃ v =
P̃ u =∞ in the above formulas gives the load and the maximal load related to condition (18.4).
• For condition (18.8) The UL load brought by mobile m served by BS u is equal to

f↑
u
m =

(∑
v

1
l↑
v
m

)
ξ′↑
u

m
l↑
u
m (18.11)

and Cu is equal to 1.

Remark: Note that the load f↓um (resp. f↑um) brought by mobile m is the product of the modified SINR
target ξ′↑

u

m
(resp. ξ′↑

u

m
), which determines its bit-rate (see Section 23.3.3) and some quantity which depends

on the path-loss conditions of this users, which is primarily related to the network geometry and the fading
(as well as the noise, the maximal BS powers and the interference cancellation factor in the case of (18.5)).

18.3 Stochastic Models

This section describes natural stochastic frameworks for analyzing the power control problem. We model
the locations of BSs and mobiles maximal powers, noise, target SINRs etc. by marked point processes. As
usual in our approach, we are primarily interested in models on the whole plane that allow one to evaluate
spatial averages.

18.3.1 General Stationary Ergodic Model

Let the locations and characteristics of BSs (with their mobiles) be modeled by the following m.p.p.

Φ̃ =
{(

Xu,W
u, Qu, αu,

{(
Y u
m, ξ

′
↓
u

m
, ξ′↑

u

m
,W u

m

)
: m ∈ Su

})}
u

. (18.12)

Assume the following path-loss model with cross-fading (cf. Example 2.3.9 in Volume I).
1
l↓
u
m

=
F↓
u
m

l(|Xu − Y u
m)
,

1
l↑
u
m

=
F↑
u
m

l(|Xu − Y u
m)
, for all u,m , (18.13)

where l(·) is some mean path-loss function (e.g. one of OPL1–OPL3). We have the following general result.

Proposition 18.3.1. Assume that the point process Φ̃ with the cross-fading model {F↓um, F↑
u
m}u,m is station-

ary and ergodic. Then the (downlink or uplink) power control problem without power constraint is feasible
with probability either 0 or 1.

Proof. We consider here only the downlink case (the proof for the case of uplink is similar). Note that the
events {A∗b <∞}, { convergence radiusR ≤ 1 }, { convergence radiusR > 1 }, {matrix A is transient },
{ matrix A is recurrent } are invariant with respect to the discrete shift in R2. Thus, by ergodicity each of
them has probability 0 or 1. If view of Lemma 18.2.2 the feasibility of the power allocation problem without
power constraints can be expressed by means of standard Boolean operations on the above events.

Note that the spectral radius of the random matrix A in the general ergodic model is deterministic too.
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18.3.2 Poisson and Honeycomb Voronoi Access Network Model

We will use the cellular network model introduced in Section 4.5 in Volume I to describe the locations of
BSs and mobiles.

Suppose that Φ̃BS = {(Xu,W
u, Qu, αu, )}u is some stationary, independently marked point process

with intensity 0 < λBS <∞ describing the locations and characteristics of BSs.
Consider a second independently marked Poisson point process Φ̃Mo =

{(
Ym, ξ

′
↓m, ξ

′
↑m,Wm

)}
m

with

intensity λMo describing the mobiles and their characteristics. We assume that Φ̃Mo is independent of Φ̃BS .
Let the pattern Su of mobiles served by the BS located at Xu be the set of points of ΦMo located in the

Voronoi cell of point Xu w.r.t. the point process ΦBS ; i.e., Su = ΦMo ∩ Cu(ΦBS), for all u. In other words

Su =
{
Ym ∈ ΦMo : |Ym −Xu| ≤ |Ym −Xv| for all Xv 6= Xu ∈ ΦBS

}
.

In accordance with our general notation, we will write Ym = Y u
m for Ym ∈ Su. We will call Cu = Cu(ΦBS)

the cell of the BS Xu. Note that with probability one no point of ΦMo belongs to two or more cells. Assume
moreover the path-loss model (18.13) with F↓um, F↑

u
m u,m i.i.d.

Recall from Section 4.5 in Volume I that the mean number of mobiles per BS is M̄ = λMo
λBS

. It is
convenient to relate λBS to the radius R of the (virtual) disc whose area is equal to that the mean volume of
the typical cell E0[C0] = 1/λBS :

1
λBS

= πR2 . (18.14)

Bearing this definition in mind, we will call R the radius of the (typical) cell.
We will consider the following two models for BSs.

Poisson Model In this case ΦBS is a Poisson p.p. on the plane, with intensity λBS . This scenario will be
referred to as the Poisson-Voronoi (PV) model.

Honeycomb model In the honeycomb model, BSs are placed on a regular hexagonal grid. The radius
R of the point process is determined by the distance ∆ between two adjacent BSs by the formula ∆2 =
2πR2/

√
3. More precisely under the Palm distribution P0, the BSs are located on the grid denoted by

ΦBS = {Xu : Xu = ∆(u1 + u2e
iπ/3), u = (u1, u2) ∈ {0,±1, . . .}2}

on the complex plane. In order to obtain a stationary distribution for ΦBS , one randomly shifts the pattern
of BSs by a vector uniformly distributed in the cell C0 (cf. Example 4.2.5 in Volume I). Note that the density
of the BS’s is related to ∆ by the formula λBS = /(πR2) = 2π

√
3/∆2. This model will be referred to as

the Hex model.
The above models can be seen as two extreme and complementary cases: the Honeycomb model repre-

sents large perfectly structured networks and the Poisson-Voronoi model takes into account the irregularities
observed in large real networks.

We have the following important negative result.

Proposition 18.3.2. Consider the Poisson-Voronoi model. For any λBS > 0, λMo > 0 the (uplink or
downlink) power control without power limitations is feasible with probability 0.
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Proof. We consider here only the downlink. The uplink case is similar. With probability 1, the Poisson point
process ΦBS has a cluster of BSs that leads to a super-stochastic (sum of elements in lines > 1) block in
matrix A. Thus the spectral radius of A is larger than 1. In fact, for all arbitrarily large a > 0, we can find a
block with line-sums larger than a and this shows that ρ(A) =∞.

This surprising property reveals some feature of the Poisson-Voronoi model in an infinite plane: the pos-
sible clustering of the BS’s allowed by the Poisson model renders the power allocation problem unfeasible
whatever the parameters of the model. However, even if the geometry of BS is perfectly regular, similar
negative results hold:

Proposition 18.3.3. Consider the Honeycomb model. For any λBS > 0, λMo > 0 the (uplink or downlink)
power control without power limitations is feasible with probability 0.

Proof. This time, we use the clustering property of the Poisson p.p. ΦMo and find with probability 1 a a
cluster of cells (hexagons) with some large enough number of mobiles in each one; this makes the associated
block of matrix A super-stochastic. Thus the spectral radius of A is larger any given arbitrarily large real
number a. Consequently, the spectral radius of A is again infinite.

So even for a very low density of mobiles or a very high density of BS, both the Poisson-Voronoi and
the Honeycomb network architectures, require some reduction of mobiles or of their target SINR’s in oder
to make the power allocation problem feasible.

18.4 Maximal Load Estimation

Tha aim of this section is to show how the decentralized conditions of Section 18.2.2 can be used to enforce
the feasibility of power control.

Two types of mechanisms will be considered: admission and rate control.

Population (admission) control Assume the bit-rates of all mobiles (or equivalently all ξ′↓
u

m
, ξ′↑

u

m
param-

eters) are fixed. This is the situation for voice calls or certain types of streaming. Admission control then
consists in reducing the population of mobiles so as to satisfy the sufficient condition ensuring the feasibility
of power control.

Bit-rate control For so called elastic traffic (data), one does not need any guarantee on the bit rates (or
equivalently the ξ′↓

u

m
, ξ′↑

u

m
parameters may be adapted). In this case the feasibility of power control can be

attained via a reduction of the bit rates (i.e. a decrease of the SINR targets) of all users in some fair manner.
The decentralized admission/rate control policies defined and analyzed below provide conservative

bounds for the maximal load of the network since these conditions are sufficient for the feasibility of power
control but not necessary. In what follows we consider a snapshot of such a network and ask the following
questions:

• For the fixed bit-rate traffic case, given λBS , what is the maximal density of mobiles λMo such
that the decentralized conditions of Section 18.2.2 hold with sufficiently high probability?
• For the elastic traffic case, given λBS , and λMo what are the maximal fair bit-rates such that the

decentralized conditions of Section 18.2.2 hold?
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18.4.1 Mean Value Approach

We first analyze the conditions of Section 18.2.2 “in mean”. Assume the stochastic Poisson-Voronoi or
Honeycomb access network model of Section 18.3.2 with fixed maximal BS powers P̃ u ≡ P̃ . Denote by
α = E[αu], W = E[W ], ξ̄′↓ = E[ξ′↓ ] and ξ̄′↑ = E[ξ′↑ ] the mean values of the interference cancellation factor,
the thermal noise and the modified SINRs, respectively.

Let π̄ = E[Q]/P̃ be the mean fraction of the maximal power devoted to the common channels. Recall
that M̄ = λMo/λBS is the mean number of mobiles per BS. We have the following “mean result” for the
downlink, where P0 denotes the Palm distribution w.r.t. Φ̃BS .

Proposition 18.4.1. Assume the OPL3 model with constant fading F↓vm = F↑
v
m = 1 and constant maximal

powers P̃ u ≡ P̃ . Suppose that the pairs W u
m, ξ′↓

u

m
and αu, ξ′↓

u

m
are independent random variables for each

u,m. Then

E0
[ ∑
m∈S0

f↓
0
m

]
= M̄ ξ̄′↓

(
α+ f̄ + l(R)W̄ ḡ/P̄↓

)
E0
[ ∑
m∈S0

f↑
0
m

]
= M̄ ξ̄′↑(1 + f̄) ,

where R is the radius of the Voronoi cell (see (18.14)) and where f̄ , ḡ are given by

f̄ =

{
f̄PV = 2/(β − 2) for the PV model

f̄Hex ≈ 0.9365/(β − 2) for the Hex model
(18.15)

and

ḡ =

{
ḡPV = Γ(1 + β/2) for the PV model

ḡHex ≈ (1 + β/2)−1 for the Hex model.
(18.16)

(fHex, gHex are some constants depending only on β, which are not explicitly known; the above approxima-
tion are reasonable for β ∈ [2.2, 5]).

Proof. Note by (18.10) with P̃ u ≡ P̃

f↓
0
m =

W 0
mξ
′
↓

0

m
l↓

0
m

P̃
+ α0ξ

′
↓

0

m
+
∑
v 6=0

l↓
u
mξ
′
↓
u

m

l↓
v
m

.

By the Neveu exchange formula (see Theorem 4.3.1 in Volume I)

E0

[
α0

∑
m∈S0

ξ′↓
0

m

]
=

λMo

λBS
E[α0ξ

′
↓

0] = M̄αξ̄′↓ ,

E0

[ ∑
m∈S0

W 0
mξ
′
↓

0

m
l↓

0
m

]
= M̄Wξ̄′↓l(R)ḡ ,

E0

[ ∑
m∈S0

∑
v 6=0

l↓
u
mξ
′
↓
u

m

l↓
v
m

]
= M̄ ξ̄′↓f̄ ,

where f̄ and ḡ depend only on the path-loss exponent β. For the PV model, f̄ = (RPL)/M̄ = 2/(β − 2),
ḡ = (PL)/(M̄l(R)) = Γ(1 + β/2), are evaluated in Example 4.5.1 in Volume I. For the Hex model, these
values have to be evaluated numerically. The proof for the up-link is similar.
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Fig. 18.1 Mean-load estimations for the downlink (DL) and uplink (UL), for the Hex model (upper curves) and PV model (lower curves). The
numerical assumptions are: α = 0.4, ξ↓ = ξ↑ = −16dB, Wu = −105dBm, Wm = −103dBm, ePu = 52dBm, Q = 42.73dBm (these
values correspond to the UMTS system) and β = 3.38, A = 8667 yielding ḡPV = 1.5325, ḡHex = 0.3717, ḡHex|2β = 0.2283, f̄PV = 1.4493,

f̄Hex = 0.6564, f2
Hex = 0.8703, lfHex = 0.4394

Corollary 18.4.2. Under the assumptions of Proposition 18.4.1, in order to satisfy condition (18.5) in mean
(i.e. taking expectation w.r.t. E0 on both sides of (18.5) with u = 0), we need

M̄ ≤ 1− π̄
ξ̄′↓(α+ f̄ + l(R)N̄ ḡ/P̄↓)

. (18.17)

We get the mean version of condition (18.4) by letting P̄↓ →∞ and π̄ → 0 in (18.17).
Similarly, in order to satisfy condition (18.8) in mean, we need

M̄ ≤
1/ξ̄′↑

1 + f̄
, (18.18)

where f̄ is given by (18.15).

Figure 18.1 displays some numerical examples illustrating the above result.

18.4.2 Feasibility Probability

Another and more accurate load estimation is based on the feasibility probability. Let COND by a decen-
tralized condition (see Section 18.2.2).

Definition 18.4.3. We define the power control feasibility probability with respect to the decentralized con-
dition COND (feasibility probability for short) by P0{COND(0) }; this is also the probability that this
condition holds for the typical BS, or equivalently the fraction of BSs satisfying this condition.

Here is a refined load estimation based on the feasibility probability:
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Definition 18.4.4. For a given density of BS λBS > 0 (equivalently, typical cell radius R < ∞) and a cell
rejection probability (CRP) ε > 0, let λεMo = λεMo(λBS) be the maximal density of mobiles (equivalently,
the mean number M̄ = M̄ ε(R) of users per cell) such that

P0{COND(0) } ≥ 1− ε . (18.19)

The evaluation of the maximal density of mobiles λεMo with respect to a decentralized condition COND
of the form (18.9) requires estimates for the distribution functions of the sum

∑
m∈S0

fm (and not only its
means), or equivalently estimates of the probability of events of the form:

E(z) =
{∑
m∈S0

fm ≥ z
}
, (18.20)

where fm is the load associated to the mobile m under this condition. We will briefly review the main ideas
for estimating these distributions.

Chebychev’s inequality This requires some ways of estimating (upper-bounding) Var[
∑

m∈S0
fm].

When this is available, then

P0(E(z)) ≤
Var[

∑
m∈S0

fm](
z −E0[

∑
m∈S0

fm]
)2 .

Gaussian approximation If an estimator (an upper bound is enough) of Var[
∑

m∈S0
fm] is available,

then

P0(E(z)) ≈ Q
(z −E0[

∑
m∈S0

fm]√
Var[

∑
m∈S0

fm]

)
,

where Q(z) = 1/
√

2π
∫∞
z e−t

2/2 dt is the Gaussian tail distribution function.
The following result gives the variances for the Honeycomb model.

Proposition 18.4.5. Under the assumptions of Proposition 18.4.1 we have the following results for the
Honeycomb model:

Var
[ ∑
m∈S0

f↓
0
m

]
= M̄ ξ̄′↓

2
(
W̄

2
l2(R)ḡ|@2β/P̄↓

2 + α2 + f2 + 2
(
αf̄ + W̄ l(R)(αḡ + lf)/P̄↓

))

Var
[ ∑
m∈S0

f↑
0
m

]
= M̄ ξ̄′↑

2(f2 + 1 + 2f̄)

where f̄ , ḡ are given by (18.15), (18.16), ḡ|@2β denotes ḡ calculated at doubled path-loss exponent and

f2 = f2
Hex ≈

0.2343
(β − 2)

+
1.2907

(β − 2)2
(18.21)

and
lf = lfHex ≈

0.6362
β − 2

; (18.22)

these approximations are appropriate least square fits for β ∈ [2.5, 5].
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Proof. Note that for the Honeycomb model, the sum
∑

m∈S0
fm is a compound Poisson random variable

and we have Var
[∑

m∈S0
fm

]
= M̄E0[f2

m]. The moments of the random variable fm are calculated nu-

merically.

Remark: The corresponding (exact) values for the PV model are f2
PV = 8/(β − 2)2 + 1/(β − 1) and

lfPV = Γ(2 + β/2)/2, but the formula for the variance requires some positive correcting term due to the
randomness of the cell size.

We can now give explicit results for the maximal mobile density given some CPR.

Corollary 18.4.6. Under the assumptions of Proposition 18.4.1, using the Gaussian approximation for the
Honeycomb model, we get the following maximal mean number of mobiles per cell allowed in the downlink
by condition (18.5) at a given CPR ε:

M̄ ≤ M̄↓ −
(Q−1(ε))2X2

↓
2X̄2
↓

(√√√√4(1− π̄)X̄↓
ξ̄′↓X

2
↓

+ 1− 1
)
, (18.23)

where M̄↓ is the upper bound for M̄ given by the mean model (i.e., the right-hand-side of (18.17)) and

X̄↓ = α+ f̄Hex + l(R)W̄ ḡHex/P̄↓

X2
↓ = W̄

2
l2(R)ḡHex|@2β/P̄↓

2 + α2 + f2
Hex + 2

(
αf̄Hex +Wl(R)(αḡHex + lfHex)/P̄↓

)
,

Similarly for the uplink (condition (18.8))

M̄ ≤ M̄↑ −
(Q−1(ε))2X2

↑
2X̄2
↑

(√√√√ 4X̄↑
ξ̄′↑X

2
↑

+ 1− 1
)
, (18.24)

where M̄↑ is the upper bound for M̄ given by the mean model (i.e., the right-hand-side of (18.18)) and

X̄↑ = 1 + f̄Hex

X2
↑ = 1 + f2

Hex + 2f̄Hex .

Figure 18.2 illustrates the above result.

18.4.3 Rate Control

We will show now how our decentralized conditions can be used to control the bit-rates of mobiles. We
will be using the notions of an optimal, max-min, α-fair, and proportional fair policy, which are recalled in
Chapter 11 in Volume I.

Consider a decentralized condition of the form (18.9) for the feasibility of power control. In what follows,
we concentrate on the typical BS and we omit the superscript u = 0. We suppose that all the mobiles of this
BS are served and we look for fair bit-rates which can be sustained when taking condition (18.9) for defining
the set of all feasible rates. Note that this condition is linear in the modified SINR ξ′. However, we want
to study rate (and not SINR) allocation policies and thus we have to relate ξ′ to the corresponding bit-rates
R = {Ri}.

In order to simplify analysis, we will work under the following linearization assumption:
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Fig. 18.2 Maximal load estimations in Honeycomb model at a given CPR ε = 0.2, 0.1, 0.05, 0.02, 0.01 (solid lines) for the downlink (DL) and
uplink (UL). The dashed curves represent the values for the mean model. The numerical assumptions are as on Figure 18.1.
User maximal power constraints are taken into account on UL as proposed in (Baccelli, Błaszczyszyn, and Karray 2004).

(L) the bit-rate R = R(ξ) is some linear function of the SINR ξ with R(0) = 0.

1

Note that by (18.1) ξ′n ≤ ξn and thus under assumption (L), the following condition∑
n∈S

Rnγn ≤ 1, (18.25)

where γn = fn/(ξ′nC) is also a sufficient condition for the feasibility of power control. So Rnγn can be
seen as a new load brought by mobile n.

Denote by R the set of all non-negative rate vectors R = {Rn} satisfying condition (18.25). We can
now identify fair policies under this linear assumption.

Proposition 18.4.7. For α > 0 consider the rate allocation problem under the constraint (18.25). The policy
Rm = γ

−1/α
m /

(∑
k∈S γ

1−1/α
k

)
is α-fair optimal. Consequently,

Rn =
1∑

k∈S γk
is the max-min fair allocation, (18.26)

Rn =
1

(#S)γn
is the proportional fair allocation, (18.27)

Rn =
1{n ∈ J}∑

j∈J γj
is an optimal allocation, (18.28)

where J is any non-empty subset of the set {j ∈ S : γj = mini γi}.

1This assumption is justified for small SINR. Indeed Shannon’s relation gives log2(1 + ξ) ≈ ξ/ log 2 for small SINR.
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Proof. Let

h(R) =
#S∑
i=1

R1−α
i

1− α
, ϕ(R) =

#S∑
i=1

γiRi − 1 .

For α > 0, the function h(R) is strictly concave (for α = 1 we interpret r1−α/(1− α) as log r). Moreover,
the set {R ≥ 0 : ϕ(R) = 0} is nonempty, compact and convex. Thus h attains a unique maximum on this
set. Denote it by R∗. Then, by the Lagrange multiplier theorem, there exists λ such that

∂h

∂Rm
= λ

∂ϕ

∂Rm
.

Hence R−αm = λγm which combined with the constraint ϕ(R) = 0 gives form of the α-fair policy. By
Proposition 11.0.5 in Volume I we obtain the form of the max-min, proportional fair and optimal allocation
letting α→∞, 1 and 0, respectively.

We can also consider a weighted modification of the optimal allocation (18.28)

Rn =
1{m ∈ Jw}∑

j∈Jw γj
, (18.29)

where Jw is any non-empty subset of {j ∈ S : wjγj = miniwiγi} and w = (wk : k ∈ S) are given
weights. Let us call (18.29) a weight-based optimal allocation. Note that it maximizes

∑
m∈S wmRm under

the constraint (18.25).

Remark: The mean bit-rate offered to the typical user by the proportional fair policy (18.27) in a Poisson-
Voronoi network can be evaluated in an explicit way and approximated in Honeycomb one. Note also by the
Neveu exchange formula, that this it is equal to E0[1/(#S0)

∑
m∈S0

fm/(ξ′mC0)].

18.5 Conclusion

The Voronoi representation of cellular networks considered in the present chapter can be extended to other
MAC protocols. A typical example is that of WiFi networks. The model features a collection of access points
and a set of users where each user is served by the closest access point. For instance, the downlink involves
1) contention between the access points; 2) some form of time sharing between the users in the Voronoi cell
of each access point (see (Kauffmann, Baccelli, Chaintreau, Mhatre, Papagiannaki, and Diot 2007) for an
exploitation of this model in the context of load balancing algorithms in WiFi networks).

We saw in the present chapter that at least in the CDMA framework, power control could be integrated
into the spatial modeling tools advocated in this monograph. In general, the optimal powers become non-
independent marks of the nodes and are not amenable to quantitative analysis. However, the ’substochastic’
sufficient condition for feasibility introduced in this chapter is tractable and leads to explicit quantitative
results on the operation of the network.

What is done in the present chapter can be extended to a time-space model with call arriving and
terminating. More precisely, one can consider a spatio-temporal Poisson arrival process (cf (Baccelli,
Błaszczyszyn, and Karray 2007)) of streaming calls (requiring a specific bit-rate) and exponential dura-
tion of each call, subject to blocking based on some power control feasibility condition developed above.
Study of such spatial loss system allows one to evaluate the probability that an arriving call is rejected by the
admission control mechanism via a spatial Erlang’s loss formula (see (Baccelli, Błaszczyszyn, and Karray
2005) for the details).
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Also, the elastic traffic can be studied in this setting, considering Markovian arrivals of users, which
transmit some given data-volumes. The users are served with some fair bit-rates again based on some fea-
sibility condition and leave the system immediately after having transmitted their respective data-volumes.
Considering some spatial version of a processor shearing queue, in some cases it is possible to give an
explicit evaluation of the mean throughput or the mean delay (see (Błaszczyszyn and Karray 2007)).

Power control can also be considered in other frameworks such as e.g. CSMA.
Let us conclude by stressing that there are very few mathematical results on power control in infinite

networks. For instance, consider the SINR graph of Definition 8.2.1 in Volume I. We recall that in the basic
SINR graph model, the transmission powers are constant. Consider a model where the SINR graph does
not percolate for these constant transmission powers. Assume now that one can control the power of each
transmitter so as to open certain links or so as to diminish the interference created by useless links. We do
not know whether such a power control can let the SINR graph percolate when leaving all other network
parameters unchanged.
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Bibliographical notes on Part IV

Chapter 16 follows (Baccelli, Blaszczyszyn, and Mühlethaler 2003) and (Baccelli, Blaszczyszyn, and
Mühlethaler 2009a). Among the papers which have proposed methods allowing one to analyze coverage
under general fading conditions, let us quote (Hunter, Andrews, and Weber 2008), where one can find an
analysis of the impact of certain fading scenarios such as e.g. Nakagami. The formalism based on the
Fourier L2 isometry which is developed in Chapter 16 and which allows one to cope with arbitrary fad-
ing (like e.g. Rician) was proposed in (Baccelli, Blaszczyszyn, and Mühlethaler 2009a). Example 16.2.3 is
borrowed from (Hunter, Andrews, and Weber 2008). Several papers have considered the evaluation of the
mean throughput in the context of a Poisson MANET. In (Ehsan and Cruz 2006), the authors evaluate the
optimal SINR target T that a Poisson MANET using Spatial Aloha ought to use in order to maximize the
mean throughput per unit area. The throughput is evaluated as the product of the probability of coverage and
the logarithm of 1 + T (Shannon’s capacity). This definition underestimates the real throughput obtained
by transmitters: given that transmission is successful, namely given that the actual SINR θ at the receiver
is larger than T , the throughput is the logarithm of 1 + θ, which is larger than the logarithm of 1 + T . The
approach developed in § 16.2.3 tells us how much better, since we actually compute the distribution and the
mean of the logarithm of 1 + θ. Formula (16.59) on the multicast case is due to (Jacquet 2008). The analysis
of Opportunistic Aloha presented in § 16.4 is based on (Baccelli, Blaszczyszyn, and Mühlethaler 2009a).
Opportunistic Aloha was also considered in (Weber, Andrews, and Jindal 2007), where it was called ”thresh-
old scheduling”. The results of Sections 16.5 and 16.6 are primarily based on (Baccelli and Blaszczyszyn
2009).

When applied to Aloha, stochastic geometry can be used to analyze many other interesting problems
which are not considered in Chapter 16 such as the optimal division of the available bandwidth into different
sub-bands (Jindal, Weber, and Andrews 2008) or power control to compensate for random fading (Jindal,
Andrews, and Weber 2008).

Chapter 17 follows (Nguyen, Baccelli, and Kofman 2007).
Chapter 18 is based on (Baccelli, Błaszczyszyn, and Tournois 2003) and (Baccelli, Błaszczyszyn, and

Karray 2004).
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Part V

Multihop Routing in Mobile ad Hoc
Networks
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In this part, we study the performance of multihop routing (see Part VI) in large MANETs using the
notion of point map on the point process of nodes and that of route average.

Point Maps

Consider a locally finite set of points φ = {xi} of R2, for instance some realization of a Poisson point
process. A key feature of any routing scheme is that the next hop decision for a packet located at nodeX and
bound to end destination D should depend on D and X and not from where the packet comes from. Hence
a routing mechanism to D can be defined through a point map on φ, namely a mapping A = AD : φ 7→ φ,
where A(X) is the next hop from node X . Let Ak denote the k-th iterate of A.

Definition A point mapA = AD on the pattern of points φ is a routing to destinationD ∈ φ ifA(D) = D

and, for all x ∈ φ, x 6= D, Ah(x) = D, for some finite h = h(x) ≥ 1.

Here are a few further definitions related to such a routing.

• The smallest integer h = h(x) such that Ah(x) = D is the number of hops of the route from x

to D, which is defined as the sequence of points p(x,D) =
(
x,A(x),A2(x), . . . ,Ah(x) = D

)
.

• The vector J(x) = A(x)− x ∈ R2 is the jump vector from point x.
• The real number P (x) = |x−D| − |A(x)−D| ∈ R is the progress to destination from point x.

Point Maps Associated with Graphs

Often, in addition to the node point process, we will have some underlying graph, where the vertices of the
graph are the nodes and the edges represent the links which serve as a support to (or constraints for) the
routing protocol. Let G = (φ, E) be such a graph, with E ⊂ φ × φ the set of (non-directed) edges. The
elements of the set N (x) = {y ∈ φ : (x, y) ∈ E} will then be referred to as the neighbors of x ∈ φ.

Definition A graph point map associated with the graph G = (φ, E) is a point map A on φ such that
(x,A(x)) ∈ E for each x ∈ φ. In other words A(x) ∈ N (x), for all x ∈ φ.

Examples of graphs

Let φ = Φ be some realization of a homogeneous Poisson point process; the following examples of graphs
with set of nodes Φ are pertinent for modeling multihop wireless communications and will be used through-
out this part:

• Poisson–Delaunay graph: in connection with Example 4.4.2 in Volume I, we call Poisson–
Delaunay graph the graph GDelaunay = (Φ, EDelaunay) the edges of which are the sides of the
Delaunay triangles generated by the Poisson p.p. Φ (cf. Definition 4.4.1 in Volume I). Recall that
the edges EDelaunay = {(x, y) : x ∈ Φ, y ∈ Nx(Φ)} of this graph connect each point x ∈ Φ of
the Poisson p.p. to all its Voronoi neighbors Nx(Φ) (cf. Lemma 4.4.3 in Volume I). This graph
is very convenient in that it is almost surely connected. Its main weakness within the present
context is the lack of realism of Delaunay edges for representing wireless links.
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• Random geometric graph: this is the Boolean connectivity graph, obtained when having an edge
between two points of the Poisson p.p. iff the distance between them is less than some threshold
Rmax. In the wireless setting, this graph is often referred to as the transmission range graph.
Here, the neighborhood depends not only on the geometry of the p.p. but also on the parameter
Rmax, which is often used to model the maximal transmission range of a wireless node (e.g.
taking Rmax = max{r : P/l(r) ≥ Po}, where P is the power of the transmitter, l(r) some OPL
function and Po is the minimal detection power). This model is equivalent to the connectivity
graph of the BM with spherical grains of deterministic radius. The main problem with this model
is that the graph on the whole plane is not connected (more precisely, it is disconnected with
probability 1; cf. Proposition 3.2.4 in Volume I). This means that, on this graph, routing is only
possible between points of Φ which belong to the same connected component. A natural idea
is to assume that the BM percolates and to consider routing on the unique infinite connected
component of the BM (cf. Section 3.2.2 in Volume I). This however essentially complicates the
analysis.
• Connected component of the SINR graph: A more pertinent but more complicated model is the

SINR connectivity graph GSINR (see Definition 8.2.1 in Volume I). Recall that for the M/D
W+M/D

model, this graph percolates (cf. Section 8.3 in Volume I) and one can consider routing on its
giant component. 2

Spatial Averages and Route Averages — Routing Paradox

Our main objective within this framework is the analysis of various classes of routing algorithms, when
operated on Poisson point processes. For all routing algorithms, we will be particularly interested in route
averages and spatial averages, defined below and on fluctuations around these averages. It is customary to
fix the origin of the plane O at the destination node D and consider routing A = AD = AO to the origin of
the plane. Let g be some function from R2 to R.

• The route average of g w.r.t. point map A is defined as

r = lim
|x|→∞

1
h(x)

h(x)−1∑
k=0

g(Ak+1(x)−Ak(x)) ,

whenever the last a.s. limit exists and is independent of the direction with which x ∈ R2 tends
to∞. In this definition, h(x) is the number of hops of the A-route from x to O. For instance, if
g(x) = |x|, r is the route average of the hop size.
• The spatial average of g w.r.t. the point map A is defined as

s = lim
ρ→∞

1
φ(BO(ρ))

∑
x∈φ∩BO(ρ)

g(A(x)− x)) ,

whenever the last almost sure limit exists. In this definition, BO(ρ) is the ball of center O and
radius ρ.

As we will see, these two types of averages do not coincide in general. This observation belongs to the
class of Palm biases and continues in a sense Feller’s paradox. Feller’s paradox is concerned with stationary

2It is natural to conjecture that the infinite component of this graph is unique, provided it exists; we are not aware of any published proof of this fact.
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point process on the real line (interpreted as time below). The paradox is that statistics made by an observer,
which measures the length of the interval that separates time t to the first point of the point process after t,
in general differ when t is an arbitrary instant of time (say 0) and when it is the typical point of the point
process (in the Palm or ergodic sense). In the same vein, one can obtain different statistics on the jump vector
associated to a point map A, when this jump is taken from a typical point of the point pattern and when it
is taken from the typical point of some (long) route prescribed by the very same point map A. By analogy,
this could hence be called the routing paradox.

The Price of Anarchy in Routing

Another key concern will be the price of anarchy within this setting. For most kinds of routing paradigms,
one can define both optimal and greedy versions. The optimal schemes are all based on dynamic program-
ming; they often come with heavy computational and state construction overheads which are problematic in
this wireless and infrastructureless MANET context. Suboptimal and in particular greedy versions, which
are based on local optimizations and require less exchange of information are often preferred as they come
with a much smaller computational cost. Locality can be either in time or space depending on the cases. The
main question is then the quantification of the loss of performance between optimal and greedy solutions,
which it is then natural to be baptized price of anarchy (in routing). This price will be analyzed in terms of
the space and route averages alluded to above.

Structure of Part V

Chapter 19 studies optimal (shortest path or minimal weight) routing. Chapter 20 is focused on greedy
near-neighbor routing. These two first chapters focus on routes which are made of a collection of adjacent
and feasible links seen in a snapshot of the network. In these two chapters, we consider conventional routing
protocols (like e.g. shortest path routing); in these conventional schemes, when a route is determined between
an origin and a destination, this route remains the same as long as the network nodes do not move and links
remain stable; once the route is determined, the MAC is then used to let packets progress from origin to
destination along this route. This allows one to separate the routing problem from the MAC protocol.

In Chapter 21, we study time-space routing where the next relay on the route to the destination changes
from a packet to the next and where the next hop is selected among the nodes having successfully received
the packet (if any), which again depends on the SINR at the receivers. Such a scheme allows one to take
advantage of the local pattern of transmissions as determined by the MAC and by the fading variables, at
each hop and at each time. Within this context, one can again define both optimal and greedy versions. One
of the important objects within this framework is Opportunistic routing, a greedy algorithm where, at each
time slot, each node selects the best relay to route the packet towards its end destination. By best, we mean
e.g. the relay which maximizes the progress of the packet towards the destination. These SINR-based routing
schemes are analyzed in terms of random and time-space point maps.
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19
Optimal Routing

19.1 Introduction

This chapter is focused on optimal multihop routing on (weighted) graphs associated with stationary point
processes of the Euclidean plane and in particular Poisson point processes. We focus on the existence and
the evaluation of route averages. More precisely, we establish a generic scaling law which shows that for a
large class of optimal routing schemes, which includes shortest path and minimal weight routing on such
graphs, the length (or weight) of the optimal path is asymptocically linear in the distance between source
and destination. The main tool used here is the sub-additive ergodic theorem. The main technicalities bear
on proving that the constants in the sub-additive ergodic theorem are not degenerate.

19.2 Optimal Multihop Routing on a Graph

Weights Consider a locally finite pattern of points φ =
∑

i εxi on R2. Consider a graph G = (φ, E) on this
point pattern and assume some non-negative weights w(x, y) to be associated with each edge (x, y) ∈ E .
The following examples of weights are of interest: for y ∈ N (x),

• Graph distance: w(x, y) = wgraph(x, y) = 1;
• Euclidean distance: w(x, y) = wEuclid(x, y) = |x − y| (more generally one can consider
wα(x, y) = |x− y|α, for some 0 ≤ α <∞);
• Random weights e.g. w(x, y) = w(y, x) are i.i.d. random variables.

When a marked pattern of points is considered, more elaborate weights can be contemplated. For instance,
consider a standard stochastic scenario for a SN of the M/GI type. For all pairs of points x, y ∈ Φ, let
Ix,y(.) denote the SN generated by Φ \ {x, y}. Then, in the wireless context, it is natural to consider e.g.
w(x, y) = max(Ix,y(x), Ix,y(y)). Another natural example related to the digital communication model
framework is that where the weight of a link is the bidirectional delay of this link, namely

wdelay(x, y) = max

((
log
(

1 +
F yx /l(|x− y|)
W + Ix,y(y)

))−1

,

(
log
(

1 +
F xy /l(|x− y|)
W + Ix,y(x)

))−1
)
, (19.1)
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where F yx is the fading from x to y.
It is often convenient to extend the definition of weights to all pairs of nodes (x, y) ∈ φ2 by taking

w(x, y) =∞ for y 6∈ N (x).

Optimal Paths Consider the collection of all paths π = {S = x1, . . . , xn = D} of G = (φ, E) between
S and D. Pick some non-negative weight function w and define the weight of π as

|π| =
n−1∑
i=1

w(xi, xi+1) .

We define p∗(S,D) to be the minimal weight path in this collection.
Note that it is not guaranteed that such an optimal path exists (at least on an infinite collection of nodes).

However, if φ is locally finite (recall that the realizations of a point process are a.s. locally finite by defini-
tion), then a minimal weight path always exists for wgraph or wEuclid. Even if we have existence, uniqueness
is not guaranteed. When existence is granted, the collection of minimal weight paths satisfy the dynamic
programming equation

|p∗(x,D)| = min
y∈N (x)

(w(x, y) + |p∗(y,D)|) . (19.2)

Dijkstra’s algorithm (see § 24.3.1.2) uses this to recursively build the optimal paths. Whenever the argmin
is almost surely uniquely defined for all x, so is the optimal path from S to D. This is the case for wEuclid
but not for wgraph.

Assume uniqueness is granted. Then it follows from the dynamic programming equation that if both
p∗(S,D) and p∗(S′, D) contain node x, then the subpaths of p∗(S,D) and p∗(S′, D) from x to D coincide
(and are equal to p∗(x,D)). Hence, under the above existence and uniqueness assumptions, there is a point
map associated with minimal weight paths to D and this point map is a routing to D.

We have similar results in case we have no uniqueness (e.g. for wgraph). Let P ∗(S,D) denote the col-
lection of optimal paths from S to D. Assume that x belongs to some paths of P ∗(S,D) and of P ∗(S′, D).
Then the collection of all subpaths of P ∗(S,D) from x toD coincides with that of all subpaths of P ∗(S′, D)
from x to D and with P ∗(x,D). In order to define a point map in this case, it is enough to select one of the
paths of P ∗(S,D) in an appropriate way (e.g. the one with minimal Euclidean distance).

Definition 19.2.1. Let D be some destination in φ. We will call minimal weight routing (MWR) and denote
by A∗ = A∗D the point map associated with the minimal weight path.

If the weights are wgraph or wEuclid, MWR is often referred to as shortest path routing. Note that for all
routings A to D on (φ, E), for all x ∈ φ,

|p∗(S,D)| =
h∗(x)∑
i=1

w
(
A∗i−1(x),A∗i(x)

)
≤

h(x)∑
i=1

w
(
Ai−1(x),Ai(x)

)
. (19.3)

Here h(x) (resp. h∗(x)) is the number of hops from x to D in A (resp. A∗).

19.3 Asymptotic Properties of Minimal Weight Routing

In this section, we assume that the random graph G = (Φ, E) is jointly stationary with its edge weights
w(xi, yi); i.e. the distribution of the triple G̃ = (Φ, E , w(·)) is the same as that of G̃ + a = (Φ + a, E +
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a,w(· + a)), for all a ∈ R2, where (x, y) + a = (x + a, y + a) is the shifting of the edge (x, y) ∈ E by
the vector a. This holds for all the instances of weights considered above. We also assume that Φ is a simple
p.p. and a/the MWR A∗(w,D) almost surely exists, for all destinations D ∈ Φ. If we have no uniqueness,
we assume that |p∗(xi, xj)| is uniquely defined, almost surely for all xi, xj ∈ Φ.

By asymptotic property, we mean here the behavior of the total weight of the optimal route between
typical points of Φ when the Euclidean distance between them tends to infinity.

The appropriate way of defining ”typical” points xi, xj ∈ Φ that are more and more distant is based on
an extension of the notion of routing to routing from s to t, where s, t are not necessarily points of Φ. By
Lemma 4.2.2 in Volume I, for all t ∈ R2, the point of Φ which is the nearest to t, which is denoted by x(t)
below, is almost surely uniquely defined.

Definition 19.3.1. The MWR to t ∈ R2 w.r.t. (Φ, E , w), where t is not necessarily a point of Φ, is defined
as the MWR A∗x(t), w.r.t. (Φ, E , w), to the point x(t) ∈ Φ. The MWR route p∗(s, t) from s ∈ R2 to t ∈ R2

is defined as the optimal route p∗(x(s), x(t)) from x(s) ∈ Φ w.r.t. A∗x(t).

In order to underline the fact that p∗(s, t) depends on the realization of G̃ not only through x(s), x(t) and all
other points of Φ, but also through the realizations of the weights if the latter are random, we will sometimes
use the notation p∗(s, t, G̃).

First principles show that the family of minimal weight routes p∗(s, t), s, t ∈ R2, satisfies the following
subadditivity property:

Lemma 19.3.2. Assume that MWR routes are almost surely well defined between all pairs points s, t ∈ R2.
Then for all s, t, v ∈ R2

|p∗(s, t, G̃)| ≤ |p∗(s, v, G̃)|+ |p∗(v, t, G̃)| .

We are now in a position to prove the following general result.

Theorem 19.3.3 (Kingman’s subadditive theorem). Assume that G̃ = (Φ, E , w) is stationary with non-
negative edge weightsw(·, ·) and suppose that |p∗(xi, xj , G̃)| is almost surely well-defined for all xi, xj ∈ Φ.
For all vectors d ∈ R2 with |d| = 1 and such that

E[|p∗(0, d, G̃)|] <∞, (19.4)

the limit
lim
γ→∞

γ−1E[|p∗(0, γd, G̃)|] = inf
γ>0

γ−1E[|p∗(0, γd, G̃)|] = κd (19.5)

exists with κd <∞. If moreover

E
[

sup
γ1<γ2,γ1,γ2∈I

|p∗(γ1d, γ2d, G̃)|
]
<∞ , (19.6)

for some non-degenerate finite interval I ⊂ R, then the following limit exists almost surely

Kd = lim
γ→∞

γ−1|p∗(0, γd, G̃)| (19.7)

and E[Kd] = κd.
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Proof. The result follows form Lemma 19.3.2 and the continuous-parameter sub-additive ergodic theorem
(see (Kingman 1973, Theorem 4)).

Remark: If G̃ = (Φ, E , w) is stationary and ergodic (cf. Definition 1.6.7 in Volume I and Proposition 1.6.10
in Volume I), then the random variable Kd is constant and equal to κd (i.e. it does not depend on the
realization of G̃). If G̃ is motion invariant (stationary and rotation invariant) then κd ≡ κ and the distribution
of Kd does not depend on the direction d either.

19.3.1 MWR on the Poisson–Delaunay Graph

Consider the Poisson–Delaunay graph GDelaunay = (Φ, EDelaunay) defined in Example 4.4.2 in Volume I.
On GDelaunay, the shortest Euclidean distance paths are almost surely well defined. The same does not hold
true for the minimal number of hop routing; however the minimal number of hops |p∗(S,D)| required to go
from S to D is uniquely defined (cf. Corollary 24.3.2).

Proposition 19.3.4. Consider the Delaunay graph GDelaunay = (Φ, EDelaunay, w), on some homogeneous
Poisson p.p. Assume edges are independently marked by non-negative random weights w(x, y) = w(y, x)
with distribution function F . Then MWR routing on this graph satisfies (19.5) and (19.7) with 0 ≤ Kd =
κd = κ <∞ if and only if

E[min(w1, w2, w3)] =

∞∫
0

(1− F (u))3 du <∞ , (19.8)

where wi are independent copies of the generic weight.

We sketch the main line of the proof (given in (Vahidi-Asl and Wierman 1990)), which is based on the
following fact concerning the site-percolation model (cf. (Russo 1987)).

Lemma 19.3.5. Consider a super-critical site percolation model on the square lattice. LetB be a finite set of
sites. Denote by C the smallest open circuit aroundB (which exists with probability one in the super-critical
regime) and by N the number of sites surrounded by C. Then E[Nα] <∞ for all α > 0.

Proof. [of Proposition 19.3.4] Fix two points, say 0, t ∈ R2. We first show that for all t, E[|p∗(0, t)|] <∞.
For this, consider a square-lattice of side length A and associate a site with each square. It is not difficult to
show that if each site of some given circuit of sites is “densely populated” by points of the Poisson p.p. Φ,
then one can find two disjoint circuits in the Poisson–Delaunay graph of Φ which are covered by this circuit
of sites (cf. Figure 19.1 and see (Vahidi-Asl and Wierman 1990) for details).

The probability that a given site is “densely populated” tends to 1 when A tends to ∞. Thus, for A
large enough, this probability is larger than the critical site-percolation probability. From now on, fixA large
enough for this to hold.

Let B be the smallest rectangular set of sites covering the interval [0, t]. Denote by C the smallest
circuit of “densely populated” sites around B and by H the set of sites surrounded by C. Since both points
x(0) ∈ Φ and x(t) ∈ Φ have (at least) three neighbors in the Delaunay graph, it is possible to find (at least)
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Fig. 19.1 Three disjoint paths of the Delaunay graph connecting 0 to t.

three disjoint paths on this graph connecting x(0) to x(t), which lay in C ∪H (cf. Figure 19.1). Call these
paths pi, i = 1, 2, 3. We have

E[|p∗(0, t)|] ≤ E[ min
i=1,2,3

|pi|] =
∞∑
k=0

P{ min
i=1,2,3

|pi| > k } =
∞∑
k=0

(
P{ |p1| > k }

)3
.

Denote by L the number of hops and byw1, . . . , wL the weights of the edges of p1. We have |p1| =
∑L

i=1wi
and

P{ |p1| > k |L = l} ≤
l∑

i=1

P{wi > k/l } ≤ l(1− F (k/l)) .

Thus

E[|p∗(0, t)|] ≤ E
[
L3

∞∑
k=0

(1− F (k/L))3

]
≤ E[L3] + E[L4]

∞∫
0

(1− F (u))3 du ,

and in order to conclude the proof, it remains to prove that E[L4] <∞.
Since p1 ⊂ C∪H , and the path p1 can be taken without loops, we have L ≤ Φ(C∪H) =

∑N
n=1 Φ(∆n),

where ∆n are the sites ofC∪H andN is the number of sites inC∪H . Note that the random variables Φ(∆n)
are neither i.i.d. nor Poisson distributed because they are defined from the circuit of “densely populated” sites
C. However, when considering all possible values for the set C ∪H , we get

E[L4] =
∞∑
n=1

∑
K=D1∪...∪Dn

E[L4 1(C ∪H = K)]

≤
∞∑
n=1

∑
K=D1∪...∪Dn

E
[( n∑

i=1

Φ(Di)
)4
1(C ∪H = K)

]
,

where the summation is over all possible finite configurations K of n sites Di, i = 1, . . . , n. Note that
C ∪H = (C ∪H)(Φ) is a stopping set with respect to Φ (see Definition 1.5.1 in Volume I). More precisely,
for any bounded setK =

∑n
i=1Di, whereDi are fixed sites, one can check whether the event {C∪H(Φ) =∑n

i=1Di } holds or not knowing only which sites Di, i = 1, . . . , n, are “densely populated”. Moreover, for
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any given site D,

E[(Φ(D))4 |D is not “densely populated”] ≤ E[(Φ(D))4]

≤ E[(Φ(D))4 |D is “densely populated”] ≡ m0 <∞ ,

for some constant m0. Thus

E[L4] ≤
∞∑
n=1

∑
K=D1∪...∪Dn

E
[( n∑

i=1

Φ(Di)
)4
1(C ∪H = K)

]
≤

∞∑
n=1

∑
K=D1∪...∪Dn

n4m4
0E
[
1(C ∪H = K)

]
= m4

0E[N4] <∞ ,

where the last inequality follows from Lemma 19.3.5. This completes the proof that E[|p∗(0, t)|] <∞. Now,
in order to obtain the result for the supremum E[supu,v∈[0,t] |p∗(u, v)|] < ∞ as required in (19.6), one can
consider the sum of all the lengths of the minimal paths from any point u to any v, both in the interval [0, t].
Using similar arguments as above and noting that the number of couples x(u) and x(v) does not exceed N2

one can conclude the result from the fact that E[N6] <∞.

Note that the constant κ in Proposition 19.3.4 can be null. Intuitively κ > 0 provided the weights w
are not too small. For addressing this question, consider the independent bond percolation model on the
Poisson–Delaunay graph GDelaunay, namely the model where each bond (edge of GDelaunay) is open or
closed independently of everything else. Denote by An the event that there is an open horizontal crossing of
the rectangle [0, 3n]× [0, n] in this model. Let η∗(p) = lim infn→∞Pp{An}, where Pp denotes the law of
the model where the probability that a bond is open is p. Finally, denote by p∗c = inf{p > 0 : η∗(p) = 1}.1
The following result was proved in (Pimentel 2006).

Proposition 19.3.6. Under assumption (19.8), if F (0) < 1 − p∗c , then the constant κ in Proposition 19.3.4
satisfies 0 < κ <∞.

Since the metric wgraph is equivalent to w(x, y) ≡ 1, for all (x, y) ∈ EDelaunay, and since it obviously
satisfies condition (19.8) and F (0) = 0, we have:

Corollary 19.3.7. For the metric wgraph, 0 < κgraph <∞.

We now focus on the Euclidean metric. Some realization of the Euclidean shortest path route is depicted
in Figure 19.2.

Proposition 19.3.8. Consider the homogeneous Poisson–Delaunay graph GDelaunay = (Φ,
EDelaunay, wEuclid) with Euclidean weights. The shortest path on this graph satisfies (19.5) and (19.7) with
1 ≤ Kd = κd = κ ≤ 2π

3 cos(π/6) <∞.

The above result can be proved using the following fact from (Keil and Gutwin 1992).

1It is shown in (Pimentel 2006) that p∗c ≥ 1−pc, where pc is the critical probability for the independent bond percolation on the Poisson–Delaunay
graph GDelaunay . Moreover, it is conjectured that pc + p∗c = 1.
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Lemma 19.3.9. Given any finite set φ of points on the plane. For any two points x, y ∈ φ, the Euclidean
shortest path p∗(x, y) satisfies

|p∗(x, y)|
|x− y|

≤ 2π
3 cos(π/6)

≈ 2.42 .

Proof. [of Proposition 19.3.8]. Fix two points, say 0, t ∈ R2. One can find a bounded set G = G(Φ), large
enough so as to have p∗(0, t,Φ) = p∗(0, t,Φ ∩G(Φ)). For example G = C ∪H as defined in the proof of
Proposition 19.3.4. By Lemma 19.3.9

|p∗(0, t)| = |p∗(0, t,Φ ∩G(Φ))| ≤ 2π
3 cos(π/6)

|x(0)− x(t)|

and

sup
s∈[0,t]

|x(0)− x(s)| ≤ t+ 2|x(t/2)− t/2| .

Using the stationarity

E[|x(t/2)− t/2|] = E|x(0)|] <∞ .

To justify the upper bound on κ note that

κ ≤ lim
|t|→∞

2π
3 cos(π/6)

E[|x(0)− x(t)|]
|t|

≤ 2π
3 cos(π/6)

(
1 + lim

|t|→∞

E[|x(0)|]
|t|

+ lim
|t|→∞

E[|x(t)− t|]
|t|

)
=

2π
3 cos(π/6)

(
1 + 2 lim

|t|→∞

E[|x(0)|]
|t|

)
=

2π
3 cos(π/6)

.

For the lower bound on κ, one can use the triangle inequality to obtain |p∗(x(0), x(t)| ≥ |x(0)− x(t)| and

|p∗(0, t)|
|t|

=
|p∗(x(0), x(t)|

|t|
≥ |x(0)− x(t)|

|t|
≥ 1− |x(0)|

|t|
− |x(t)− t|)

|t|
.

Thus by (19.5)

κ ≥ 1− lim
|t|→∞

(
E[|x(0)|]
|t|

− E[|x(t)− t|])
|t|

)
= 1− 2 lim

|t|→∞

E[|x(0)|]
|t|

= 1 .

Remark: The conditions ensuring the non-degeneracy of the constant κdelay associated with minimal delay
routing are not known as to the writing of this monograph.
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Fig. 19.2 Euclidean shortest path routing on the Poisson–Delaunay graph.

19.3.2 Scale Invariance of the Poisson–Delaunay Subadditive Constants

We now study the scale invariance properties of the Poisson–Delaunay subadditive constants κgraph, κEuclid
with respect to the intensity λ of the underlying Poisson p.p. Recall that if Φ = {xi} is a realization of the
Poisson p.p. of intensity λ = 1, then Φ(λ) = {xi/

√
λ} is a realization of the Poisson p.p. of intensity λ

(cf. Example 1.3.12 in Volume I). Moreover, if p∗(s, t,Φ) = (x1, . . . , xk) is a shortest path from s to t
on GDelaunay(Φ, EDelaunay), then p∗(s, t,Φ)/

√
λ = (x1/

√
λ, . . . , xk/

√
λ) is a shortest path from s/

√
λ to

t/
√
λ on the Delaunay graph generated by Φ(λ). Thus, for wEuclid, we have

|p∗Euclid(s/
√
λ, t/
√
λ,Φ(λ))| = |p∗Euclid(s, t,Φ)|/

√
λ

and for wgraph, we have
|p∗graph(s/

√
λ, t/
√
λ,Φ(λ))| = |p∗graph(s, t,Φ)|.

Consequently for the Euclidean shortest path routing, the ergodic constant does not depend on λ since

κEuclid(λ) = lim
|t|→∞

1/|t||p∗Euclid(0, t,Φ(λ)|

= lim
|t|→∞

√
λ/|t||p∗Euclid(0, t,Φ)|/

√
λ

= κEuclid(1) = κEuclid , (19.9)

whereas for the graph distance shortest path routing,

κgraph(λ) = lim
|t|→∞

1/|t||p∗graph(0, t,Φ(λ)|

= lim
|t|→∞

√
λ/|t||p∗graph(0, t,Φ)|

=
√
λκgraph(1) . (19.10)

We say that that the Euclidean shortest path routing on the Poisson–Delaunay graph approximates the
Euclidean distance with a constant stretch of κEuclid. Simulations show that κEuclid is approximately equal
to 1.05.

19.3.3 MWR on the Random Geometric Graph

As already mentioned, the random geometric graph has a positive fraction of isolated nodes for all transmis-
sion ranges r. Nevertheless, the MWR path between two nodes is well defined when adopting the convention
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that the weight between two nodes which are not connected by an edge have a fictitious edge with an infinite
weight. When the connectivity range is such that the associated random geometric graph percolates, then
one can consider the MWR between nodes of the infinite connected component of this graph. Letting X(t)
denote the node of this infinite which is the closest to t, where t ∈ R2 and p∗(s, t) the MWR path fromX(s)
to X(t), then for all s, t and v ∈ R2,

|p∗(s, t)| ≤ |p∗(s, v)|+ |p∗(v, t)| .

Hence, the linear scaling of (19.7) holds in this case too provided the integrability condition (19.4) holds.

19.3.4 MWR on the SINR Graph

By the same argument as above, when the bidirectional SINR graph GSINR of Definition 8.2.1 in Volume I
percolates, then the same subadditive inequality holds and this implies a linear scaling of the optimal paths
under a condition of the type (19.4).

19.4 Largest Bottleneck Routing

One may think of a routing which realizes the optimality principle expressed in Definition 19.2.1 but with
the sum of the weights

∑k
i=1w(. . .) replaced by the maximum weight, namely for all routings A to D on

(φ, E), for all x ∈ φ,

h∗(x)
max
i=1

w
(
A∗i−1(x),A∗i(x)

)
≤

h(x)
max
i=1

w
(
Ai−1(x),Ai(x)

)
. (19.11)

For example, if the weight wdelay(x, y) is the inverse of the throughput of the link as defined in (19.1)), such
a routing would select paths with the largest possible (throughput) bottleneck.

Remark: Note that the question whether there exists a path between two given points with all its weights
smaller than a given threshold is in fact a percolation question. If the weights are the inverse of throughput
as defined in (19.1), then this boils down to the SINR percolation model studied in Chapter 8 in Volume I.

19.5 Optimal Multicast Routing on a Graph

Consider a finite point pattern φ with an underlying weighed graph (φ, E , w) The optimal multicast tree of
this point pattern is the minimal weight spanning tree on this graph (see Chapter 13 in Volume I). If the
graph is the complete one and the weight is wEuclid, this is the MST (see § 3.2 in Volume I).

19.6 Conclusion

We will revisit optimal paths in Chapter 21 in the context of time-space routing. However, in the wireless
context, a major drawback of all these classes of optimal routing schemes is the large overhead associated
with the evaluation of the routing table: in order to determine A∗D(x), the neighbor of node x to which a
packet with destination D should be sent, Dijkstra’s algorithm requires that node x discover node D (cf. the
last remark in § 24.3.1.2). Of course this search can be organized in a distributed way by exchanging infor-
mation between neighbors as indicated in § 24.3.1.2, but it terminates only after all the paths originating from
x and of weight smaller than |p∗(x,D)| have been discovered (cf. the last statement of Proposition 24.3.1).
Moreover, when the topology changes somewhere in the network, the algorithm has to be restarted, which is
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quite problematic in a mobile network. This explains the interest of the networking community in subopti-
mal but locally defined paths such as those considered in the next chapter and at the end of Chapter 21. The
loss in performance due to suboptimality being often more than compensated by the reduction in routing
table overhead.
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20
Greedy Routing

20.1 Introduction

The present chapter is focused on greedy geographic routing. By greedy, we mean that we replace global
optimality as considered in the last chapter by local (and hence sub-optimal or greedy decisions). The local
decisions of a given node are based on the exchange of location information with its neighbors only (here
again, we will assume the existence of some underlying graph allowing one to define neighborhoods). Hence
the term ’geographic’.

Among the drawbacks of this class of algorithms, let us first quote the fact that they are only applicable to
networks of nodes located in the Euclidean plane (or space); in addition, these algorithms require that nodes
have some knowledge of their position, and also that the position of the destination be known. Finally, they
are sub-optimal. But all this is compensated by the fact that the overhead associated with the construction of
the routing table vanishes.

In the present chapter, we first list a few basic geographic routing algorithms and their associated point
maps (§ 20.2). We study a couple of them. The first one, next-in-strip routing, is a toy example which consists
in using the nodes located in a strip containing the source and the destination as relays. In the second one,
smallest hop routing, the next relay is the node which is the closest among those which are closer to the
destination. The rationale, which was already mentioned in Chapter 16, is that it is in a sense best to favor
hops to the nearest neighbors.

The main results of the analysis consist of spatial averages which are obtained using new types of
stochastic geometry arguments (§ 20.4), and route averages, which are based on Markovian analysis (§ 20.7).

A key observation is that these two types of averages do not coincide in general. In the smallest hop case,
the latter has better performance than the former.

In addition to point-to-point routes, we also consider the multicast (either one-to-many or many-to-one)
case. For this, we use the spanning trees that are obtained by taking the union of greedy routes to some
common destination and which we call radial spanning trees (RST). These spanning trees can be used
either on a large population of nodes as considered in § 20.5 (e.g. for diffusion in a MANET), or in a mesh
or a sensor network context, where the main problem consists in building a collection of ’small spanning
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trees’ allowing each node to reach certain special nodes (gateways in the mesh network case, cluster heads
in the sensor network case) in a multi-hop fashion. These collections of small RSTs are considered in § 20.8.

20.2 Examples of Geographic Routing Algorithms

Consider a locally finite point pattern φ of the Euclidean plane and some graph G = (φ, E) on φ (e.g. the
Delaunay graph of the point pattern, its geometric graph or the complete graph). We denote by N (x) the
set of neighbors of x ∈ φ in this graph.

20.2.1 Best Hop, Smallest Hop, Next-in-Strip

Here are a few simple instances of geographic routing to some destination D:

• Best hop to destination: the next relay from node x is the neighbor of x which is the closest to
the destination, namely A(D) = D and for all x 6= D, A(x) = y iff y ∈ N (x) and

|y −D| = min
z∈N (x)

|z −D| .

This is used for instance in GPSR (Greedy Perimeter Stateless Routing for Wireless Networks,
(Karp and Kung 2000)). Note also that the minimization of the remaining distance to D is equiv-
alent to the maximization of the progress to the destination

|y −D| = max
z∈N (x)

|z −D| − |x−D| .

• Smallest hop closer to destination: the next relay node from x is the closest amongst the neigh-
bors of x which are closer from the destination than x, namely A(D) = D and for all x 6= D,
A(x) = y iff y ∈ N (x),

|y −D| < |x−D| and φ(B◦D(|x−D|) ∩B◦x(|y − x|)) = 0 ,

where B◦x(r) denotes the open ball of radius r and center x. At first glance, it may look strange
to consider such a smallest hop strategy. In the wireless setting this however often makes sense
(see § 16.3.1.4).
• Next-in-strip to destination: For a given direction d ∈ [0, 2π) of the Euclidean plane, consider

lines parallel to the direction d and regularly spaced at distance a from one another (here a is a
fixed positive parameter). If the first of these lines crosses the perpendicular to d at y = A, where
A is uniform on [0, a], then these lines form a stationary process of parallel lines.
Assume ~SD = u·d with u > 0 the distance between S and D. Consider the strip S formed by
the stationary process of parallel lines, which contains S and D (we assume that neither S nor
D belong to two strips). By projecting the points of Φ ∩ S on the d direction, one gets a total
order which allows one to number the points of Φ∩S (according to their order in this projection).
Then, for all x in this strip, A(x) = y iff y ∈ N (x) and y is the successor of x in this total order
(or equivalently if the successor of x in this total order belongs to N (x)). This is clearly a rather
inefficient algorithm but it will allow us to introduce and exemplify important ideas in a simple
way.

A first question is whether these point maps are well defined; if so, another natural question is whether these
point maps are indeed routings converging to D (see the definition in the preliminary to Part V).
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20.2.2 Geographic Routing on a Poisson Point Process

In this section, we address the last questions when φ is some realization of a homogeneous Poisson p.p. Φ,
under its Palm distribution, namely with an additional point at D.

Random Geometric Graph On the random geometric graph, with a positive probability, the set N (x) is
∅ (or {x} depending on the convention), Hence, on this graph, none of these point maps are routings in that
there exists a positive fraction of the nodes for which these point maps do not converge to the destination.

One natural solution is to assume that the random geometric graph percolates (see § 3.2 in Volume I)
and to limit the ambitions of routing to (source and destination) nodes which belong to the infinite compo-
nent. However, this does not work either due the following dead end problem: consider any of the routing
mechanisms described above (best hop, smallest hop or next-in-strip to destination D). Even if we assume
that there is a path of the random geometric graph between S and D, the geographic routing algorithm may
reach a dead end node, namely a node X such that all neighbors of X in the random geometric graph are
more distant from D than X . Let us look at what then happens:

• If we take the convention that x /∈ N (x) for all x, then smallest hop routing and next-in-strip
routing are undefined at X . For best hop, assume for instance that X was first reached from node
Y and that A(X) = Y ; then best hop reaches a limit cycle Y,X, Y,X, . . ..
• If we take the convention that x ∈ N (x) for all x, then smallest hop and next-in-strip are again

ill defined at X whereas best hop stop at X and remains there.

Hence, because of the dead end problem, these algorithms may not converge to the destination when used
on the random geometric graph.

Poisson Delaunay Graph

Lemma 20.2.1. For all D and x, the set N (x) ∩B◦D(|x−D|)) is almost surely non empty.

Proof. IfD belongs toN (x), thenD ∈ N (x)∩B◦D(|x−D|)). IfD /∈ N (x), then x lies oustide the Voronoi
flower of point x w.r.t φ. Consider the Voronoi tessellation of the finite point pattern {x} ∪ N (x). In this
tessellation, x has the same Voronoi flower as in that w.r.t. φ. Since the Voronoi flower contains the Voronoi
cell, D belongs to at least one of the infinite Voronoi cells of the points of the set N (x). That is, there is (at
least) a point of N (x) closer to D than x.

Using this and the fact that the probability that there are two points at the same distance from x is zero, we
get that the point map is almost surely well and uniquely defined for both best and smallest hop routing. In
addition

Proposition 20.2.2. On the Poisson-Delaunay graph, both best and smallest hop point maps are well defined
routings.

Proof. From the last lemma, either the next hop is D or the distance to D decreases. Since Poisson point
patterns are almost surely locally finite, each point map leads to D in a finite number of steps.
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Complete Graph Best hop is clearly well and uniquely defined on the complete graph and (it reaches D
in one hop from all points x!).

Smallest hop, which is illustrated in Figure 20.1 is well defined too: (1) since the set of points closer

D
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X
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0 0.1 0.2 0.3 0.4 0.5

Fig. 20.1 Left: the next hop from point X on the route from S to D. Right: in red, the near-neighbor greedy route on a Poisson point process; in
black, the straight line between the source and the destination, located in (.5,.5).

from D always contains point D, the set of neighbors which are closer to the destination is non-empty and
almost surely finite; (2) almost surely, the nearest point is unique; (3) this defines a routing by the same
decreasing distance argument as above.

There is (a.s.) no problem with next-in-strip routing either. Hence

Proposition 20.2.3. On the complete graph of a Poisson p.p., the point maps associated with best hop,
smallest hop and next-in-strip are a.s. well defined and are routings to destination D.

General Observations Here are a few observations on these greedy geographic routing schemes:

• Assuming one knows the location of the destinationD, the route can be built at each step based on
the exchange of mere geographic position information with one’s near-neighbors. For instance,
if the Delaunay graph is used, this exchange of information involves the Voronoi neighbors, the
mean number of which is 6 (see (Möller 1994)). If smallest hop is used on the complete graph, it
is easy to check that A(x) is one of the Voronoi neighbors of x w.r.t. the restriction of the point
process Φ to BD(|x −D|). As already mentioned, in contrast, MWR requires solving dynamic
programming equations which by essence are non local.
• In MWR, the nodes used in the optimal path from S to D are the same as those in the optimal

path from D to S. This symmetry property is lost in general in some of the geographic routing
schemes considered here (like for instance smallest hop on the complete graph).
• It should be noticed that only one among the graphs which were considered above takes the inher-

ent distance limitations of wireless communications into account: this is the random geometric
graph, which assumes a maximal communication range. It is puzzling that geographic routing
does not work properly on this graph. We will discuss this question again in Chapter 21.
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20.2.3 Radial and Directional Geographic Routing

Because of their radial symmetry w.r.t. D, the geographic routings AD defined above will be referred to as
radial point maps in what follows. Although this symmetry is in law only, it is quite visible on the paths
as illustrated by Figure 20.2, where we plot the union of all routes from x to D when varying x over the
collection of all nodes of the Poisson p.p. φ. The routing scheme used is smallest hop on the complete graph.
This defines a tree which can be used either for the (multipoint to point) transport of data to D or for the
point to multipoint broadcast of information from D to all the points of φ. The former is more natural in
view of the fact that the building of the tree should be initiated by the sources. This tree will be called the
radial spanning tree (RST) associated with the routing.

–

–

– –

Fig. 20.2 Radial spanning tree of a Poisson p.p. in the unit square. The routing is ’smallest hop’ and the graph is the complete one.

As we shall see, it is quite useful to consider the case where D is at infinity, say on the abscissa axis.
The basic geographic routings considered above can then be rephrased as:

• Best hop: the next relay from node x is the neighbor of x with the largest absissa;
• Smallest hop: the next relay node from x is the closest amongst the neighbors of x with an

abscissa larger than that of x.
• Next-in-Strip: the next relay node from x is the next in the total order induced by the horizontal

strip which contains node x.
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These point maps will be referred to as directional point maps and will be denoted byAd when the direction
is d. The point is that the directional routes in general well approximate the radial ones on large S-D
distances, except at the neighborhood of D.

The collection of all directional paths will be referred to as the directional spanning forest (DSF) associ-
ated with the routing scheme.

Remark: The question whether the DSF of a Poisson p.p. on the whole plane is an infinite tree is open for
all the cases mentioned above.

This chapter primarily focuses on two instances of routing on an homogeneous Poisson point process:
next-in-strip and smallest hop. We consider both point to point and multicast schemes and both the radial
and the directional cases.

20.3 Next-in-Strip Routing

We consider here next-in-strip routing on the complete graph. We focus on the directional case assuming
that the destination node is located at + infinity along the x direction.

Spatial Averages From each relay node X , the progress P (X) is an exponential random variable with
parameter λa, where λ is the intensity of the Poisson p.p. and a is the width of the strip. Using the fact that
the absolute value of the difference between two independent uniform random variables on [−a/2, a/2] has
a density at u equal to 2u

a2 for 0 ≤ u ≤ a and equal to 0 elsewhere, we get that the length L(X) of the edge
to the next hop has for Laplace transform

LL(s) =
∫
r>0

∫
0≤u≤a

exp(−s
√
r2 + u2)

2u
a2
λa exp(−λar)dudr

and for mean value

E0(L) =
∫
r>0

∫
0≤u≤a

√
r2 + u2

2u
a2
λa exp(−λar)dudr ,

with L = L(0).

Route Averages The progress sequence is i.i.d. so that the route average progress coincides with the spatial
average progress and is equal to 1/(λa).

Let Xi = (xi, yi). The sequence {yi} is i.i.d. and each yi is uniform on (−a/2, a/2]. The sequence
{yi+1 − yi, xi+1 − xi} is stationary and ergodic. Let

li =
√

(yi+1 − yi)2 + (xi+1 − xi)2 .

Due to the pointwise ergodic theorem, the route average of the hop lengths 1
n

∑n
i=0 li converges a.s. to

the spatial mean E0(L) (evaluated above) when n tends to infinity. One can also evaluate the geometric
inefficiency of the algorithm defined as

lim
n→∞

1
n

n∑
i=0

|yi+1 − yi|

by the same argument.
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We now give a result generalizing the above observations. The projection of the points of the strip on
the x axis form a Poisson p.p. Ψ = {Ti} on the line with intensity λa. Let Φ̃i = STiΦ (resp. Φi = SXiΦ),
i ∈ Z, be the node point Φ process translated in such a way that point Ti (resp. Xi) stands at the origin. See
Chapter 10 in Volume I for these definitions.

Lemma 20.3.1. For all functions g : M→ R+,

lim
n→∞

1
n

n∑
i=1

g(Φ̃i) = E[g(Φ + δV )] (20.1)

P a.s. where V = (0, U) with U uniform on [−a/2, a/2] and independent of Φ. In addition

lim
n→∞

1
n

n∑
i=1

g(Φi) = E0
Φ[g(Φ)] (20.2)

P a.s.

Proof. Since {Φ̃i} (resp. {Φi}) is a sequence of marks of Ψ, it follows that Ψ̃ = {Ti, Φ̃i} (resp. Ψ̃ =
{Ti,Φi}) is a stationary and ergodic marked point process. The stationarity and the ergodicity are inherited
from the fact that the translation operator in the x direction is P-invariant and ergodic. Hence, by the ergodic
theorem, for all functions g : M→ R+,

lim
n→∞

1
n

n∑
i=1

g(Φ̃i) = E0
Ψ[g(Φ̃0)], (resp. lim

n→∞

1
n

n∑
i=1

g(Φi) = E0
Ψ[g(Φ0)])

P a.s. where P0
Ψ is the Palm distribution w.r.t. Ψ. This shows the convergence of route averages. But by

Slivnyak’s theorem,
E0

Ψ[g(Φ̃0)] = E[g(Φ + δV )]

and
E0

Ψ[g(Φ0)] = E[g(Φ + δ0)] = E0
Φ[g(Φ)].

20.4 Smallest Hop Routing — Spatial Averages

This section focuses on smallest hop routing on the complete graph of a Poisson p.p.

20.4.1 Edge Length and Progress in Radial Routes

Scale invariance Since the route is scale-invariant, without loss of generality, we can set λ = 1; for a
general λ, all results follow by multiplying distances by

√
λ. Without loss of generality, we assume that the

destination is located at the origin of the plane, namely that D = O.

Edge length Let X ∈ R2 and L(X) = |X −A(X)|. For all 0 ≤ r < |X|,

P(L(X) ≥ r) = 1(r ≤ |X|)P(Φ(B◦X(r) ∩B◦O(|X|)) = 0) = 1(r ≤ |X|)e−M(|X|,r), (20.3)
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where M(x, r) is the volume of the lens of the right part of Figure 20.3. Using the formula for the surface
depicted by the left figure of Figure 20.3, we get that :

M(x, r) = x2

(
φ− sin(2φ)

2

)
+ r2

(
π

2
− φ

2
− sin(φ)

2

)
, (20.4)

with φ = 2 arcsin r
2x . Notice that the distribution function of L(X), which only depends on |X|, is not

theta

����������������������
0 T

P(X)

����������������������������������

r

X
psi phi

0

y

��

Fig. 20.3 Left : the surface of the dashed lens is equal to |T |
2

2
|2θ − sin 2θ|. Right : the dashed lens.

stochastically monotone in |X|. Its mean, which is plotted in Figure 20.4, is not monotone in |X| either.
Given L(X) = r < |X|, consider the angle θ(X) of the edge from X to A(X). Using the property of

the right part of Figure 20.3 that ψ = π/2 − φ/2, we get that θ(X) is uniformly distributed on the interval
: (π + arg(X)− ψ, π + arg(X) + ψ), with cosψ = sin(φ/2) = r/(2|X|), that is ψ = arccos r

2|X| . Given
L(X) = |X|, the angle θ(X) is π + arg(X).

The joint distribution function of (L(X), θ(X)) is equal to

1(r ∈ (0, |X|)) d
dr
M(|X|, r)e−M(|X|,r)dr × 1(θ ∈ (π + arg(X)− ψ, π + arg(X) + ψ))

dθ
2ψ

+δ|X|(dr)δπ+arg(X)(dθ)e−M(|X|,|X|). (20.5)

Progress The progress from point X ∈ Φ is defined as P (X) = |X| − |A(X)|. It is equal to the length of
the projection of the edge (X,A(X)) on the 0X line. The mean progress is plotted in function of |X| = x

in Figure 20.4.

20.4.2 Asymptotic Analysis

We now look at what happens when |X| tends to infinity. A direct computation gives:

lim
|X|→+∞

P(L(X) ≥ r) = exp(−πr
2

2
). (20.6)

In particular,

lim
|X|→+∞

E[L(X)] =

∞∫
0

e−
πr2

2 dr =
1√
2
. (20.7)
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By similar arguments, the asymptotic progress has for Laplace transform

lim
|X|→+∞

E(e−sP (X)) =
1
π

∞∫
r=0

π/2∫
θ=−π/2

e−sr cos θ exp(−πr
2

2
)πrdrdθ

=

∞∫
r=0

π/2∫
θ=−π/2

e−sr cos θ exp(−πr
2

2
)rdrdθ. (20.8)

In particular, the mean asymptotic progress is

lim
|X|→+∞

E(P (X)) =
1
π

∞∫
r=0

π/2∫
θ=−π/2

exp(−πr
2

2
) cos θdrdθ =

√
2
π
. (20.9)
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Fig. 20.4 Left: Mean of L(X) in function of x. Right: Mean of P (X) in function of x = |X|.

20.5 Smallest Hop Multicast Routing — Spatial Averages

This section is focused on the RST associated with smallest hop routing. In what follows, we study the
degree of nodes in the RST T associated with a Poisson p.p. Φ of intensity 1 which is considered under its
Palm version at O (the root is the origin of the plane).

• when the tree is used for multicasting, the degree determines the number of times a given symbol
received by the node should be forwarded to the offspring nodes;
• when the tree is used for the gathering of information at the root (see Remark 24.3.3), the degree

determines the number of links converging to the node.
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20.5.1 Degree of Nodes

The degree of the source node O is

D(O) =
∑

xi∈Φ\O

1(Φ(B◦xi(|xi|) ∩B
◦
O(|xi|)) = 0).

Hence, using Campbell’s formula, we get

ED(O) = 2π

∞∫
0

e−r
2(2π/3−sin(2π/3)rdr =

π

2π/3−
√

3/2
∼ 2.56. (20.10)

Lemma 20.5.1. The degree of node O is bounded from above by 5 a.s.

Proof. Order the points directly attached to the origin by increasing polar angle. Let X and Y denote two
neighboring points in this sequence. Assume | ~OX| < | ~OY |. Denote by φ the angle between these two
vectors. We have

| ~XY |2 = | ~OX|2 + | ~OY |2 − 2| ~OX|| ~OY | cosφ.

Since Y is attached to the origin, necessarily | ~XY |2 > | ~OY |2, which implies that

2| ~OX|| ~OY | cosφ < | ~OX|2.

Using now the assumption that | ~OX| < | ~OY |, we get cosφ < 1/2. Hence |φ| > π/3.

The degree of node X 6= O is given by :

D(X) = 1 +
∑
xi∈Φ

1(|xi| ≥ |X|)1(Φ(B◦xi(|X − xi|) ∩B
◦
O(|xi|)) = 0)1(O /∈ B◦xi(|X − xi|)).(20.11)

Indeed, a point x of norm larger than |X| shares an edge with X if and only if there is no point of smaller
norm closer from x than X .

Let X 6= 0 and |X| = r. Obviously, ED(X) depends on r only and with an abuse of notation, we
will write ED(r) in place of ED(X). Using Campbell’s formula while taking the expectation of Equation
(20.11),

ED(r) = 1 + E
∑
xi∈Φ

1(Φ(B◦xi(|X − xi|) ∩B
◦
O(|xi|)) = 0)1(r ≤ |xi|)1(|xi| > |X − xi|)

= 1 +
∫
ρ>r

arccos( r
2ρ

)∫
− arccos( r

2ρ
)

e−Q(r,ρ,θ)ρdρdθ,

where Q(r, ρ, θ) is the dashed surface in Figure 20.5 for X = (r, 0) and x = (ρ, θ). The condition that
|x| > |X − x| (or equivalently that θ belongs to the interval (− arccos( r

2ρ), arccos( r
2ρ)) translates the fact

that the origin should not be contained in this lens. Hence

ED(r) = 1 +
∫
ρ>r

arccos( r
2ρ

)∫
− arccos( r

2ρ
)

e−
ρ2

2
|2α−sin 2α|e−

ρ2+r2−2ρx cos θ
2

|2β−sin 2β|ρdρdθ,

118



Q(X,T)

��

��

������������������
0

X

T

T

��

��

����

��

������������������

theta

alpha

beta

0
X

M

Fig. 20.5 Left : Q(r, ρ, θ). Right : The α and β angles.

where α and β are the angles depicted in Figure 20.5.
If u = ρ

r , we have cosα = (1− u−2)/2 + u−1 cos θ and β = (π − α)/2. Finally,

ED(r) = 1 + 2r2

∫
u>1

arccos( 1
2u

)∫
0

e−
u2r2

2
(2α−sin 2α)e−

r2

2
(1+u2−2u cosθ)(π−α−sinα)ududθ. (20.12)

We also have the following asymptotic result on the mean degree:

lim
r→+∞

ED(r) = 1 +
∫

Half−Plane

exp(−π|x|
2

2
)dx = 1 +

π
2∫

−π
2

+∞∫
0

exp(−πρ
2

2
)ρdρdθ = 2.

The mean degree is plotted in Figure 20.6.

20.6 Smallest Hop Directional Routing

20.6.1 Directional Point Map

Let (0, b1, b2) be an orthonormal basis of R2. The directional point map with direction −b1 is defined as
follows: the successor of X ∈ Φ is the nearest point of Φ which has a strictly smaller b1-coordinate. More
generally, for all fixed directions d with |d| = 1 the directional point map Ad with direction d is defined by
Ad(X) = Y iff

〈Y, d〉 > 〈X, d〉 and Φ(HX(d) ∩B◦X(|Y −X|)) = 0,

where 〈x, y〉 denotes the scalar product in R2 and HX(d) the half-plane 〈x, d〉 > 〈X, d〉. The associated
directional route origination from O is defined by{

T0 = O,

Tn+1 = Ad(Tn,Φ) for n ≥ 0 .
(20.13)

Directional routing can be seen as the ”limit” of radial routing far away from the destination in the d direc-
tion. We already know some of the local properties of directional routing through the asymptotic results of
§20.4.2 and 20.5.1.
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Fig. 20.6 ED(r) as function of r > 0.

20.6.2 Directed Spanning Forest

We define the Directed Spanning Forest (DSF) Td as the union of all the directional routes stemming from
all the points of Φ.

The following lemma, on the support of the degree of the DSF, is surprising in view of Lemma 20.5.1.

Lemma 20.6.1. The degree of a node of the DSF is not bounded and in the RST a.s.

sup
x∈Φ

D(x) = +∞.

Proof. Without loss of generality we take d = −b1. The DSF built on the point set {Xn = (2−n, 3n), n ∈
N} ∪ {O} gives: for all n, Ad(Xn) = 0, in particular the degree of the origin is infinite.

We now prove prove the second statement of the lemma.
Let M ∈ N∗; for n ≥ 0, we define Un = [2−n − ε, 2−n + ε]× [3n − ε, 3n + ε], U−1 = [−ε, ε]× [−ε, ε],

AM = BO(4M )\
(
∪−1≤n≤M Un

)
and

EM (X) = {Φ(X +AM ) = 0,Φ(X + Un) = 1,−1 ≤ n ≤M}.

We have P(EM (X)) = δ > 0 and if |X − Y | > 2.4M , EM (X) and EM (Y ) are independent (for ε small
enough).

For ε small enough, if EM (X) occurs, the point in U−1(X) has degree at least M in Td. Similarly for
the RST, if |X| is large enough and if EM (X) occurs, the point in U−1(X) has degree at least M in T .

Using the independence of the eventsEM (2k4Mb1), k ∈ N, we deduce that these events appear infinitely
often.
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20.7 Space and Route Averages of Smallest Hop Routing

20.7.1 Spatial Averages

The mean values computed in the previous sections are in fact spatial averages. We illustrate this statement
on the edge length case.

Consider the total edge length of the RST of root 0, for all points included in the ball B0(r), namely:

Lr =
∑
X∈Φ

1(X ∈ B0(r))|X −A(X)|. (20.14)

From Campbell’s formula

ELr = 2π

r∫
0

E(L(t))tdt,

(where we use the notation L(t), t ∈ R in place of L((t, 0))). With the change of variable u = t
r , this leads

to

E
Lr
r2

= 2π

1∫
0

uE(L(ru))du.

The dominated convergence theorem together with Equation (20.7) gives

lim
r→∞

E
Lr
r2

= 2π

1∫
0

u
1√
2

du = π/
√

2. (20.15)

The following stronger result is proved in (Baccelli and Bordenave 2007) using concentration inequalities:

Lemma 20.7.1. Almost surely and in L1,

lim
r→∞

Lr
πr2

= lim
|X|→+∞

E[L(X)] =
1√
2
. (20.16)

This extends to other quantities of the form g(A(X) −X), where g is some function from R2 to R, which
allows one to consider e.g. progress.

20.7.2 Route Averages

20.7.2.1 Existence

Two natural questions arise in connection with the definition of e.g. the directional greedy route in (20.13).
For all g as above, let

Sn =
1
n

n∑
k=1

g(Tk−1 − Tk), (20.17)

be the empirical route averages associated with g. Here are the two main questions related with this:

(1) Does Sn a.s. converge to some limit when n tends to infinity?
(2) If so, does this limit coincide with the corresponding spatial average?

The answer to the first question is positive:
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Theorem 20.7.2. There exists a unique probability measure π on R2 such that for all measurable functions
g such that g(X) ≤ max(C, |X|α) for some C > 0 and α > 0,

lim
n→∞

Sn
n

=
∫
R2

g(x)π(dx) = π(g). (20.18)

This theorem, which is proved in (Baccelli and Bordenave 2007), leverages the fact that certain sub-
sequences of the sequence of segments that constitute a directional route form a Markov chain with a non
discrete state space. This chain is a Harris chain. It admits a small set and it is geometrically ergodic (Meyn
and Tweedie 1993). This result allows one to characterizes the asymptotic behavior of directional routes:

Corollary 20.7.3. There exists a positive constants p and py such that

lim
n→∞

1
n

n−1∑
k=0

〈Tk − Tk+1, b1〉 = px = p, (20.19)

lim
n→∞

1
n

n−1∑
k=0

|〈Tk − Tk+1, b2〉| = py , (20.20)

where p is the route average of the directional progress and py that of the typical inefficiency; for all α > 0,
there exists a constant lα such that

lim
n→∞

1
n

n−1∑
k=0

|Tk+1 − Tk|α = lα. (20.21)

20.7.2.2 The Routing Paradox and the Price of Anarchy in Routing

The answer to the second question is negative (in contrast with what happens in the strip routing case): by
simulation of 20000 transitions of the chain, one obtains that p ≈ .504, py ≈ .46 and l1 ≈ .75. The value
of p is significantly larger than the spatial average of the mean asymptotic progress as evaluated in (20.9),
which is approx. equal to 0.450. A similar observations holds for l1 when compared to (20.6): as it is the
case for progress, the mean magnitude of the hop from a point to its successor (l1 ≈ .75) is ”boosted” by the
fact that one is located on a long route, compared to the spatial average value (which is appr. equal to .71).
The analysis of the Markov chain alluded to above allows one to understand why this happens.

It can in addition be proved that route averages over long radial paths coincide with route averages on
long directional routes (see (Baccelli and Bordenave 2007) for a proof). Hence, one can rephrase the results
of the last corollary as follows: consider the greedy route from a source to a destination at distance t from
one another; then for a p.p. Φ with intensity λ,

• The mean number of hops on the greedy route scales like 1.98t/
√
λ (since this mean number of

hops is approximately equal to t/.504 for t large when λ = 1);
• The greedy route κ-approximates Euclidean distance with κ ≈ 1.48 (since the mean length of

the route is approximately equal to t ∗ 0.75/.504 for t large when λ = 1).
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Comparing these results to the corresponding ones on optimal routes on the Poisson–Delaunay graph (see
§ 19.3.2), we can say that the price of anarchy which we define as the ratio of the greedy cost and of the
optimal cost is 1.48/1.05 ≈ 1.41 in terms of Euclidean distance.

20.7.2.3 Maximal Deviation

We end this section with a result on the deviation of the path from its mean, also proved in (Baccelli and
Bordenave 2007). Let R(x) or R(X) denote the path from X = (x, 0) in the DSF with direction −b1; R(x)
may be parameterized as a piecewise linear curve (t, Y (t))t≤x in R2. The maximal deviation of this curve
between x′ and x with x′ ≤ x is defined as

∆(x, x′) = sup
t∈[x′,x]

|Y (t)|. (20.22)

Theorem 20.7.4. For all x ≥ x′, for all ε > 0 and all integers n,

P(∆(x, x′) ≥ |x− x′|
1
2

+ε) = O(|x− x′|−n).

20.8 Radial Spanning Tree in a Voronoi Cell

In this section, we extend the RST to situations where there is a collection of trees (a forest) rather than a
single one. We use the context of sensor networks (see Remark 24.3.3) to describe the construction. Consider
two independent Poisson p.p.: Φ0 = {x0

n}, the p.p. of cluster heads, of intensity λ0 and Φ1 = {x1
n}, the p.p.

of sensor nodes, with intensity λ1. The first p.p. tessellates the plane in Voronoi cells. We denote by Vn the
Voronoi cell of point x0

n w.r.t. the points of Φ0. Two forests can then be defined in relation with this VT:

• The family of internal RSTs: the n-th tree of this forets, Tn, is the RST built using the points of
Φ1 that are contained in Vn, with x0

n as a root.
• The family of local RSTs: if node X belongs to Vn, one defines its successor as the point of

(Φ1 ∪ {x0
n}) ∩ B◦x0

n
(|X − x0

n|) that is the closest to X . Notice that this successor does not
necessarily belong to Vn. Nevertheless, this rule defines a forest too (see Lemma 20.8.1). One
then defines the n-th local RST tree Un as the tree which is the union of all the routes from sensor
nodes with ultimate successor x0

n.

In what follows, we concentrate on the second case which can be analyzed using the same type of tools as
in §20.5. Figure 20.7 depicts a sample of such a forest.

Lemma 20.8.1. Almost surely, there exists no node X of Φ0 such that the sequence of successors of X
based on the local RST rule contains node X .

Proof. Let {Yi}i≥0 be the sequence of successors of X = Y0. If Yi = X for some i > 0, then necessarily
the points of {Yi} belong to different Voronoi cells (if this were not the case, then the distance to the cluster
head of the cell to which all points belong would be strictly decreasing, which forbids cycles). Then one can
rewrite {Yi}i≥0 as

{Yi}i≥0 = {Z0(1), . . . , Z0(n0), Z1(1), . . . , Z1(n1), . . . , Zj(1), . . . , Zj(k), ...}
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Fig. 20.7 Local Voronoi radial spanning trees (in blue) of 600 sensor nodes uniformly and independently distributed in the unit square, w.r.t 10
cluster heads (in red), also uniformly and independently distributed in the unit square. The Voronoi cell of one of the cluster heads is depicted in
red.

with Zl(1), . . . , Zl(nl) ∈Wl for all 0 ≤ l ≤ j, where {Wj}j≥0 is a sequence of cells such that Wl 6= Wl+1

for all l < j, nl is a sequence of integers and Zj(k) = X . Let Sl denote the cluster head of Wl. Then the
definition of the local RST implies that a.s.

|X − S0| = |Z0(1)− S0| > |Z0(2)− S0| > · · · > |Z0(n0)− S0| > |Z1(1)− S0|.

Since Z1(1) belongs to W1, we have a.s.

|Z1(1)− S0| > |Z1(1)− S1|.

For the same reasons, for all l = 1, . . . , j − 1

|Zl(1)− Sl| > |Zl(2)− Sl| > · · · > |Zl(nl)− Sl| > |Zl+1(1)− Sl|

and

|Zl+1(1)− Sl| > |Zl+1(1)− Sl+1|, a.s.
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In addition

|Zj(1)− Sj | > |Zl(2)− Sl| > · · · > |Zj(k)− Sj | = |X − S0|.

Hence a contradiction.

Let Ln denote the total length of all edges from nodes in Vn. Let E0 denote the Palm probability w.r.t.
Φ0. We have

Ln =
∑
m

1(x1
m ∈ Vn)Lm,

where Lm is the length of the link that connects x1
m to its successor. Using the fact that x1

m ∈ Vn iff
Φ0(B◦x1

m
(|x1

m−x0
n|)) = 0 and the fact that Lm > uwith u < |x1

m−x0
n| iff Φ1(B◦x1

m
(u)∩B◦x0

n
(|x1

m−x0
n|)) =

0, we get from Campbell’s formula that

E0

(∑
m

1(x1
m ∈ Vn)Lm

)
= 2πλ1

∞∫
r=0

e−λ0πr2

 r∫
u=0

e−λ1M(r,u)du

 rdr,

with M(r, u) the surface of the lens defined in §20.4. Hence

E0 (L0) = 2πλ1

∞∫
r=0

e−λ0πr2

 r∫
u=0

e−λ1M(r,u)du

 rdr. (20.23)

20.9 Conclusion

There are several interesting problems in relation with the topics considered in the present chapter. The first
line of thought concerns the extension of the analysis conducted for ”smallest hop closer to destination” to
other natural routing schemes.

A second and more general question concerns the classification of greedy routing schemes according to
the following citeria:

• Price of anarchy: how much does the greedy path lose (e.g. in terms of Eucidean length or in
terms of number of hops) compared to the optimal paths?
• Comparion of spatial and route averages: given that the latter are more difficult to evaluate than

the former, it would be interesting to learn whether there are general comparison rules between
the two. For instance, for strip routing the two types of averages coincide, whereas for ”smallest
hop closer to destination”, they differ. Does there exist a general criterion for deciding whether
a given routing scheme is of the first kind (with both averages coinciding) or of the second? In
”smallest hop closer to destination”, route averages are ”better” than spatial averages (e.g. in
terms of progress). Can one identify the class of greedy schemes for which this property holds
true?

In Chapter 19 and in the present chapter, the physical constraints of wireless links were essentially
ignored. Consider for instance ”smallest hop closer to destination”, which was argued to be the most sensible
representation of routing in a wireless network within the context considered in the present chapter. The
distance from a node to the next hop node may still be arbitrarily large as we saw; in addition the latter node
may be surrounded by interferrers which would result in a very small probability to have a good SINR on
the considered link. This example shows the routing principles considered so far should be revisited within
the SINR geometry framework, which is the object of the next chapter.
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21
Time-Space Routing

The setting of this chapter is again a Poisson MANET with multihop routing. The packet communication
model will be used and the MAC will be of the Aloha type.

In Chapters 19 and 20, MAC and detection were ignored as already mentioned. But in addition time was
absent (we considered routes on a snapshot as already mentioned) and when throughput was considered, it
was in terms of a Shannon like formula.

In contrast time-space routing considered in this chapter takes MAC decisions and fading variables into
account as well as their variability w.r.t. time; it is based on a packet rather than a circuit model (the definition
for the capture of packets is based on the SINR model of § 16.2 and the progress of a packet in some route
is measured both in time and space).

Here is a first basic dichotomy for the routing schemes to be considered in this chapter. We will distin-
guish between:

• layer-aware routing schemes where the route between S and D is defined once and for all (e.g.
through a static point map as considered in the last two chapters) and where the MAC is then
asked to realize this route coping with the time and space variations of fading;
• cross-layer routing schemes where there is no predefined route and where the routing scheme

tries to take advantage of the variability of MAC and fading to decide on the next relay for each
packet at each time slot.

Section 21.1 describes the stochastic setting allowing us to define time-space routing. Section 21.2 fo-
cuses on the key notions pertaining to this type of routing. In particular, we introduce a new random graph
that we call the time-space SINR graph and the notion of time-space point map. We also define the notions
of route averages associated with these maps.

The other sections of the chapter focus on instances of such time-space routing algorithms. Section 21.3
bears on the layer-aware case whereas all other sections bear on the cross-layer case. Section 21.4 is con-
cerned with minimal weight time-space routes. These optimal routes have no practical meaning as their
determination would require full knowledge of the future fading and MAC variables of all nodes. However,
their mathematical properties shed light on many other algorithms and in particular on greedy time-space
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routes. They also provide intrinsic performance limitations on this class of schemes. Greedy time-space rout-
ing (called opportunistic routing below) is studied in § 21.5. Let us stress that opportunistic routing is based
on the inherent multicast nature of Spatial Aloha and not on Opportunistic Aloha as defined in Chapter 16.

In terms of performance evaluation, the chapter contains several open questions and a few negative
results, like e.g. the fact that in several cases, the route average velocity of a typical packet is 0, even if
this packet is considered as a priority packet and experiences no queuing in the nodes. Among the positive
results, let us quote the optimal tuning of the MAC parameters and the proof of scaling laws. Another
practical conclusion of this chapter is that for source-destination pairs at finite distance, opportunistic routing
very significantly outperforms layer-aware routing schemes. This holds true even when the latter use optimal
static routing algorithms as considered in § 19.2.

21.1 Stochastic Model

We adopt the MANET receiver model introduced in § 16.6, which is briefly recalled below.

21.1.1 MANET Model

In this model the nodes can be represented by an i.m. p.p.. with cross fading (cf. Section 2.3.3.2 in Volume I)
and node dependent noise. More precisely we consider the space-time scenario of Section 16.6.1 (see also
Section 16.6.6), described by Φ̃ = {(Xi, ei(n),Fi(n),Wi(n))}, where:

(1rout) Φ = {Xi} denotes the locations of the MANET nodes. Two options will be considered in what
follows:

– Poisson MANET, where Φ a Poisson p.p. with intensity λ. This is our default option
denoted by GI

W+M / GI .

– Poisson MANET Model with an Additional Periodic Infrastructure: we will also consider
networks with an additional periodic infrastructure, denoted by GI

W+(M+Gs) / GI in which
Φ = ΦM + ΦGs where ΦM is some homogeneous Poisson point process with intensity
λM and ΦGs is a stationary point process of periodic nodes. The points of ΦGs are
assumed to be located on a square grid Gs with edge length s. See Example 4.2.5 in
Volume I on how to construct such a stationary periodic structure. We assume that ΦM

and ΦGs are independent. The intensity of ΦGs is 1/s2 and that of Φ is λ = λM + 1/s2.
The MAC and the multi-hop routing mechanisms take place on all the nodes of Φ.

(2rout) ei(n) = {ei(n) : n}i are the MAC indicators of the node i at time n; ei(n) are i.i.d. in i and n
with with P{ e(n) = 1 } = 1−P{ e(n) = 0 } = p.

(4rout) Fi = {F ji (n) : j, n}i are the virtual powers (comprising fading effects) emitted by node i to
nodes j at time n. We will consider the following scenarios for the time dependence between the
fading variables:

– No fading case: F ji (n) ≡ µ−1 for all i, j, n;

– Slow fading case: F ji (n) = F ji (0) for all i, j, n and F ji are i.i.d. as F with mean µ−1.
This means that the fading is sampled independently for each transmitter–receiver pair
and stay constant for all time slots.

– Fast fading case: F ji (n) are i.i.d. for all i, j, n, where F has mean µ−1.
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Cf. Remark 16.6.1 on the fast/slow fading terminology.
(5rout) Wi = {Wi(n) : n}i is a sequence of i.i.d. (in i and n) non-negative random variables represent-

ing the thermal noise at node i and at time n. This scenario, already considered in Section 16.6.6
was called there receiver dependent, fast noise case.

For all points X,Y ∈ R2, let ΦX,Y = Φ ∪ {X,Y }. Let eX and eY be two independent MAC indicator
sequences distributed like e, that one attributes to nodes X and Y respectively, with similar definitions for
FX and FY . By arguments similar to those of § 17.4.1, in the Poisson MANET case, the marked p.p. Φ̃X,Y

is also the Palm version of Φ̃ w.r.t. the two points {X,Y }. We denote the corresponding Palm probability
and expectation by PX,Y ,EX,Y respectively (i.e., Φ̃ under PX,Y has the same distribution as ΦX,Y under
P.)

21.1.2 SINR coverage

We assume that all the nodes are perfectly synchronized and at (discrete) time n the point process of trans-
mitters is denoted by Φ1(n) =

∑
i δXi1(ei(n) = 1). The interference at the node Xj with respect to the

signal emitted by the node Xi at time n (i.e., the power of the sum of all signals received at Xj at time n
except this emitted by Xi) denoted by I1

ij(n), can be represented as the shot-noise variable

I1
ij(n) = IΦ1(n)\{Xi} =

∑
Xk∈Φ1(n), k 6=i,j

F jk (n)/l(|Xj −Xk|).

Denote by δ(Xi, Xj , n) the indicator that the node Xi covers the node Xj at time n with the SINR at
least T , provided Xi is emitter Xi ∈ Φ1(n) and Xj is potential receiver Xj ∈ Φ0(n) = Φ \ Φ1(n) at time
n. Formally δ(Xi, Xj , n) is the indicator that the condition (16.53) holds with F , I considered at time n and
W = Wj(n).

21.2 The Time-Space Signal-to-Interference Ratio Graph and its Paths

21.2.1 Definition

Consider a general stationary MANET model Φ̃ as above.
Define the set of SINR-neighbors of Xi ∈ Φ at time n as the set of receivers which successfully capture

the packet transmitted by Xi at time n if Xi transmits at that time, and as {Xi} otherwise:

V (Xi, n) =

{
{Xi} ∪ {Xj : Xj ∈ Φ0(n) s.t. δ(Xi, Xj , n) = 1} ifXi ∈ Φ1(n)

{Xi} otherwise.
(21.1)

The time-space SINR graph GSINR is a directed graph on Φ× Z defined as follows: the nodes of GSINR are
all the pairs of the form (Xi, n) with Xi ∈ Φ and n ∈ Z; all edges are of the form ((Xi, n), (Xj , n + 1));
there is an edge from (Xi, n) to (Xj , n + 1) if Xj ∈ V (Xi, n) (see Figure 21.1 which gives an illustration
of this graph in the case of a 1D MANET).

21.2.2 Time-Space Paths

A path of GSINR originating from node (S, k) and with q (time) steps is a collection of nodes

{(Zi, i)}i=k,...,k+q
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Fig. 21.1 The directed graph GSINR on Φ × Z, where Φ is a p.p. on the real line. The transmitters are depicted by black dots and the potential
receivers by white ones.

such that Zi ∈ Φ for all i, Zk = S and Zi+1 ∈ V (Zi, i) (or equivalently, there is an edge from (Zi, i) to
(Zi+1, i+ 1) in GSINR) for all i = k, . . . , q − 1.

The following general terminology will be used in the context of such a path:

• its Euclidean length is
∑q−1

i=0 |Zi+1 − Zi|;
• its time length is its total number of time steps q;
• its number of hops H is the number of different points of Φ visited by the path;
• if Zi−1 6= X and Zi = X , its local delays at (X, i), denoted by L(X, i) is the smallest integer
j > 0 such that Zi+j 6= X (see § 16.6).

A path is self-avoiding if whenever point X is reached by the path for the first time at time k + l, we
then have Zk+l = X for all l < L(X, k) and Zk+p 6= X for all p ≥ L(X, k).

21.2.3 Summary of Results

Here is a graph theoretic summary of the results that we prove on this graph in the present chapter (the
technical conditions will be listed in due time):

• This graph is locally finite, namely each of its nodes as an a.s. finite in and out-degree (see
§ 16.5.2).
• The number of paths of this graph starting from node (X, k) and with n time steps grows at most

exponentially in n (see Lemma 21.2.1);
• This graph is a.s. connected in the sense that for all S and D in Φ and all k ∈ Z, there a.s. exists

a path from (S, k) to the set {(D, k + l)}l∈N (Corollary 21.3.2);
• For the M

W+(M+Gs) / M fast fading case, if thermal noise is positive, then the time constant of first
passage percolation is finite (Proposition 21.4.2) and positive (Proposition 21.4.6). First passage
is understood here as path from (S, k) to the set {(D, k + l)}l∈N with the smallest number of
time steps;
• For the M

W+M / M fast fading case, if thermal noise is positive, then the mean time constant of first
passage percolation is infinite (see Proposition 21.4.8 for the precise statement).
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21.2.4 Number of Paths

Let Houti,k (n) denote the number of different paths of GSINR with n time steps and originating from (Xi, k).
Let

hout(n) = E0[Hout0,k (n)] = E0[Hout0,0 (n)].

Lemma 21.2.1. Let ξ = d1/T e + 1. For a general stationary MANET model Φ̃, for any fading scenario
(fast, slow, no fading) we have

hout(n) ≤ ξn . (21.2)

Proof. LetHini,k(n) be the number of paths with n time steps which terminate at node (Xi, k). It follows from
Lemma 16.5.9 thatHini,k(n) is a.s. bounded from above by ξn for all i and k. We now use the mass transport
principle as in Proposition 16.5.8 to get that E0[Hout0,0 (n)] = E0[Hin0,0(n)], which implies the desired result.
Campbell’s formula and stationarity give

λhout(n) = λ

∫
[0,1)2

E0[Hout0,0 (n)] dx

= E
[ ∑
X1∈[0,1)2

Houti,0 (n)
]

=
∑
v∈Z

E
[ ∑
Xi∈[0,1)2

∑
Xj∈[0,1)2+v

# of paths form Xi at time 0 to Xj at time n
]

=
∑
v∈Z

E
[ ∑
Xi∈[0,1)2−v

∑
Xj∈[0,1)2

# of paths form Xi at time 0 to Xj at time n
]

= λ

∫
[0,1)2

E0[Hin0,n(n)] dx

= λhin(n) .

21.2.5 Time-Space Point Maps

A time-space path is often defined from a time-space point map, that is a collection of point maps {An},
where An(X) is an algorithm which selects the next hop for a packet located at X at time n in the set
V (X,n). The path originating from node (S, k) is then defined by the recursion

Zi+1 = Ai(Zi), i = k, . . . , q − 1 , (21.3)

with initial condition Zk = S. This gives the route followed by a priority packet1 starting from node S ∈ Φ
at time k.

1In the considered MANET, a node may have to relay packets of several flows, namely associated with several S-D pairs; packets located on a
given node may hence have to queue for accessing the shared channel. By priority packet, we mean a packet which is assumed to be scheduled
according to a preemptive priority rule on each node and which hence never experiences such queuing.
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The fact that this algorithm builds a path of GSINR implies that two key phenomena are taken into
account: collisions (lack of capture by any node) and contention for channel (only time slots where the relay
tosses heads are used for transmission); in particular, if there is no channel access for X at time k, then
V (X, k) = {X}.

21.2.5.1 Radial Point Maps

By analogy with our definition of Chapter 20, a time-space point map leading to D for all S will be called a
radial routing.

Definition 21.2.2. A time-space point map {An} is a radial routing to D if Ai(D) = D for all i and if in
addition, for all (S, k), Zi = D for all i ≥ k + ∆ for some ∆ = ∆(S, k) ∈ N.

The following terminology will be used in the context of such a radial routing:

• its progress at time i is Pi = |Zi−D|−|Zi+1−D|, which may be 0 in case of collision or denial
of channel access;
• its end-to-end delay ∆ = ∆(S, k) is the total number of time steps required for the priority

packet to go from (S, k) to D;
• its number of hops H = H(S, k) is the number of different nodes on the path;
• if X is a node of the path originating from (S, k) (which we assume to be self avoiding) the local

delay L(X) = L(X,S, k) at node X is the number of time steps spent by the path at node X .

The following relation holds between these quantities:

∆ =
H−1∑
i=1

L(Xi) ,

when denoting by S = X1, . . . , XH = D the sequence of (different) nodes of the time-space path.
Notice that the path and the end-to-end delay from (S, k) toD and that from (S, k′) toD differ in general

as typical in time-space routing.

Definition 21.2.3. A radial time-space routing satisfies the ball property if the route from S to D is con-
tained in the ball BD(|D − S|).

21.2.5.2 Directional Point Maps

We will also consider the case where D is located at infinity in some direction d of the plane (cf Sec-
tion 20.2.3). A time-space point map which converges to D will then be called a d-directional routing. In
line with our previous definitions, we will call (time-space) route average of the generic function g the almost
sure limit

lim
N→∞

1
N

N−1∑
n=0

g(Zn+k+1 − Zn+k), (21.4)

(provided it exists) when D is located at infinity in direction d. There are other natural route averages taken
hop by hop rather than w.r.t. time, like for instance the route average of the local delay

l = lim
M→∞

1
M

M−1∑
m=0

Lm, (21.5)
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where Lm is the local delay at the m-th hop of the route. If the last almost sure limit exists, then one can
interpret v = l−1 as the route average velocity (measured in number of hops per time step):

v = lim
M→∞

M∑M−1
m=0 Lm

. (21.6)

The remaining sections investigate the properties of a few basic classes of time-space routing algorithms.

21.3 Layer-aware Time-Space Point Maps

The simplest time-space routing algorithms are those where routing and MAC are fully separated. Namely,
at any time step, the next relay node for a packet located at node X is A(X), where A is some static point
map on Φ = {Xi}. More precisely the time-space route is then defined by the following time-space point
map:

Bn(X) =

{
A(X) if A(X) ∈ V (X,n),

X otherwise.
(21.7)

Note that given Φ, Bn(X) is a random variable with two possible outcomes X and A(X); as long as A(X)
is not a SINR-neighbor of X , the packet stays at X . The first time it is a SINR-neighbor of X , the packet
jumps there.

A key property which contrasts with our findings on the existence of dead ends in geographic routing
(see § 20.2.2) is that for all X and all A such that A(X) is at finite distance from X , all packets located at
X make it to A(X) in finite time under natural assumptions:

Lemma 21.3.1. Assume that 0 < p < 1. Then, under either of the following assumptions:

(a) the law of F has an absolutely continuous component with a density having an infinite support
on R+ (i.e. P{F > s} > 0 for all s) and we have fast fading,

(b) W ≡ 0,

the local time L(X,n) of a packet starting at time n in node X is a.s. finite for all n ∈ Z.

Remark: Note that the infinite support density component assumption holds for all fading models consid-
ered so far: Rayleigh, Rician, Nakagami, Lognormal, etc.

Proof. We show that for all X ∈ Φ and all n ∈ Z, the probability that A(X) /∈ V (X,n+ l) for all l ≥ 1 is
0.

We consider first case (a). Denote by G the σ-algebra generated by Φ (without its marks). Using the fast
fading assumption, we get that conditionally on G,

P [ L(X, 0) ≥ l | G ] =
l−1∏
i=0

P [A(X) /∈ V (X, i) | G ] =
(
P [A(X) /∈ V (X, 0) | G ]

)l
,

so that it is enough to prove that P [A(X) /∈ V (X, 0) | G ] < 1 to conclude the proof. But we have

P [A(X) ∈ V (X, 0) | G ]≥p(1− p)P

[
F/l(|X −A(X)|)
W + IΦ1\{X,A(X)}

≥ T | G, eX = 1, eA(X) = 0

]
,
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where F is the fading from X to A(X) at time 0, eX (resp. eA(X)) is the MAC decision of X (resp. A(X))
at time 0 and IΦ1\{X,A(X)} is the interference at A(X) at time 0. Since IΦ1\{X,A(X)} is a Poisson SN, it is
a.s. finite because β > 2. Consider its conditional law given G, eX = 1, eA(X) = 0. Under the assumptions
made on F , for a.s. all realizations of Φ, this conditional law has a component with a density fA(X) with an
infinite support on R+.

Since F and IΦ1\{X,A(X)} are independent,

P

[
F/l(|X −A(X)|)
W + IΦ1\{X,A(X)}

≥ T | G, eX = 1, eA(X) = 0

]

=
∫

R+

∫
R+

H (T (w + z)l(|X −A(X)|)) fA(X)(dz)g(dw) > 0 ,

where H is the tail of the c.d.f. of F and g the law of W . This concludes the proof in this case.
Consider now case (b). Let H denote the σ-algebra generated by Φ and the fading variables (under the

slow fading case, these variables do not vary over time). Using the fact that the MAC decisions are i.i.d., we
get that

P [ L(X, 0) > l |H, ] = P [A(X) /∈ V (X, 0) |H ]l ,

so that it is enough to prove that P [A(X) /∈ V (X, 0) |H ] < 1. But

P [A(X) ∈ V (X, 0) |H ]

= P

[
F/l(|X −A(X)|)
IΦ1\{X,A(X)}

≥ T, eX = 1, eA(X) = 0 | H

]

= p(1− p)P
[
IΦ1\{X,A(X)} ≤

F/l(|X −A(X)|)
T

| H, eX = 1, eA(X) = 0
]
> 0 ,

where the last inequality follows from the fact that the H-conditional law of the Poisson SN process
IΦ1\{X,A(X)} puts a positive mass on the interval [0, z] for all positive z.

The following corollary shows that these layer-aware mechanisms are time space routings toD provided the
underlying static point map is a routing to D (see the introduction of Part V):

Corollary 21.3.2. Consider a static point map A which is a routing to D (resp. a d-directional routing). Let
{Bn} be the associated layer-aware time-space point map. Under the assumptions of Lemma 21.3.1, {Bn}
is a time-space routing to D (resp. a d-directional time-space routing).

Proof. Conditionally on Φ (or H), each local delay is a.s. finite at each node of the route. Hence for all S,
all n ≥ 1 and all k ∈ Z, the number of time steps required by this time-space path to reach node An(S)
(the n-th node of the static route) is a.s. finite. In particular the end-to-end delay to reach D is a.s. finite. The
proof of the d-directional case is similar.

When taking as static point map ’smallest hop to destination’ (see § 20.2.1) in the last corollary, we get that
there exists of a time-space point map which satisfies the ball property and which is a routing to D.

Here are a few comments on the differences between the static greedy geographic routing schemes con-
sidered in Chapter 20 and the layer-aware time-space greedy routings considered here. We found out in
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Chapter 20 that next-in-strip routing on the random geometric graph (which takes the range limitations of
wireless communication into account) does not work properly because of the dead end problem. Corol-
lary 21.3.2 shows that the time-space version considered here works better, in that a packet makes it to any
finite destination (or any finite distance node of the route) in finite time under assumptions (a) or (b) and
hence does not suffer of the dead end problem.

Remark 21.3.3. From the proof of the Lemma 21.3.1, we deduce that

• In case (a), conditionally on G, for all X and n, L(X,n) is a geometric random variable with a
parameter that depends on X but not on n.
• In case (b), the same holds true conditionally onH.

We conclude this section with the analysis of two special cases: directional strip routing and directional
smallest hop routing. We show that in these two cases, under rather natural conditions, the route average of
the velocity of a priority packet is 0 (in a sense to be described precisely below). One can rephrase this by
saying that these schemes do not work properly over large scale routes in most practical cases.

21.3.1 Directional Strip Routing

Take directional strip routing (see § 20.3) as static point map and consider the associated time-space routing
algorithm as defined by (21.7). We deduce from what precedes that under either (a) or (b), a packet initially
located at S reaches the n-th hop of the (static) route in finite time for all n.

Consider now the route average of the velocity of a priority packet in this time-space routing framework.
Rather than defining it through (21.6), we define this quantity as

lim
n→∞

n∑n
i=0 E[L(Xi) | G]

,

where G denotes the σ-algebra of the Poisson p.p. Φ (without its marks). This allows us to use Lemma 20.3.1
by posing g(Φi) = E[L(Xi) | G] (see the definition of Φi in this lemma) which implies that P a.s.

lim
n→∞

n∑n
i=0 E[L(Xi) | G]

=
1

E0[L(0)]
.

The immediate conclusion is that when E0[L(0)] =∞, then the asymptotic packet velocity is 0.

Example 21.3.4. Consider the example of fast Rayleigh fading (which falls in the considered framework
under assumption (a) of Lemma 21.3.1). In most practical cases, we have E0[L(0)] =∞.

• In the noise limited case, if the thermal noise is bounded from below by a constant W , then, by
the same arguments as in Proposition 16.6.9 (cf also discussion in Section 16.6.9) we get that

E0[L(0)] ≥ λa

p(1− p)

∫
r≥0

exp(−λar) exp(µTWl(r))dr =∞,

for all OPL attenuation models considered in this monograph.
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• In the interference limited case, by the same arguments as in Section 16.6.4.2 when using the fact
that the interference at the receiver is larger than that created by Φ1 in the half plane on the right
of the receiver, we get that in the OPL 3 case,

E0[L(0)] ≥ λa

p(1− p)

∫
r≥0

exp(−λar) exp
(
λπp(1− p)

2
β
−1
K(β)T

2
β r2
)

dr =∞,

for all values of p and T .

In other words, the asymptotic velocity is 0 in these two cases, and one can conclude that this routing
mechanism does not work properly on a more global scale for fast Rayleigh fading.

21.3.2 Smallest Hop Directional Routing

Take now for static point map ’smallest hop’ on the complete graph as defined in § 20.2. More precisely,
consider the directional point map associated with some direction d. Under Assumption (a) of Lemma 21.3.1,
conditionally on G, the local delay at each node of the path is a geometric random variable with a non
degenerate parameter so that the routing mechanism works locally.

The conditions under which the route average velocity v as defined in (21.6) is positive are unknown as
to the publication of this monograph. The fact that the spatial average of the local delay E0[L] in a cone
of angle π is infinite (see Remark 16.6.14) does not immediately imply that l is infinite too. However, if
E0[L] =∞ and the almost sure limit (21.5) holds for some finite l, then the last limit cannot hold in L1.

21.4 Minimal End-to-End Delay Time-Space Paths

The aim of this section is to define optimal paths from S to D within this time-space setting. As already
mentioned, these optimal paths, which can in principle be obtained by dynamic programming, are in fact
impractical. In addition to requiring global knowledge, namely knowledge of what happens far away in
space, they also require the knowledge of future fading variables and MAC indicators. This explains our
focus on greedy routing schemes in the forthcoming sections. Nevertheless, the scaling law established
below on minimal weight paths will be useful for the analysis of these greedy schemes in that it provides
the fundamental limitations of all possible time-space schemes.

We will focus here on paths with the smallest number of time steps. This is tantamount to finding minimal
weight paths on GSINR when associating a weight w = 1 to each edge of this graph.

Consider the set C(k, i, j) of all self-avoiding paths of GSINR which start at time k from node Xi, reach
Xj at some time l > k and satisfy the ball property. It follows from Corollary 21.3.2 (or from Lemma 21.5.1
below) that if either of the two conditions (a) and (b) of Lemma 21.3.1 holds, then for all i, j and k, this
set is non empty. Since in addition the number of hops in each path of this set is bounded from above by
Φ(BXj (|Xi −Xj |)) (thanks to the ball property and the self-avoidance assumption), we have the following
existence result for optimal opportunistic routes:

Lemma 21.4.1. Under either of the two assumptions (a) or (b) of Lemma 21.3.1 above, for all i, j and k,
there almost surely exists at least one path of C(k, i, j) with minimal number of time steps in GSINR.

Remark: These optimal paths can also be rephrased in terms of first passage percolation in GSINR: among
all paths of GSINR starting from node (Xi, k), the minimal weight path is the ’first’ to reach node Xj .
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21.4.1 Asymptotic Properties of Optimal Time-Space Paths

We can use the same construction as in § 19.3: for t ∈ R2, let X(t) be the point of Φ which is closest to t.
For s, d ∈ R2, define p∗(s, d, Φ̃, k) as a path of GSINR from node (X(s), k) to the set {(X(d), l), l > k},
with minimal number of time steps as defined above. Denote by |π| the length of path π. For all triples of
points s, v and d in R2, we have

|p∗(s, d, Φ̃, 0)| ≤ |p∗(s, v, Φ̃, 0)|+ |p∗(v, d, Φ̃, |p∗(s, v, Φ̃, 0)|)| . (21.8)

Let
|p∗(s, d, Φ̃)| = E

(
|p∗(s, d, Φ̃, 0)| | G

)
(21.9)

be the conditional expectation of |p∗(s, d, Φ̃, 0)| given the σ-algebra G generated by Φ (excluding the marks).
Using the strong Markov property (in time dimension), one gets that, conditionally on Φ, the law of

|p∗(v, d, Φ̃, |p∗(s, v, Φ̃, 0)|)| is the same as that of |p∗(v, d, Φ̃, 0)|. Assume now the three points are collinear
and such that d ∈ [s, t]. Then, the last relation and (21.8) give

|p∗(s, d, Φ̃)| ≤ |p∗(s, v, Φ̃)|+ |p∗(v, d, Φ̃)| . (21.10)

We are now in a position to use the subadditive ergodic theorem (as in Chapter 19) to derive scaling
laws. For this, we have to check the integrability conditions required by this theorem. We start with a positive
result on the M

W+(M+Gs) / M model and then give a partially negative result on the M
W+M / M model.

21.4.1.1 Network with an Additional Periodic Infrastructure

In this section, we consider the M
W+(M+Gs) / M model introduced in § 21.1.

Proposition 21.4.2. Consider M
W+(M+Gs) / M MANET model introduced in Section 21.1. Assume fading to

be fast Rayleigh and fast noise and OPL 3. Then for all points u, v of R2,

E

[
sup

u1,v1∈[u,v]
|p∗(u1, v1, Φ̃)|

]
<∞ ,

where the supremum is taken over u1, v1 belonging to the interval [u, v] ⊂ R2.

We first prove the following auxiliary result:

Lemma 21.4.3. Under the assumptions of Proposition 21.4.2, let x, y ∈ Φ∩B0(R) for some R > 0, where
Φ = ΦM + ΦGs . Then the mean local delay L(x, y) for a direct transmission from x to y, given Φ satisfies

E[L(x, y) |Φ] =
1

p(1− p)LW (TµAβ|x− y|β)
exp
{
−
∑

Φ3Xi 6=x,y
logLeF ′

(T |x− y|β
|y −Xi|β

)}
(21.11)

≤ 1
p(1− p)LW (Tµ(A2R)β)

×e−49 log(1−p)+(2R)βpTC(s,β) (a)

×e−ΦM (B0(2R)) log(1−p) (b)

× exp
{
−

∑
Xi∈ΦM ,|Xi|>2R

log
(

1− p+
p(|Xi| −R)β

(|Xi| −R)β + T (2R)β
)}

, (c)
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where C(s, β) < ∞ is some constant (which depends on s and β but not on Φ) and where F ′ is an expo-
nential random variable of mean 1.

Proof. The equality in (21.11) follows from the same type of arguments as in the proof of Proposition 16.6.6.
The bound |x− y| ≤ 2R used in the Laplace transform of W leads to the first factor of the upper bound. We
now factorize the exponential function in (21.11) as the product of three exponential functions

α := exp
{
−

∑
ΦGs3Xi 6=x,y

}
, β := exp

{
−

∑
ΦM3Xi 6=x,y|Xi|≤2R

}
, γ := exp

{
−

∑
ΦM3Xi,|Xi|>2R

}
.

Next we prove that the last three exponentials are upper-bounded by (a), (b) and (c) in (21.11), respectively.

(a) We use |x− y| ≤ 2R and Jensen’s inequality to get

logLeF ′
(T |x− y|β
|y −Xi|β

)
≥ logLeF ′

( T (2R)β

|y −Xi|β
)
≥ −T (2R)βE[eF ′]

|y −Xi|β
= −pT (2R)β|y −Xi|−β.

We now prove that ∑
ΦGs3Xi:|y−Xi|>3

√
2s

|y −Xi|−β ≤ C(s, β),

for some constant C(s, β). This follows from an upper-bounding of the value of |y −Xi|−β by
the value of the integral 1/s2

∫
(|y − x| −

√
2s)−β dx over the square with corner points Xi,

Xi + (s, 0), Xi + (0, s) and Xi + (s, s). In this way one obtains

∑
ΦGs3Xi:|y−Xi|>3

√
2s

|y −Xi|−β ≤ 1
s2

∞∫
|x−y|>2

√
2s

(|y − x| −
√

2s)−β dx

=
2π
s2

∞∫
√

2s

t+
√

2s
tβ

dt =: C(s, β) <∞ .

Combining this and what precedes, we get that

exp

− ∑
Xi∈ΦGs ,|y−Xi|>2

√
s

logLeF ′
(T |x− y|β
|y −Xi|β

) ≤ exp(T (2R)βC(s, β)).

We also have

logLeF ′
( T (2R)β

|y −Xi|β
)
≥ logLeF ′(∞) = log(1− p) ,

for Xi ∈ ΦGs with |y −Xi| ≤ 3
√

2s. Hence we obtain

exp{−
∑

Xi∈ΦGs

(. . . )} ≤ e−49 log(1−p)+T (2R)βC(s,β) ,

where 49 upper-bounds the number of points Xi ∈ ΦGs : |y −Xi| ≤ 3
√

2s.
(b) Using the bound |x− y| ≤ 2R and the inequality logLeF ′(ξ) ≥ logLeF ′(∞) = log(1− p), we

obtain
exp{−

∑
ΦM3Xi 6=x,y,|Xi|≤2R

(. . . )} ≤ e−ΦM (B0(2R)) log(1−p) .
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(c) The bound |x − y| ≤ 2R, the triangle inequality |y − Xi| ≥ |Xi| − R and the expression
LeF ′(ξ) = 1− p+ p

1+ξ , we obtain

exp
{
−

∑
ΦM3Xi,|Xi|>2R

(. . . )
}
≤ exp

{
−

∑
Xi∈ΦM ,|Xi|>2R

log
(

1−p+
p(|Xi| −R)β

(|Xi| −R)β + T (2R)β
)}

.

This completes the proof.

Proof. [of Proposition 21.4.2] Without loss of generality, we assume that (v+u)/2 = O is the origin of the
plane. Let B = B0(R) be the ball centered at O and of radius R such that no modification of the points in
the complement ofB modifies x∗(z) for any z ∈ [u, v]. Recall that x∗(z) is the nearest point of z in Φ. Since
Φ = ΦM +ΦGs with ΦGS the square lattice p.p. with intensity 1/s2, it suffices to takeR = |u−v|/2+

√
2s.

Let B′ = B0(2R). Given the location of the points of Φ, given two points x, y ∈ Φ ∩ B, |p∗(x, y)| is not
larger than the mean delay L(x, y) of the direct transmission from x to y, given Φ. Note now that

sup
u1,v1∈[u,v]

|p∗(u1, v1,Φ)| ≤
∑

x,y∈Φ∩B
E[L(x, y) |Φ]

and using the result of Lemma 21.11 we obtain

sup
u1,v1∈[u,v]

|p∗(u1, v1,Φ)| ≤ e−49 log(1−p)+(2R)βpTC(s,β)

p(1− p)LW (TµA(2R)β)

× exp
{
−

∑
Xi∈ΦM ,|Xi|>2R

log
(

1− p+
p(|Xi| −R)β

(|Xi| −R)β + T (2R)β
)}

×
(

ΦM (B) + π(R+
√

2s)2/s2
)
e−ΦM (B′) log(1−p) ,

where π(R+
√

2s)2/s2 is an upper bound of the number of points of ΦGs in B. The first factor in the above
upper bound is deterministic. The two other factors are random and independent due to the independence
property of the Poisson p.p. The finiteness of the expectation of the last expression follows from the finiteness
of the exponential moments (of any order) of the Poisson random variable ΦM (B′). For the expectation of
the second (exponential) factor, we use the known form of the Laplace transform of the Poisson SN (see
Propositions 1.2.2 in Volume I and 2.2.4 in Volume I) to obtain the following expression

E
[
exp
{
−
∑

(. . . )
}]

= exp
{

2πpλM

∞∫
R

vT (2R)β

vβ + (1− p)T (2R)β
(v +R) dv

}
<∞

as in Proposition 16.6.6. This observation completes the proof.

Corollary 21.4.4. For the M
W+(M+Gs)/M model with fast (Rayleigh) fading

κd = lim
|d−s|→∞

|p∗(s, d, Φ̃)|
|d− s|

(c)

exists, with κd a finite and non negative constant which depends on the direction d of ~s, d. The convergence
also holds in L1.
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Proof. The result follows from the subadditivity (21.10) and Proposition 21.4.2 by the Kingman’s theorem;
see Theorem 19.3.3.

Let us rephrase the last result in more concrete terms.

Proposition 21.4.5. Consider the time-space path(s) starting at time 0 from the point of Φ which is the
closest to the origin and reaching the point of Φ which is the closest to t = x·d∈ R2 in the smallest possible
number of time steps. Let ∆∗(t) denote the number of time slots of this (these) path(s). Under the foregoing
assumptions (fast Rayleigh fading and an additional periodic infrastructure), the optimal path(s) has (have)
a positive asymptotic velocity vd in direction d in the sense that

lim
x→∞

x

∆∗(x · d)
= vd, a.s. (c)

with vd a positive (possibly infinite) constant equal to κ−1
d .

Note that the same asymptotic velocity is obtained when shifting time (i.e. starting at time k rather than time
0) or when shifting the origin and the destination in the same way (i.e. starting from the point which is the
closest to y and ending at the point which is the closest to x+ y) or both.

The main remaining question is whether the constant κd is strictly positive. The following lemma gives
a natural sufficient condition for this.

Proposition 21.4.6. For the M
W+(M+Gs)/M model with OPL 3 and fast fading, if W is constant and strictly

positive, then κd is strictly positive for all directions d. Equivalently, the asymptotic velocity vd defined in
(c) is finite for all d.

Proof. For all t ∈ R2, the sequence {Zi}i≥0 of different points of the path from (O, 0) to (t, k > 0) with
minimal end-to-end delay is such that

∆∗(t)∑
i=1

|Zi−1 − Zi| ≥ |t| −
√

2s . (c)

Since the set of SINR-neighbors of each node is finite at each time step, ∆∗(t)→∞ a.s. when |t| → ∞.
Assume that κd = 0. Then Proposition 21.4.5 shows that ∆∗(t)/|t| tends to 0 as t tends to infinity in the

d direction, which implies that for some subsequence {tk} tending to infinity in this direction, ∆∗(tk)/|tk|
tends to 0 a.s. That is for all ε > 0, there exists a random τ such that for all |tk| > τ , ∆∗(tk) < ε|tk|.

This and (c) imply that, almost surely, there exists an increasing sequence of integers nk tending to∞
with k and such that for all k, the event π(nk) holds, with:

Event π(n): there exists a time-space path in GSINR which is self-avoiding, originates from (O, 0), has n
time steps and an Euclidean length larger than n/ε.

We conclude the proof by showing that the property π(n) can only happen for a finite number of integers
n when ε is small enough. This contradiction implies that κd > 0.

Let PnW denote the set of paths σ of GSINR with n steps and originating fromO at time 0, for the constant
thermal noise W . Note that by monotonicity,

PnW ⊂ Pn0 . (c)
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Let PG denote the conditional expectation definition given the σ-algebra G generated by Φ (excluding the
marks). By definition,

PG(π(n)) = PG(
⋃

σ∈PnW

{|σ| ≥ n/ε}), (c)

where |σ| denotes the Euclidean length of the time-space path σ. So

PG(π(n)) ≤
∑
σ

PG(σ ∈ PnW , |σ| ≥ n/ε)

=
∑
σ

PG(σ ∈ PnW , |σ| ≥ n/ε) | σ ∈ Pn0 )PG(σ ∈ Pn0 ), (c)

where the sum bears on all possible sequences σ of n-tuples Z1, · · · , Zn of points of Φ and where we used
(c) to get the last relation. But

PG(σ ∈ PnW , |σ| ≥ n/ε | σ ∈ Pn0 )

≤ sup
Z1,...,Zn∈ΦPn

i=1
|Zi−Zi−1|≥n/ε

EG (δ(O,Z1, 0,W )δ(Z1, Z2, 1,W ) · · · δ(Zn−1, Zn, n− 1,W ) | σ ∈ Pn0 ) ,

where δ(x, y, k,W ) is the indicator of the feasibility of the link from x to y at step k (condition (16.53) at
time k) for the thermal noise W . Using now the fast fading assumptions, we get

EG(δ(O,Z1, 0,W )δ(Z1, Z2, 1,W ) · · · δ(Zn−1, Zn, n− 1,W ) | σ ∈ Pn0 )

=
n−1∏
k=0

EG(δ(Zk−1, Zk, k − 1,W ) | δ(Zk−1, Zk, k − 1, 0) = 1) .

Using now the Rayleigh fading assumptions (and more precisely the memoryless property of the exponential
random variable),

EG(δ(Zk−1, Zk, k − 1,W ) | δ(Zk−1, Zk, k − 1, 0) = 1) = exp (−µl(|Zk − Zk−1|)TW )

= exp
(
−µ(A|Zk − Zk−1|)βTW

)
.

Hence

sup
Z1,...,Zn∈ΦPn

i=1
|Zi−Zi−1|≥n/ε

EG(δ(0, Z1, 0)δ(Z1, Z2, 1) · · · δ(Zn−1, Zn, n1) | σ ∈ Pn0 )

≤ sup
Z1,...,Zn∈ΦPn

i=1
|Zi−Zi−1|≥n/ε

n−1∏
k=0

exp
(
−µ(A|Zk − Zk−1|)βTW

)
≤ exp

(
−µAβTWnε−β

)
,

where the last inequality follows from a convexity argument. Using this and (c), we get

P0(π(n)) ≤ exp
(
−µAβTWnε−β

)
E0(N n),

where N n denotes the cardinality of Pn. Using now Lemma 21.2.1, we get that

P0(π(n)) ≤ exp
(
n(log(ξ)−K/εβ)

)
,

whereK is a positive constant. Hence for ε small enough, the series
∑

nP0(π(n)) converges and the Borel–
Cantelli lemma implies that π(n) holds for a finite number of integers n.
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21.4.1.2 Poisson MANET Case

The Stationary Setting In the GI
W+M / GI model, or even in the M

W+M / M model, the method used above
(based on sub-additive ergodic theory and on a stationary Poisson p.p.) cannot be extended to assess the
existence of a positive asymptotic velocity on the optimal path. The main problem is the lack of integrability
of |p∗(s, d, Φ̃)| in this Poisson MANET case:

Lemma 21.4.7. In the M
W+M / M model with fast fading and OPL 3, if W is positive and constant, for all s

and d in R2, E[|p∗(s, d, Φ̃)|] =∞.

Proof. We have

|p∗(s, d, Φ̃)| ≥ Lm(x(s) ,

where Lm(x(s), Φ̃) is the multicast local delay (as defined in § 16.6.6). In addition,

Lm(x(s)) ≥ L̂m(x(s), Φ̃) ,

where L̂m(x(s), Φ̃) is the multicast local delay in the noise limited case. Hence

E[|p∗(s, d, Φ̃)|] = E[|p∗(s, d, Φ̃)|] ≥ E[L̂m(x(s), Φ̃)] .

But using the strong Markov property,

E[L̂m(x(s), Φ̃)] = E0[L̂m(0, Φ̃|B)] ,

where E0 is the Palm probability of the Poisson p.p. Φ̃ and Φ̃|B) is the restriction of Φ̃ to the complement
of the open ball B = Bx(|x|), with x ∈ R2 independent of Φ̃ and having for density

dθ
2π

2πλr exp(−λπr2),

in polar coordinates. But since we consider here the noise limited case,

E0[L̂m(0, Φ̃|B)] = E0[L̂m(0, Φ̃)]

and since the last quantity is infinite when W is a positive constant (see § 16.6.6), this shows that
E[|p∗(s, d, Φ̃)|] =∞.

The Palm Probability Setting Here is another approach for assessing the asymptotic velocity of a priority
packet on an optimal path. Let S and D be two points of R2. As reference probability space, we take P2

S,D,
the Palm probability of order 2 of the i.m. Poisson p.p. Φ̃ at S,D. The difference between this setting and
that of the last paragraph is that the latter considers optimal paths on Φ, from x(s) to x(d), namely from the
random node which is the closest from s to the random node which is the closest to d, where s and d are
arbitrary locations of the plane, whereas the former is the the optimal path on Φ when adding two nodes to
Φ, one at S and one atD (see the interpretation of Palm probabilities of Poisson point processes in Chapter 9
in Volume I).
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Proposition 21.4.8. In the M
W+M / M model with fast (Rayleigh) fading, then for all S and D,

E2
S,D[|p∗(S,D, Φ̃)|] <∞ . (c)

However, if the thermal noise W is bounded from below by a positive constant and when OPL 3 is assumed
then

lim
|S−D|→∞

E2
S,D[|p∗(S,D, Φ̃)|]
|S −D|

=∞ , (c)

or equivalently the mean asymptotic velocity of a packet is 0.

Proof. The time L it takes to go from S to D in one hop is equal to the local delay in the Poisson Bipo-
lar model with the distance to the receiver r = |D − S|. The first statement of the lemma follows from
Proposition 16.6.6 and from the inequality

E2
S,D[|p∗(S,D, Φ̃)|] ≤ E2

S,D[L] <∞ .

For the second statement, let Lm denote the local delay at node S under the multicast mode (§ 16.6.6)
and let L̂m denote this multicast local delay in the noise limited case. We have

E2
S,D[|p∗(S,D, Φ̃)|] ≥ E2

S,D[Lm] ≥ E2
S,D[L̂m] .

So it is enough to prove that

lim
|S−D|→∞

E2
S,D[L̂m]
|S −D|

=∞

to conclude the proof of the second statement.
Using the methodology of § 16.6.6, we get that

E2
S,D[L̂m] =

1
p

∞∑
q=1

exp

−2πλ
∫
v>0

(1− (1− (1− p)LW (µl(v)T ))q) vdv

(1− (1− p)LW (µl(r)T )
)q

with r = |S −D|. Let w > 0 be the constant lower bound on W . We have

E2
S,D[L̂m] ≥ 1

p

∑
q

exp

−πλ ∫
u>0

(
1−

(
1− (1− p)e−wµAβuβ/2T

)q)
du

(1− (1− p)e−wµAβrβ)T
)q

.

Let us show that for q large enough,

exp

−πλ ∫
u>0

(
1−

(
1− (1− p)e−wµAβuβ/2T

)q)
du

 >
1
q
.

Let
f(v) := (1− p) exp(−wµTAβvβ/2) .

and denote by vq the unique solution of

f(v) =
1
q
.
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We have
vq =

1

A2 (µTw)2/β
(log(q(1− p)))2/β.

It is clear that vq tends to infinity as q tends to infinity. Therefore, for all α > 1, there exists a Q such that
for all q ≥ Q and for all v ≥ vq,

(1− f(v)) ≥ exp(−αf(v)).

Hence, for all q ≥ Q,∫
v>0

(1− (1− f(v))q) dv ≤ vq +

∞∫
v=vq

(1− (1− f(v))q) dv

≤ vq +

∞∫
v=vq

(1− exp(−αqf(v)) dv

≤ vq +

∞∫
v=vq

αqf(v) dv

= vq +

∞∫
u=0

αqf(u+ vq) du.

The third inequality follows from the fact that 1 − exp(−x) ≤ x. Using now the fact that (u + vq)β/2 ≥
u+ v

β/2
q (for q large enough) and denoting by K the constant wµTAβ , we get that

∞∫
u=0

qf(u+ vq) du =

∞∫
u=0

q(1− p) exp(−K(u+ vq)β/2)) du

≤
∞∫

u=0

q(1− p) exp(−Ku−Kvβ/2q ) du =
1
K
,

since (1− p) exp(−Kvβ/2q ) = 1/q. Hence∫
v>0

(1− (1− f(v))q) dv ≤ vq +
α

K
.

Also it is not difficult to see that for any constant 0 < C <∞

vq < logCq for large q. (c)

Therefore, for q large enough, using (c) we have

exp

−πλ ∫
v>0

(
1−

(
1− (1− p)e−wµAβuβ/2T

)q)
du

 ≥ C exp(−πλvq)

>
1
q
.

144



Hence
ES,D[L̂m]
|S −D|

≥ 1
r

∑
q>0

αq

q
,

where α = 1− (1− p)e−wµAβTrβ . It is now easy to see that

1
r

∑
q>0

αq

q
=

log(1− α)
r

=
− log

(
(1− p)e−wµAβTrβ

)
r

= wµAβTrβ−1 + o(r) r →∞ .

Thus limr→∞ 1/r
∑

q>0
αq

q =∞ which concludes the proof.

21.5 Opportunistic Routing

As already mentioned, opportunistic routing is a short name for greedy routing on the time-space SINR
graph. This belongs to the class of cross-layer routing schemes. Below, we define and analyze the most
natural version which is of the best hop type. A few variants will be considered in § 21.5.5.

The whole section focuses on the GI
W+M / GI model.

21.5.1 Radial Opportunistic Routes

For Φ̃ as above, define the following family of time-space radial point maps, with destination D: for all n,

An(Xi) = An(Xi, Φ̃) = arg min{|Xj −D| : Xj ∈ V (Xi, n)} . (c)

Note that given Φ, An(Xi) is a random variable, with possibly many different outcome nodes for different
values of n (this contrasts with the layer-aware case of § 21.3 where the outcome node was either Xi or
A(Xi)). The above point maps are almost surely well defined because the probability of finding two or
more points of the homogeneous Poisson p.p. which are equidistant to D is equal to 0.

Here are two sufficient conditions for this time-space point map to be a routing to D:

Lemma 21.5.1. Under either of the assumptions (a) and (b) of Lemma 21.3.1, the radial opportunistic point
map originating from S is a routing to D with PS,D-probability one and it satisfies the ball property.

Proof. Without loss of generality, we assume that D is the origin of the plane. The fact that Xi ∈ V (Xi, n)
for all i and n implies that no node of norm larger than |Yn| will ever be selected as the next relay. Hence,
for all n, |Yn+1| ≤ |Yn|, which proves the ball property.

In order to prove convergence, it is hence enough to show that the probability that Yn+l = Yn for all
l ≥ 1 and for some n ≥ k is 0 when Yn 6= O.

We consider first case (a). Denote by G the σ-algebra generated by Φ. Using the fast fading assumption,
we get that conditionally on G and on the event Yn = Xi 6= O for a given Xi ∈ Φ ∪ {S},

PS,O
{
Yn = Yn+1 = · · · = Yn+l | G, Yn = Xi 6= O

}
=
l−1∏
i=0

PS,O{Yn+i = Yn+i+1 | G, Yn+i = Xi 6= O }

=
(
PS,O{Yn = Yn+1 | G, Yn = Xi 6= O }

)l
,
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so that it is enough to prove that

PS,O{Yn+1 = Yn | G, Yn = Xi 6= O } < 1

to conclude the proof. The rest of the proof is then as in Lemma 21.3.1.
Consider now case (b). Let H denote the σ-algebra generated by Φ and the fading variables Using the

same argument as before, it is enough to prove that

PS,O{Yn+1 = Yn |H, Yn = Xi 6= O } < 1 .

The proof then follows from the fact that theH-conditional law of the Poisson SN process IΦn1 \{Xi}(O) puts
a positive mass on the interval [0, z] for all positive z.

Remark: Note that the result of Lemma 21.5.1 cannot be immediately concluded from the fact that at
any time and current location of the packet, there is a positive probability of delivering it directly to the
destination. In fact, opportunistic routing is not allowed to wait for such an event.

Remark: Another important remark is that if W > 0 and if there is either no fading or some slow fading,
then there is a positive probability that the packet be trapped forever at some isolated node.

We conclude this section by simulations aiming at the comparison of the performance of radial oppor-
tunistic routing and layer-aware routing.

21.5.2 Simulation of Radial Opportunistic Routes

Simulation Setup The MANET nodes are sampled according to some Poisson point process with intensity
λ = 10−3 nodes /m2 on the square domain [0, 1000] m ×[0, 1000] m. One S-D pair is added, with S and D
in opposite parts of the domain, as shown in Figure 21.2, with a distance of about 1130 m from S to D (this
represents approx. 9 hops for a transmission range of 140 m).

All nodes are assumed to always have packets to transmit and they always transmit whenever authorized
by the MAC; these transmissions allow us to take the background traffic into account through the interference
created at each time slot. The power used by all the transmitters is assumed to be equal to 1. We use the
OPL 3 attenuation model with A = 1 and β = 3 and Rayleigh fading with mean 1. The default option for
the thermal noise is W = 0 and that for the capture threshold is T = 10.

A basic simulation experiment allows one to get a sample of the end-to-end delay of one packet of
the tagged S-D pair flow. For this, we track the time-space route selected for this packet, the transmission
attempts and the selection of the next relay at each relay node. The tagged packet is treated as a higher
priority packet at each node.

We repeat a large number of such basic experiments to evaluate means. Some means are for the same
sample of the Poisson node p.p. These correspond to the conditional mean values given the Poisson p.p.
Others are based on a resampling of the Poisson p.p. and are to be interpreted as mean values w.r.t. the Palm
probability PS,D.

Layer-Aware Routing Scenario We consider the layer-aware time-space routing scheme associated with
the following static routing: MWR (and more precisely minimal number of hops i.e. Dijkstra’s algorithm)
on the random geometric graph with transmission range r. Here we take r such that the graph of the finite
window used for the simulation is connected with high probability (see § 3.2.1 in Volume I and below to
learn how the tuning of r is done).
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Opportunistic Routing The opportunistic routing algorithm is best described by the code for the motion
of a tagged packet of the S-D pair flow located at some current node A.
Until A is the destination D do:

1. Until A is selected by the MAC to transmit, end-to-end delay++;
2. When A is selected by the MAC to transmit do:

2.1. All the nodes which are selected by the MAC to transmit are
transmitters, the remaining nodes are receivers;

2.2. The set of transmitters together with the fading variables at that time
slot determine the interference everywhere at this time slot;

2.3. The set of receivers S which satisfy the SINR capture condition at this
time slot receive the tagged packet successfully;

2.4. Among the nodes of S ∪ {A}, the nearest to the destination, say B, is
the next relay;

2.5. The other nodes of S discard the tagged packet;

2.6. end-to-end delay++;

2.7. if A 6= B then number-of-hops++;

3. A := B.

Paths Figure 21.2 gives three examples of radial paths obtained by simulation for different radio channel
models. The path which is the closest to the segment joining the source to the destination node is obtained
with the layer-aware routing algorithm. The latter is that associated with the MWR static point map on
the random geometric graph. The second path moving farther away from this segment corresponds to
opportunistic routing in the absence of fading. The third path, which allows one to search for relays very far
away from the transmitter corresponds to opportunistic routing in the presence of fast Rayleigh fading.

Three other examples of paths obtained by simulation are given in Figure 21.3. The path which is the
closest to the segment joining the source to the destination node is the layer aware case described above.
The second path moving farther away from this segment corresponds to opportunistic routing when all
nodes have perfect knowledge of their positions. The third path, which is a path on the right of the direct line
between the source node and the destination node, corresponds to the case where only 10% of the network
nodes having perfect knowledge of their position. The other nodes compute their positions using the simple
localization algorithm which consists in estimating one’s position as the barycenter of the one’s neighbors
having a perfect knowledge of their position.

Averaging and Confidence Intervals In order to calculate the means values of the performance charac-
teristics of interest, we average over 80 different networks connecting a given S-D pair and for each network
we average over 5 packets for the S-D pair. The results are presented with confidence intervals correspond-
ing to a confidence level of 95%. Note that some of these confidence intervals are small and can only be
seen when zooming in on the corresponding plots.

Tuning of the Layer-Aware Case The end-to-end delays for various values of r and of the transmission
probability p are presented in Figure 21.4. We see that the best delay is obtained with p = 0.003 and with
r = 140 m. This value, which is our default value for layer-aware MWR in what follows, is actually the
smallest value of the transmission range which connects the network with high probability in this case.
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Fig. 21.2 Samples of packet paths with opportunistic radial routing (with and without fading) and of a MWR algorithm.

Comparison of End-to-End Delays In Figure 21.5, we compare the MWR algorithm and opportunistic
routing. In this figure we give the mean end-to-end delay as a function of p under different fading scenarios.
We observe that opportunistic routing significantly outperforms the layer-aware MWR strategy in all cases:
the average end-to-end delay of a packet is at least 2.5 times larger for the latter than for the former. We also
see that the discrepancy between the two becomes much larger for a large p. Moreover, the performance of
opportunistic routing is much less sensitive to a suboptimal choice of p.

Figure 21.6, which refines Figure 21.5 for opportunistic routing, shows that the presence of fading is
beneficial in terms of mean end-to-end delays: in terms of end-to-end delays, opportunistic routing performs
roughly four times better in the presence of fading than in the no fading case. Long simulations (not presented
here) show that fast fading leads to slightly shorter delays than slow fading.

Comparison of Mean Number of Hops and Mean Local Delays Figure 21.7 gives the average number
of hops to reach the destination for the two routing strategies with p varying from 0.001 to 0.02. In the
case without fading, for small values of p, the opportunistic path is shorter (has a smaller mean number of
hops) than the Dijkstra path, whereas it is longer for large values of p. In the presence of fading, opportunistic
routing offers shorter paths than Dijkstra for p ≤ 0.014 and slightly longer paths than Dijkstra for p > 0.014.
We also observe that for opportunistic routing, the mean number of hops to reach the destination increases
with p. This can be easily understood since when p increases, the time-space diversity decreases and thus
the number of hops to reach the destination tends to increase.

148



Fig. 21.3 Samples of packet paths with layer-aware routing and opportunistic radial routing under different assumptions for node positioning
assumptions.
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Fig. 21.4 Layer-Aware MWR: end-to-end delay versus p for various transmission ranges.

Figure 21.8 studies the mean local delay for the same three scenarios as above. We see that in routing, for
each p, the mean delay per hop is much smaller than that for the layer-aware algorithm. This explains why
the average delay is smaller for opportunistic routing than for Dijkstra’s algorithm even though the mean
number of hops may be larger.
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Fig. 21.5 End-to-end delay in function of the MAP p.
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Fig. 21.6 Effect of fading on opportunistic routing: end-to-end delay in function of p. M1 is the no fading case; M2 is slow fading and M3 fast
fading (both Rayleigh).

21.5.3 Directional Routes

Consider the Palm probability PX (with associated expectation EX ), corresponding to the addition of a node
at X endowed with an independent MAC sequence eX and fading sequence FX . For all vectors d ∈ R2

with |d| = 1, define the time-space point map

Ad,n(Xi) = arg max{〈Xj , d〉 : Xj ∈ V (Xi, n)} . (c)

Since the probability of finding two or more points of a homogeneous Poisson point process on a line with
a given direction is equal to 0, if all sets V (Xi, n) are finite, then the point maps Ad,n are well defined. Let
{Zn = Zn(X)}n≥0 denote the associated d-directional route with initial condition (X, 0). We will say that
the directional routing algorithm converges if this route is such that the progress in n hops:

Dn = 〈Zn, d〉
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Fig. 21.7 Mean number of hops from S to D for opportunistic radial routing (with and without fading) and for the layer-aware MWR algorithm.
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Fig. 21.8 Mean local delay for opportunistic radial routing (with and without fading) and for the layer-aware MWR algorithm.

tends to∞ when n→∞. Note that Dn+1 ≥ Dn, for all n ≥ 0.
We will say that the directional routing algorithm progresses if its route is such that |Zn| → ∞ when

n→∞.

Lemma 21.5.2. Assume that either W ≡ 0 or fading is fast. Then the opportunistic directional routing
algorithm progresses with probability PX one.

Proof. The proof is similar to that of the last lemma and is just sketched.
Poisson configurations of points ΦX are locally finite and it is enough to prove that conditionally on

Yn = Xi ∈ ΦX and some appropriate σ-algebra, the event {Zn+1 = Zn } has a probability strictly less
than 1. For this, one considers the event that node x(= x(Xi), the closest to Xi with 〈x(, d〉 > 〈Xi, d〉,
receives the packet transmitted by Xi and one shows that this event has a positive conditional probability.
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21.5.4 Scaling Properties of Directional Routes

In the following result P0
λ denotes the Palm probability of a Poisson p.p. of intensity λ.

Proposition 21.5.3. Assume OPL 3 and W ≡ 0. Then for any of the fading variation models, the law of the
sequence {Zn = Zn(0)}n under P0

λ is the same as that of {Zn/
√
λ}n under P0

1.

Proof. Note that the distribution of the underlying Poisson point process Φ = {Xi)}i under P0
λ is the same

as the distribution of Φ(λ) = {(Xi/
√
λ)}i under P0

1. Moreover, under our assumptions on l and W , the
SINR (in fact the SIR) is invariant with respect to the scaling Φ(λ) of the p.p. Indeed,

l(|Xi/
√
λ−Xj/

√
λ|) = λβ/2l(|Xi −Xj |)

and
IΦn1 (λ)\{Xi/

√
λ}(Xj/

√
λ) = λβ/2IΦn1 \{Xi}(Xj).

Moreover, the dilation (our scaling) is a conformal mapping (preserves angles). Consequently, the directional
point map Ad,n(Xi/

√
λ) acting on Φ0(λ) is equal to 1/

√
λAd,n(Xi) acting on Φ0

1.

It is immediate to extend this to the iterates of order k of the point map. We deduce from this that the
distribution of the Euclidean length of the segments of the directional route scales like 1/

√
λ in this case.

Remark 21.5.4. When λ grows large, the network is interference limited and the thermal noise is negligible
and the last scaling law is asymptotically valid. We deduce from this that the number of time steps to progress
of some distance r in the direction d asymptotically scales likeC.r

√
λ at least, whereC is a positive constant.

This is of course compatible with the Gupta and Kumar scaling law.

21.5.5 Related Directional Greedy Point Maps

In connection with (c), here are some related time-space directional point maps.

• Highest progress and probability of success:

Ãd,n(X) = arg max
Xj∈Φ0(n)

{〈Xj −X, d〉pX(Xj)} , (c)

where px(y) = Ex,y[δ(x, y, 0) | e0
x = 1, e0

y = 0] is the probability of successful transmission
from a transmitter at x to a receiver at y ∈ R2, which can be evaluated using the results of §16.2.2.
This point map selects the receiver which maximizes the product of the progress in direction d
and of the probability of success.
• Highest progress and conditional probability of success: this point map maximizes the product

of the progress and of the conditional probability of success given the points of Φ:

Ad,n(X) = arg max
Xj∈Φ0(n)

{〈Xj −X, d〉EX [δ(X,Xj , 0) | G, eX = 1, eXj = 0]} , (c)

where G is the σ-algebra generated by Φ.
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• Highest progress and throughput:

Âd,n(X) = arg max
Xj∈Φ0(n)

{〈Xj −X, d〉} log

(
1 +

F j0 (n)/l(|Xj −X|)
W + IΦn1 /{X}(Xj)

)
, (c)

where the last term is the throughput of the wireless link from X to Xj .
• Smallest hop in a cone:

A(α)
d,n(X) = arg min

Xj∈Φ0(n)∩C(X,α,d)

{|Xj −X|} , (c)

where
C(x, α, d) = {y ∈ R2, | arg(y − x)− arg(d)| ≤ α/2}

denotes the cone of apex X , direction d and angle α. If α = π, this boils down to smallest hop
directional routing as defined in (20.13), Chapter 20.

The scaling properties of § 21.5.4 are easily extended to these point maps whenever W ≡ 0. ok?

21.5.6 Route Averages on Radial Time-Space Routes

We conclude with a negative result on the asymptotic velocity of all radial time-space routes (and in partic-
ular opportunistic routes) on a Poisson MANET Φ. Let PS,D denote the Palm probability of order 2 of Φ
at (S,D). Let {An}n by any radial time-space routing to D and let ∆(S,D) denote the end-to-end delay of
the associated route from S to D under PS,D.

Corollary 21.5.5. In the M
W+M / M model with fast fading and with OPL 3, if the thermal noiseW is bounded

from below by a positive constant, then then for all radial time-space point map to D,

lim
|S−D|→∞

ES,D[∆(S,D, Φ̃)]
|S −D|

=∞ , (c)

or equivalently the mean asymptotic velocity of a priority packet is 0.

Proof. Optimality implies that
∆(S,D) ≥ ∆∗(S,D) ,

with ∆∗(S,D) the optimal number of steps. The result then follows from the second statement of Proposi-
tion 21.4.8.

21.6 Conclusion

Here are a few conclusion of practical nature on the packet model over Poisson MANETs.

• Greedy routing on the time-space SINR graph takes information theoretic limitations into ac-
count and leverages the physical characteristics of wireless communications. We showed that
this greedy scheme works well at finite distance, in the sense that it drives a priority packet from
source to destination in finite time under rather natural conditions.
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• In contrast, because of the dead end problem, greedy routing on the static random geometric
graph ignores the physical characteristics of wireless links and does not work at finite distance,
even in the case where the associated Boolean model percolates and where the source and des-
tination nodes belong to the infinite component. Models ignoring these key characteristics may
hence lead to more difficulties than actually needed.
• The fact that greedy schemes work well at finite distance should be put in perspective as the time

constant of optimal paths on the time-space SINR graph is infinite. This in turn implies that route
averages of local delays are infinite for all greedy paths over this graph (notice that there is hence
no price of anarchy).
• On greedy paths, local delays have the same space and route average, also equal to infinity. In a

sense, the dead end problem hits back in the greedy time-space scenario: the fact that the route
average of local delays is infinite is again primarily due to the very large number of time steps
that the packet will need to progress from certain relay nodes along the route.

This chapter opens many questions on the packet model. For instance, we are currently working on the
following problems:

• In the case of a Poisson MANET with an added periodic infrastructure, does there exist greedy
routing schemes on the time-space SINR graph with a positive asymptotic velocity?
• In the Poisson MANET case, what is the rate at which velocity tends to 0 with distance?
• How can one integrate packet contention and queueing disciplines (other than preemptive prior-

ity)?

The chapter was centered on the packet model but it should be clear that most of the above questions (optimal
routes, greedy schemes) have natural counter parts in the Shannon capacity model.

Let us conclude by stressing that, more generally, SINR routes on a point process, both optimal and
suboptimal, form fascinating new objects of stochastic geometry which generate a large number of scientific
questions at the interface between communications and probability theory.
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Bibliographical Notes on Part V

The ergodic properties of MWR in Chapter 19 are directly related to first-passage percolation, an issue
extensively studied in the mathematical literature. For instance, first passage percolation on the complete
Poisson p.p. graph, with weights w(x, y) = |x − y|α, for α > 1 was studied in (Howard and Newman
1997). The existence of the Euclidean minimal spanning tree for infinite Poisson point patterns is considered
in (Aldous and Steele 1992). See also (Howard and Newman 1997).

Geographic routing is discussed in (Karp 2000). To the best of our knowledge, the first paper on the
performance evaluation of routing algorithms using spatial point processes is (Takagi and Kleinrock 1984),
where what we call directional routing was analyzed. Protocols where one minimizes the remaining distance
to destination are considered in (Stojmenovic and Lin 2001a; Stojmenovic and Lin 2001b). The analysis of
greedy geographic routing in Chapter 20 is based on (Baccelli and Bordenave 2007) and on (Bordenave
2006). The routing paradox was first observed in (Baccelli and Bordenave 2007) within the context of
smallest hop routing.

To the best of the authors’ knowledge, the studies presented in (Blum, He, Son, and Stankovic 2003)
and (Baccelli, Blaszczyszyn, and Mühlethaler 2003) were the first papers where geographic routing was
used in combination with a MAC protocol and where an opportunistic self election of relays was proposed
for packets traveling from an origin to a destination node. (Biswas and Morris 2005) also uses this idea.
Both protocols presented in (Blum, He, Son, and Stankovic 2003) and (Biswas and Morris 2005) use 802.11
like MAC access solution where the acknowledgement scheme is modified to allow the selection of the
relay. Chapter 21 is primarily based on (Baccelli and Mirsadeghi 2009) and (Baccelli, Blaszczyszyn, and
Mühlethaler 2009b).

There is a large number of publications on routing in delay tolerant networks. In such networks, routing
leverages the motion of nodes to transport packets. This topic not covered in the present monograph. Let us
nevertheless stress that there are some connections between delay tolerant networks and the high mobility
model of Example 1.3.10 in Volume I. Our main result on the matter is that of § 16.6.5.3 where we showed
that high mobility indirectly helps even if we do not use it to transport packets: the resampling of the SN
that would result from high mobility may for instance be sufficient to make mean local delays finite in a
Poisson MANET using Aloha, whereas these mean local delays are infinite in the case with no mobility.
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More generally, the tools of the present monograph can potentially be used to analyze such networks as
well. In particular a time-space framework of the type of that of Chapter 21 is required for such an analysis
because of motion. Among recent papers on the matter that we are aware of and which introduce a time-
space structure, all are quite recent and developed independently of our research on the matter. Let us quote
in particular (Jacquet, Mans, and Rodolakis 2009) and (Ganti and Haenggi 2009). The former focuses on
node motion alone and assumes that nodes within transmission range can transmit packets instantaneously.
The authors then study the speed at which some multicast information propagates on a Poisson MANET
where nodes have independent motion (of the random walk or random waypoint type). The latter focuses on
a problem similar to that considered in Chapter 21. since the main object is the time-constant of some first
passage percolation problem. The two main differences between the Chapter 21 and (Ganti and Haenggi
2009) are the following: the model used in the latter is the so called protocol model of (Gupta and Kumar
2000), which significantly differs from the time-space SINR graph model of Chapter 21. More importantly,
the analysis of (Ganti and Haenggi 2009) is based on a resampling of the SN at all time steps (which can
be seen as an incarnation of the high mobility model alluded to above, or as an approximation) and on the
assumption that thermal noise is 0.
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Part VI

Appendix: Wireless Protocols and
Architectures
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The aim of this part is to give a compact survey on the statistical properties of channels which are
commonly used in the analysis of wireless networks. The main focus will be on the principles and most of
the fine points associated with technological aspects will not be discussed here.

In Chapter 22, we describe scattering and fading channels; this can be seen as the very first level of
statistical modeling within this context. The presence of scatterers and the resulting multipath propagation
together with the mobility of the source or the destination lead to the definition of a variety of fading channels
including the Rayleigh and Rician models.

Chapter 23 will then outline the theory of detection for such channels with a main emphasis on point
to point channels in scenarios involving a collection of simultaneous transmissions taking place in some
domain. The case of direct-sequence spread-spectrum, where the interference created by other transmissions
can be seen as noise for any given point to point channel, will be discussed, again at the level of principles.
This discussion will in particular lead to a comprehensive explanation of the key role played by the SINR in
such a scenario.

The aim of Chapter 24 is to provide a bestiary of classical network architectures and protocols which
will be used as simple illustrating examples in Part I in Volume I and to which we will return in more details
in the parts which follow. We will in particular survey the basic medium access control protocols used to
organize the competition between such a collection of transmissions and on multi-hop routing within this
context. Among the examples of network architectures which will be outlined, let us quote mobile ad hoc
networks, wifi mesh networks and cellular access networks.

These chapters rely on a variety of scientific domains: physics, with questions pertaining to propagation,
the Doppler effect, scattering etc.; information theory, with questions bearing on additive white Gaussian
noise channels, detection theory etc. and finally networking, with routing algorithms or protocols for the
organization of concurrent transmissions sharing a common medium.

All these ingredients are necessary for a full understanding of the main findings concerning SINR, which
are the basis of most of the models of the monograph.
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22
Radio Wave Propagation

In this chapter we will be interested in the propagation of an electromagnetic signal in space, where it is ab-
sorbed and reflected by many, possibly moving, obstacles. In such a context, solving and even establishing
the detailed electromagnetic field equations is not feasible. However, for wireless communication engineer-
ing, it is often enough to use some macroscopic model that predicts the relationship between transmitted
and received signals in a statistical way. In such a model, the impact of the unknown locations of various
objects which absorb and reflect the signal is represented by some random transformation of the signal.
Most macroscopic models just give the mean signal power attenuation for a given distance. They describe
the average signal power attenuation for different environments (e.g. an urban environment, the countryside,
etc.). Refined statistical models also give the fluctuations of the signal power attenuation around this mean
profile. These models will be used in the analysis of the higher layers (detection, MAC, routing, etc).

22.1 Mean Power Attenuation

Mean power attenuation is concerned with the macroscopic description of the decrease of the signal power
with the distance between the transmitter and receiver. We will first give two motivating examples and then
introduce a few simple parametric models.

22.1.1 Motivating Examples

Digital radio communications are based on electromagnetic waves. Assume that the electric signal trans-
mitted at time t by an antenna located at the origin of the three dimensional Euclidean space is of the form
S(t) = cos(2πft). If f is equal to 1 GHz, the wavelength is λ = c/f , where c is the speed of light, that is
λ ∼ 30 cm.

Example 22.1.1 (Free Space Propagation). The simplest propagation model is the free space model which
states that the signal received at the point (r, θ, ψ) at time t is

Rr,θ,ψ(t) =
α(θ, ψ)
r

cos(2πf(t− r/c)) =
α(θ, ψ)
r

cos(2πft− φ), (c)
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where α = α(θ, ψ) denotes the gain of the antenna in the (θ, ψ) direction and where the signal phase φ
is 2πr/λ. The 1/r term in the amplitude stems from a simple energy conservation law. Hence the power
received at distance r is proportional to 1/r2. In the particular case of omni-directional antennas, α(θ, ψ) is
constant.

In the free space model, the power of the signal is attenuated proportionally to 1/r2. In practice however,
when the traversed space is not empty, power decreases much faster. We will explain this in the following
example, where we take into account the reflection of the signal on the ground, and where power decreases
in 1/r4.

Example 22.1.2 (Ground Reflection). If the transmitter and the receiver are above the ground, then one
should both consider the direct path with length r1 and the reflected path with length r2. Let r denote the
ground distance between the transmitter and the receiver. Then for r large, r2 − r1 ≈ b/r where b is a
constant that depends on the heights of the transmitter and the receiver. The received signal is then

Rr(t) ≈ α(θ, ψ)
(

1
r1

cos(2πf(t− r1/c))−
1
r2

cos(2πf(t− r2/c))
)
, (c)

which is easily seen to be of the order of 1/r2 in the far-field, namely when r is large. Hence the power is
proportional to 1/r4. The minus sign in the second term of the last equation stems from the fact that the sign
of the electric field is reversed by the ground reflection; this explains why the two waves interact here in a
destructive way.

In view of the two simple scenarios described above, it should be clear that an exact analysis of the
propagation of the signal in a “real” scenario with many obstacles and reflections would be extremely com-
plicated. Fortunately this is not necessary as some statistical models of the attenuation of power are often
sufficient for the purpose of radio communication engineering.

22.1.2 Mean Power Attenuation Models

Linked to the two models described above, it is customary to consider the following general macroscopic
distance-and-angle dependent path-gain model according to which the power of the signal received at dis-
tance r and in the direction θ, ψ (respectively referred to as the azimuth and the tilt) is equal to

σ2 = σ2(r, θ, ψ) =
ᾱ2(θ, ψ)
l(r)

, (c)

where

• l is the omnidirectional (isotropic) path loss function 1 (OPL),
• ᾱ2(θ, ψ) denotes the value of the mean normalized radiation pattern (RP) in the direction θ, ψ;

it takes into account the transmitter and receiver antenna gains.

1This definition of path loss is natural: if the path loss is large, the received signal has a low power.
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Fig. 22.1 Top: approximation of RP1 by RP2 with θ1 = 1
12
π, θ2 = 2

3
π; Cartesian and polar plots. Bottom: in boldface/red, perfect RP modeled

by RP2 with θ1 → π/3− and θ2 → π/3+; Cartesian and polar plots.

Example 22.1.3 (Omnidirectional path-loss function). The following examples of isotropic path-loss
functions will be considered:

(OPL 1) l(r) = (Amax(r0, r))β ,
(OPL 2) l(r) = (1 +Ar)β ,
(OPL 3) l(r) = (Ar)β ,

for some A > 0, r0 > 0 and β > 2, where β is called the path-loss exponent. Note that OPL3 is a simplified
model making no sense for r close to 0. However it is reasonable for r bounded away from 0. It is thus
important to use it is with caution. All three cases OPL1–OPL3 give similar values for r > r0 and/or when
Ar is large.

Example 22.1.4 (Planar radiation patterns *). We will concentrate on planar RPs, namely RPs such that
ᾱ2(θ, ψ) = ᾱ2(θ). Apart from a few exceptions, we will use

(RP0) ᾱ2 ≡ 1, which corresponds to perfect omnidirectional radiation.
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As examples of truly directional RPs we will consider patterns with a 3dB azimuth beam-width of 120◦.
Here are two mathematical models with this property:

(RP1) is defined by

ᾱ2(θ) =
∣∣∣∣sin(ωθ)

ωθ

∣∣∣∣ |θ| ≤ π ,

where ω = 1.81 is chosen such that ᾱ2
(

1
3π
)

= 1
2 = 3dB.

(RP2) is defined by

ᾱ2(θ) =



1 for |θ| ≤ θ1,∣∣∣∣1− |θ| − θ1

2(π/3− θ1)

∣∣∣∣ for θ1 < |θ| ≤ θ2,∣∣∣∣1− |θ2| − θ1

2(π/3− θ1)

∣∣∣∣ for θ2 < |θ| ≤ π,

where 0 < θ1 <
1
3π < θ2 < π and θ1 + θ2 >

2
3π are such that ᾱ2

(
1
3π
)

= 1
2 = 3dB.

Figure 22.1 illustrates these RP models. Notice that in the above definitions,

• The main and the first secondary lobes can be taken into account.
• In RP2, if one lets θ1 → π/3− and θ2 → π/3+ in such a way that (θ2−π/3)/(π/3−θ1)→ 1+,

then RP2 tends to a perfect coverage of the sector (−π/3, π/3).
• If θ1 = 1

12π and θ2 = 2
3π, then RP2 is a piecewise linear approximation of RP1 (these parameters

are chosen by “visual inspection”).

Figure 22.2 depicts the equal-signal-strength set (or path-gain level-set) {y ∈ R2 : σ2(|y|, arg(y)) = t}
associated with a few levels t. The antenna has its main lobe in the direction θ = 0 (one also says that its
azimuth is equal to 0) and is located at 0 ∈ R2. We consider both RP 1 and RP 2 and assume l(r) is given
by OPL 2. One sees that a piece-wise-linear radiation pattern RP 1 can be used to approximate RP 2.
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22.2 Random Fading

The mean model of power attenuation described in the previous section does not capture the important
phenomenon of the variation of the signal power over short distances (of the order of the wavelength) and
in time. We will explain the nature of these variations in a few examples and then show a stochastic model
which, in some cases, can capture this phenomenon.

22.2.1 Motivating Examples

When the transmitted signal propagates to the receiver, it may actually meet a collection of different objects
(called scatterers) on its way, and they may reflect it. This leads to the situation where several different
copies of the signal are received, each of them propagated along a specific path.

Example 22.2.1 (Scattering and Multipath Fading). Assume for simplicity that there are two paths: path
1 is the direct path with distance r1 = r; path 2 stems from the reflection of the signal on a wall at distance
d > r from the transmitter and orthogonal to the direction of the direct path, so that r2 = 2d− r. Hence the
received signal is equal to

R(t) =
α

r
cos
(

2πf
(
t− r

c

))
− α

2d− r
cos
(

2πf
(
t− 2d− r

c

))
.

The received signal is hence the superposition of two waves with the same frequency f but with a phase
difference of ∆φ = π + 4πf(d − r)/c = π + 4π(d − r)/λ. When ∆φ is an even (resp. odd) multiple
integer of π, the two waves add constructively (resp. destructively). This means that changing r by λ/4 can
change the received signal strength from a local maximum to a local minimum. Note however, that if the
distance between two reception locations is significantly less than λ/4 the strength of the received signal
is unchanged. This coherence distance ∆ = λ/4 is of the order of 10 cm when f = 1 GHz. Similarly,
changing the frequency f by c/(4(d − r)) leads from a peak to a valley of the signal at a given location.
However, if the frequency change is significantly smaller than this value, the signal strength does not vary too
much. Thus the bandwidth c/(2(d− r)) is called the coherence bandwidth. The reciprocal of the coherence
bandwidth is called the delay spread.

The following example shows how mobility (of transmitter, receiver or scatterers) impacts the variation
of the signal strength in time.

Example 22.2.2 (Motion and Small Scale Fading). We assume that the receiver is moving at a speed v
and in some direction which do not vary over the time interval considered. In the open space model the
(direct) path length varies with time as

r (t) = r + vt cos(γ),

where γ is the angle of the path and the receiver motion and where r = r (0). Hence (c) should be replaced
by

R(t) =
α(θ(t), ψ(t))

r(t)
cos (2πft− φ (t)) , (c)

where

φ (t) =
2πr (t)
λ

= φ+
v cos(γ)

c
2πft.
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with φ = 2πfr/c = 2πr/λ. If we can assume that the path gain does not change significantly within the
time intervals of interest, then

R(t) ∼ α(θ, ψ)
r

cos
(

2πf
(

1− v cos(γ)
c

)
t− φ

)
, (c)

where we observe the classical Doppler shift D = −vf cos(γ)/c, i.e. the change of the frequency from f to
f +D.

Let us revisit now our simple wall reflection scenario of Example 22.2.1 with the receiver moving to-
wards the wall. Path 1 is the direct path with γ1 = 0 (the motion and the transmitter–receiver vectors are
collinear) and r1(t) = r + vt; path 2 stems from the reflection of the signal on the wall and γ2 = π and
r2(t) = 2d − r − vt. Then the time between a constructive and a destructive phase combination is c/4vf .
More precisely,

R(t) =
α

r + vt
cos
(

2πf
((

1− v

c

)
t− r

c

))
− α

2d− r − vt
cos
(

2πf
((

1 +
v

c

)
t− 2d− r

c

))
. (c)

When the mobile is close to the wall, r + vt and 2d − r − vt are of the same order (on a sufficiently small
time interval) and

R(t) ∼ 2α
r + vt

sin
(

2πf
(
t− d

c

))
sin
(

2πf
(
vt

c
+
r − d
c

))
.

We see that the received signal is the multiplication of some high frequency wave sin(2πf(t − d/c)) (we
recall that f is of the order of the GHz) by some low frequency (envelope) wave at fv/c. This means that the
strength of the signal received by this mobile antenna varies in time with the frequency fv/c. The reciprocal
of this value, c/vf , is called the coherence time. One can say that the power of the received signal remains
constant in time intervals significantly smaller than this coherence time. For example if the velocity is of the
order of 60 km/h, fv/c is of the order of 55Hz and the coherence time of the order of 18ms.

In cases with more reflectors, one observes several Doppler shifts of the frequency f . Denote by Dn that
of path n. Then, the Doppler spread is defined as

Ds = sup
n
Dn − inf

n
Dn.

The envelope ofR(t) varies at a time scale of the order of 1/Ds. On time intervals significantly smaller than
the coherence time Tc = 1/(4Ds), there is no sizable variation of the strength of the received signal. This
time scale is small compared to that of the variations of the path gain induced by motion due to large scale
fading. Hence the terminology of small scale fading.

It should also be clear that a similar phenomenon is also present when the transmitter and/or scatterers
are mobile.

An exact analysis of the small time/space scale variations of the signal strength described in the above
examples would be too complicated in a real life situation. The stochastic models described below are better
suited for the description of these phenomena.

22.2.2 Random Scatterers

Consider many static or moving scatterers giving N different copies of the transmitted signal, each propa-
gating along a specific path. A signal traveling on path n with length rn arrives with some delay τn = rn/c.
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Therefore the received signal is

RN (t) =
N∑
n=1

ξn cos (2πf(t− τn)) =
N∑
n=1

ξn cos (2πft− φn) , (c)

where in the simplest case, φn = 2πfτn and ξn = bn
αn
rn

, with αn the antenna gain in the direction of path n
and bn the variable with value +1 or −1 depending on the number of reflections on path n. More complex
scenarios can be considered like

• the case of mobility where φn depends on t via the Doppler shift Dn of path n: φn(t) = φn +
2πDnt (cf. (c));
• the case where each path is reflected on the ground so that when aggregating the effect of path n

and its reflection, we get a formula of the form ξn = bn
αn
r2
n

.

Far-field assumptions. In the case where transmitter, receiver and scatterers are fixed, the path parameters
do not vary with time t and φn = 2πrn/λ. If we suppose now that rn � λ, which corresponds to the so
called far-field model, then it is reasonable to assume that

• rn/λ − brn/λc is uniformly distributed in [0, 1), so that φn is uniformly distributed in [0, 2π)
and the phases {φn} are independent;
• the random variables ξn are i.i.d.; and
• the sequences {φn} and {ξn} are independent.

Note that under these assumptions, variables bn can be removed in (c) without altering the law of the received
signal R(t).

Claim 22.2.3. Under the above far-field assumptions, the received signal {R(t)} is a centered stationary
stochastic process with auto-correlation function

C (s) =
1
2

∑
n

E
[
ξ2
n

]
cos (2πfs) . (c)

Remark: Note that 1
2 = 1/(2π)

∫ 2π
0 cos2(t) dt is the mean power of the transmitted signal and E[ξ2

n] = a2

can be interpreted as the value of the mean path-gain function at a given location; cf. the model around
Equation (c).

Proof. Stationarity stems from the fact that each term of the sum is stationary, which follows from the
uniform phase assumption and the independence assumption. The first moment property is clear. Using the
fact that the random phases are independent and uniform, one gets that the auto-correlation is

E[R(t+ s)R(t)] =
∑
n,k

E [ξn cos (2πf (t+ s)− φn) ξk cos (2πft− φk)]

=
∑
n

E
[
ξ2
n

]
E [cos (2πf (t+ s)− φn) cos (2πft− φn)]

=
1
2

∑
n

E
[
ξ2
n

]
cos (2πfs) .
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This property extends to the more complex settings considered so far, whenever the uniform phase and
independence properties are satisfied.

Large number of random scatterers in the far-field. We now study what happens with the model (c)
when the number of paths N is large. The setting is that of the far-field model. Moreover, we assume that

• ξn = ξN,n, n = 1, . . . , N , N ≥ 1 are such that the total power of the received signal

E[R(t)2] = C (0) =
1
2

N∑
n=1

E
[
ξ2
N,n

]
= a2/2 (c)

is the same for all N .

A typical example is that where ξN,n = 1√
N
Yn, where {Yn}n∈N is an i.i.d. sequence of positive random vari-

ables with finite second moment a2/2. In this particular case, the central limit theorem implies that RN (t)
converges in distribution to a centered Gaussian random variable when N tends to infinity. More gener-
ally, we have the following result when we assume that the path gains are independent but not necessarily
identically distributed.

Claim 22.2.4. If the condition

lim
N→∞

N∑
n=1

E
[
ξ2
N,n1 {ξN,n ≥ εa}

]
= 0, for all ε > 0 (c)

is satisfied, then RN (t) converges in distribution to a Gaussian random variable N (0, a2) when N → ∞.
Similarly, for all k ≥ 1 and for all t1, . . . , tk and β1, . . . , βk ∈ R, the random variable

∑k
j=1 βjR(tj)

converges in distribution to a Gaussian random variable when N →∞.

Proof. We apply the Lindeberg version of the central limit theorem (Billingsley 1995, Theorem 27.1 p.359).
Let

XN,n = ξN,n cos (2πft− φn) .

Since
X2
N,n1 {|[XN,n| ≥ εa} ≤ ξ2

N,n1 {ξN,n ≥ εa}

and
N∑
n=1

E
[
X2
N,n

]
=

1
2

N∑
n=1

E
[
ξ2
N,n

]
=
a2

2
,

Condition (c) implies the Lindeberg condition

lim
N→∞

N∑
n=1

E
[
X2
N,n1 {XN,n ≥ εa}

]
= 0, for all ε > 0

which allows one to apply Lindeberg’s theorem (Billingsley 1995, Theorem 27.1 p.359).
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22.2.3 Quadrature Amplitude Modulation (QAM)

Up to now we have considered radio transmission of a simple high frequency sinusoidal signal at the carrier
frequency f = fc. In reality, a low frequency signal S(b)(t) called baseband signal, to be communicated
over the radio, is first transformed into some equivalent high frequency passband signal S(t) which is then
transmitted, propagated, received as R(t) and transformed back to the low frequency baseband represen-
tation R(b)(t) of R(t). This procedure is called Quadrature Amplitude Modulation. We now analyze the
impact of our previous stochastic assumptions (large number of random scatterers, far-field) on the variation
of the baseband representation of the signal at the receiver.

Denote by S(t) the passband signal and by S(b)(t) the baseband signal. Denote by Ŝ(f) the Fourier
transform of S(t) and by Ŝ(b)(f) that of S(b)(t), which we assume to exist. The one to one correspondance
between the two signals is best described through the following relations between their Fourier transforms:

Ŝ(f) =
1√
2

[
Ŝ(b)(f − fc) +

(
Ŝ(b)

)∗
(−f − fc)

]
(c)

and
Ŝ(b)(f) =

√
2Ŝ(fc + f)1{f + fc > 0}. (c)

The normalization by
√

2 is introduced so that S and S(b) have the same power. We assume that Ŝ(b)(f)
vanishes for frequencies f outside the baseband [−W/2,W/2] for some bandwidth W/2 < fc, so that Ŝ(f)
vanishes for frequencies f outside the passband [−W/2 + fc,W/2 + fc].

The fact that Ŝ(−f) = Ŝ∗(f) shows that S(t) is real, whereas the baseband signal is complex-valued:

S(b)(t) = S
(b)
I (t) + iS

(b)
Q (t)

with S(b)
I (t) the in phase component and S(b)

Q (t) the quadrature component. This terminology stems from
the following time domain up-conversion formula (which follows from (c)):

S(t) =
√

2S(b)
I (t) cos(2πfct)−

√
2S(b)

Q (t) sin(2πfct) =
√

2R
(
S(b)(t)ei2πfct

)
, (c)

whereR denotes the real part.
Assuming the channel model (c), if the passband signal S(t) is transmitted, then the received signal is

equal to

R(t) =
√

2R(b)
I (t) cos(2πfct)−

√
2R(b)

Q (t) sin(2πfct) =
N∑
n=1

ξnS(t− τn)

=
√

2

(
N∑
n=1

ξn

(
S

(b)
I (t− τn) cos(2πτn)− S(b)

Q (t− τn) sin(2πτn)
))

cos(2πfct)

+
√

2

(
N∑
n=1

ξn

(
S

(b)
I (t− τn) sin(2πτn) + S

(b)
Q (t− τn

)
cos(2πτn))

)
sin(2πfct) ,

where we used (c). Simple trigonometry arguments show that the solution to this equation with a low fre-
quency is

R
(b)
N (t) =

N∑
n=1

ξn,Ne
−i2πτnS(b)(t− τn). (c)

167



One can prove a Central Limit Theorem for R(b)
N (t) under conditions similar to (c), namely one can show

that when N → ∞, the random variable R(b)
N (t) converges in distribution to a complex-valued Gaussian

random variable ZI(t) + iZQ(t) (for more on complex-valued Gaussian random variables, see §23.1). It
is beyond our scope to work out such conditions in detail. Instead, we exemplify this convergence in the
following simple case:

Example 22.2.5. Since S(b) is a low frequency signal, it is reasonable to assume for simplicity that it is
(piecewise) constant. Then S(b)(t− τn) = S(b). We recall that, under a far-field assumption, ξn = ξn,N and
φn = 2πτn are independent and φn is uniformly distributed on [0, 2π). Consequently E[ξnS(b)e−iφn ] =
S(b)E[ξn]E[e−iφn ] = 0. This shows that E[ZI ] = E[ZQ] = 0. Let us now calculate the covariance of the
real and imaginary parts of R(b)

N . From (c) by independence of the paths

E
[
R(R(b)

N )I(R(b)
N )
]

=
N∑
n=1

E[ξ2
n,N ]E

[
R
(
S(b)e−iφn

)
I
(
S(b)e−iφn

)]
= 0 ,

where I denotes the imaginary part, since

E
[
R
(
S(b)e−iφn

)
I
(
S(b)e−iφn

)]
=

(
(I(S(b)))2 − (R(S(b)))2

)
E
[sin 2φn

2

]
+ I(S(b))R(S(b))E[cos 2φn] = 0 .

Hence ZI and ZQ are uncorrelated and thus independent, provided they form a Gaussian vector. Note also
that under the assumption

∑N
n=1 ξ

2
n,N = a2, we have E[Z2

I + Z2
Q] = |S(b)|2a2, namely the mean power of

the baseband signal is the product of |S(b)|2, the power of the baseband signal at the transmitter, and of a2,
the mean power attenuation.

Remark: Since ZI and ZQ are independent N (0, |S(b)|2 a2

2 ) random variables (where N (µ, σ2) denotes
the Gaussian law of mean µ and variance σ2), the power Z2

I + Z2
Q of the received baseband signal has a χ2

2

distribution (up to a multiplicative constant). More precisely it is an exponential random variable with mean
a2|S(b)|2 (and its square root has a Rayleigh distribution with parameter a2|S(b)|2).

Inspired by the above remark we will introduce now a basic stochastic model for variations of the re-
ceived power.

22.2.4 Rayleigh Fading and its Extensions

In Section 22.1.2 we have modeled the mean received signal power by some fraction a2 = a2(r, θ, ψ) of the
emitted power. This mean fraction is a function of the distance between the transmitter and the receiver and
of certain angles θ, ψ associated with antenna azimuths and tilts. The last examples lead to the following
natural random model for the law of the received power.

Definition 22.2.6. We say that the wireless channel exhibits Rayleigh fading if the received power is equal
to Pa2F , where P is the power of the transmitted signal, a2 is the mean attenuation function and F is
exponential random variable with mean 1.

Note that this definition is only valid when QAM is used in the far-field and when there are many scatterers.
In the situation where an important fraction of the power is received on the line-of-sight path, the following
model is more pertinent:
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Definition 22.2.7. We say that the wireless channel exhibits Rician fading if the received power is equal to
Pa2κ/(κ+ 1) +F/(κ+ 1), where κ/(κ+ 1) is the fraction of the mean power received on the line-of-sight
path and P , a2 and F are as for Rayleigh fading.

When several groups of paths can be distinguished, each group contributing to an exponential power with a
different mean, one can use a Nakagami fading model (see (Stuber 2001)).

22.3 Conclusion

Note that the above stochastic models give the distribution of the fading F at a given location and at a
given time with respect to some given transmitter. It is difficult to model the fading F = F (t, x, f) in the
time-space-frequency domain x ∈ R3, t ∈ R, f ∈ R+. However, the following remarks will be useful:

• If |x − y| � ∆, where ∆ is the coherence distance (see Example 22.2.1), then one can assume
that F (t, x) = F (t, y).
• If |t − s| � Tc, where Tc is the coherence time (see Example 22.2.2), then one can assume that
F (t, x) = F (s, x).
• If |t− s| � Tc or |x− y| � ∆ then F (t, x) and F (s, y) can be considered as independent ran-

dom variables. Since the scattering obstacles are different for (sufficiently separated) transmitter–
receiver pairs, it makes sense to assume that these random variables are independent for all such
pairs.
• Fading depends on the signal frequency. However if the change of frequency is significantly

smaller than the coherence bandwidth (see Example 22.2.2) then the received power at a given
location and time does not vary too much.
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23
Signal Detection

The aim of this chapter is to show through a few basic examples how signal to noise and signal to noise
and interference ratios determine error probability and hence throughput on the multipath wireless chan-
nels described in the preceding chapter. Detection will be considered in a discrete channel model based on
the sampling theorem which is described first. We start with a few well known facts on complex–valued
Gaussian vectors.

23.1 Complex Gaussian Vectors

A complex–valued random vector of dimension n is said to be Gaussian if its real and imaginary parts form
a Gaussian vector of dimension 2n. A complex–valued random vector X of dimension n is said to be

• circular-symmetric if eiθX has the same law as X for all θ;
• isotropic if for all unitary1 transformations U of Cn, UX has the same law as X .

A complex–valued Gaussian scalar is circular-symmetric iff its real and imaginary parts are i.i.d. and cen-
tered. We will denote by N C(0, σ2) this distribution when the variance of the real (or imaginary) part is
σ2/2.

A vector of Cn with i.i.d. N C(0, σ2) components is both circular-symmetric and isotropic.

23.2 Discrete Baseband Representation

23.2.1 Linear Model

Assume that the mapping which gives R from S is of the form

R(t) =
∑
n

ξn(t)S
(
t− rn(t)

c

)
(c)

1U is unitary if (Ut)∗U = I with Ut the transpose of U and U∗ its complex conjugate.
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with ξn(t) = bnαn(t)/rn(t), which is a time dependent version of (c), Chapter 22. Let S(b)(t) and R(b)(t)
denote the baseband representation of S and R respectively. By calculations similar to those made in
§ 22.2.2, we conclude that the mapping which gives R(b) from S(b) is

R(b)(t) =
∑
n

βn(t)S(b)

(
t− rn(t)

c

)
, (c)

where
βn(t) = ξn(t)e−2πifc

rn(t)
c . (c)

Assume now that S(b)(t) is integrable, continuous and band-limited to W . Since the Fourier transform
of S(b)(t) vanishes outside [−W/2,W/2], the sampling theorem (Brémaud 2002) states that there is no loss
of information in sampling S(b)(t) every 1/W seconds and that

S(b)(t) =
∑
k∈Z

S(b)[k]sinc(Wt− k), (c)

with S(b)[k] = S(b)(k/W ) the k-th sample and

sinc(t) =
sin(πt)
πt

.

Hence (c) can be rewritten as

R(b)(t) =
∑
n

βn(t)
∑
k

S(b)[k]sinc(Wt−W rn(t)
c
− k)

=
∑
k

S(b)[k]
∑
n

βn(t)sinc(Wt−W rn(t)
c
− k), (c)

provided the series is absolutely convergent. Thus, the m-th sample of R(b)(t) at multiples of 1/W is

R(b)[m] =
∑
k

S(b)[k]
∑
n

βn(m/W ) sinc
(
m− k −W rn(m/W )

c

)
.

Substituting m− k = l, we finally get the following discrete time filter:

R(b)[m] =
∑
l

Hl[m]S(b)[m− l], (c)

where

Hl[m] =
∑
n

βn(m/W ) sinc
(
l −W rn(m/W )

c

)
. (c)

This map from the sequence of complex input symbols {S(b)[k]}k which are produced at rate W at the
transmitter to the set of output symbols {R(b)[k]}k at the receiver, takes into account both the modulation of
the signal to its passband version at the transmitter, the propagation of the resulting signal from transmitter
to receiver, the conversion back to the baseband at the receiver, and finally the sampling there.

A few important remarks are in order:

• If the functions ξn(.) are constant (as in e.g. Example 22.2.1), then Hl[m] ≡ Hl and the discrete
linear filter is time-invariant.

172



• Using the shape of the sinc function, one sees from (c) that Hl predominantly selects the paths
with a delay of the order of l/W .
• If the mapping which gives R from S is given by

R(t) =
∑
n

bn(t)
αn(t)
rn(t)

S

(
t− rn(t)

c

)
+W (t), (c)

where W (t) is a stationary 0-mean additive white Gaussian noise with variance σ2, namely a
Gaussian process such that E(W (t)W (s)) = σ2

2 1{t = s}, then a similar construction gives the
following input–output map:

R(b)[m] =
∑
l

Hl[m]S(b)[m− l] +W [m], (c)

where W [m] is an i.i.d. sequence of N C(0, σ2) random variables.

23.2.2 Time Coherence

From (c)–(c) and from the fact that ξn(t) and rn(t) vary slowly, one gets that at time t, the linear map which
gives R(b) from S(b) is approximately time invariant on time scales significantly smaller than the coherence
time Tc = 1/(4Ds), where Ds is the Doppler spread at time t, which is defined as

Ds =
fc
c

max
n,n′
|ṙn(t)− ṙn′(t)|,

where the maximum bears on all pairs of paths (cf. Example 22.2.1). Similarly, one gets from (c) that for all
l, the function Hl[m] is approximately a constant in m when m varies over an interval of length less than
WTc.

23.2.3 Frequency Coherence

Let
Td = max

n,n′
2π

1
c
|rn(t)− rn′(t)|

be the multipath delay spread at time t. It is natural to define the coherence bandwidth Wc at time t as
Wc = 1/Td. If the bandwidth of the input W is significantly less than the coherence bandwidth Wc, then the
delay spread is significantly less than the symbol time 1/W so that only one term l0 has to be considered in
the sum (c). This case is called flat fading. In most applications, Td is of the order of a microsecond. This
gives an upper bound on the bandwidth of the input for flat fading to be an acceptable model. The simplest
flat fading model is

R(b)[m] = H0[m]S(b)[m] +W [m]. (c)

23.2.4 Statistical Model

Consider now the far field of §22.2.2. Since fcrn(t)/c is large, it makes sense to assume that the phase on
path n, which is this quantity modulo 2π, is uniformly distributed on (0, 2π) at any time t. Hence for all n,
l and m, the random variable

Xn = ξn(m/W )e−2πifc
rn(m/W )

c sinc
(
l −W rn(m/W )

c

)
,
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which occurs in the definition of Hl[m] (c), is a circular symmetric complex–valued random variable. As-
sume that N , the number of scatterers, is large and that the contributions of all paths (path gains and
phases) are independent and satisfy a condition of the Lindeberg type. Then for all l and m, the law
Hl[m] =

∑N
n=1Xn is asymptotically Gaussian circular symmetric (and in particular centered). Hence

|Hl[m]| has a Rayleigh distribution with a parameter σl that depends on l but not on m, at least for time
scales where the distances rn(.) do not vary significantly.

Not surprisingly, the autocorrelation of the Hl[m] sequence:

Rl(n) = E(Hl[m]Hl[m+ n])

can be shown to become small for values n such that n/W is significantly larger than K/Ds with Ds the
Doppler shift of the channel and K some constant, which is a rephrasing of the notion of coherence time
already discussed above.

23.3 Detection

23.3.1 Coherent Detection

Assume a flat fading scenario of the form

Y = HX +W,

where

• X = X[m] and Y = Y [m] are complex–valued;
• W = W [m] is N C(0, σ2);
• H = H[m] (in the case of Rayleigh fading, H is N C(0, g2)).

Assume H = H[m] to be known by the receiver (this is the coherent detection case). In practice, this can
be implemented using some pilot signal and requires that H[m] does not change too fast with m. More
precisely this requires that WTc be large compared to 1 (for instance due to a large coherence time).

Assume antipodal signaling, namely the signal to be transmitted is real and either +a or −a with proba-
bility 1

2 .

Remark: Here, and throughout this section, in order to take into account the effect of the distance between
emitter and receiver, the value of a2 should be interpreted as the mean power of the signal at the receiver.
In general, it depends on the value of the emitted power, distance and antenna parameters; cf. the models
discussed in Section 22.1. So one may see the result of this section as given for the emitted power P = 1,
mean path-gain equal to a2 and the random channel fading at time m equal to H .

Claim 23.3.1. Under the foregoing assumptions, the maximum likelihood estimator leads to error probabil-
ity

Q

(√
2
a2|H|2
σ2

)
, (c)

where Q is the tail of the cumulative distribution function of the N (0, 1) density.
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Proof. Given that H = h, if the complex number y is received, the maximum likelihood estimator gives +a
if

|y − ah| < |y + ah|.

Let v denote the complex number v = h/|h|. The last inequality is equivalent to

|v∗y − a|h| | < |v∗y + a|h| |,

where v∗ denotes the complex conjugate of v. Since a|h| is a real number, this is equivalent to

|R(v∗y)− a|h| | < |R(v∗y) + a|h| |.

Since w = R(v∗W ) is N (0, σ2/2), the probability of error given that +a is transmitted is hence

P (|R(v∗(ha+W )− a|h|)| > |R(v∗(ha+W ) + a|h|)|) = P (|w| > |w + 2a|h||) = P (w < −a|h|).

Hence, in the flat Rayleigh fading scenario, coherent detection leads to a probability of error which is deter-
mined by SNR[m] through the relation pe[m] = Q(

√
2SNR[m]), where

SNR[m] =
a2|H[m]|2

σ2

is the ratio of the power of the received signal to that of the noise power at time m, and |H[m]|2 is exponen-
tially distributed with mean 1/g2.

Remark: Notice that (c) gives the conditional error probability given the fading. In many situations, its
makes sense to decondition this by integration w.r.t. the law of H . However, for so called opportunistic
algorithms which try to take advantage of the fluctuations (and more precisely of peaks) of fading, we will
need an evaluation of such a conditional error probability.

23.3.2 Repetition Coding

Consider the same flat Rayleigh fading scenario as above. Assume that in order to decrease the probability
of error, we repeat the same symbol n times, so that the channel becomes

Y [m+ k] = H[m+ k]X[m] +W [m+ k], k = 0, . . . n− 1

or equivalently
Y = XH + W,

where

• Y is a complex–valued vector of dimension n;
• X is a scalar with value +a or −a;
• H is a complex vector of dimension n;
• W is a complex–valued vector of dimension n with i.i.d. N C(0, σ2) components;
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Claim 23.3.2. Assume H to be known by the receiver. Then the maximum likelihood estimator has the
error probability

Q

(√
2
a2||H||2
σ2

)
. (c)

Proof. The maximum likelihood detector states that +a was transmitted if

||Y − aH|| < ||Y + aH||

Defining v = H/||H||, this holds iff

||v∗ ·Y − a||H|| || < ||v∗ ·Y + a||H|| ||,

where v∗ is the complex conjugate of the transpose of v. This is in turn equivalent to

|R(v∗ ·Y)− a||H|| | < |R(v∗ ·Y) + a||H|| |.

Hence, if +a was transmitted, Y = aH + W and the error probability is

P (|R(v∗ ·W)| > |R(v∗ ·W) + 2a||H|| |.

The conclusion follows from the fact thatR(v∗ ·W) is N (0, σ2/2) which follows from isotropy.

If n/W is small compared to the coherence time of the channel, it makes sense to assume that for all
k = 1, . . . , n, H[m + k] = H[m]. In this case ||H|| =

√
n|H[m]| so that the error probability is now

pe[m] = Q(
√

2nSNR[m] ). Of course, this improvement of the error probability comes with a reduction of
the data rate which is now W/n bits per second.

23.3.3 Direct-Sequence Spread-Spectrum Coding

In direct-sequence spread-spectrum, one uses a bandwidth W which is larger than the rate W at which bits
are produced. Each bit is encoded using a signature sequence U of length n (n is called the processing gain).
One sends one element of this sequence (one chip) every 1/W second, whereas the bit rate is W = W/n

bits per second.
In the case of flat Rayleigh fading and whenever the channel changes slowly compared to n/W , the

discrete channel at the chip time scale can be rewritten as

Y = HX + W (c)

with

• Y the complex–valued vector (Y [1], . . . , Y [n]) of dimension n;
• X the complex–valued vector +aU or −aU (we assume antipodal signaling with a > 0);
• W the complex–valued vector (W [1], . . . ,W [n]) of dimension n with i.i.d. N C(0, σ2) compo-

nents;
• H a complex scalar (N C(0, g2) in the Rayleigh case).

176



Assume that H is known to the receiver (coherent detection) as well as U. By the same arguments as above,
defining v = HU/||HU||, using a maximal likelihood argument implies that +a was transmitted iff

||Y − aHU|| < ||Y + aHU|| ⇔ ||v∗ ·Y − a||HU|| || < ||v∗ ·Y + a||HU|| ||.

Since w = v∗ ·W is N C(0, σ2), this is equivalent to the coherent detection of an antipodal signal of
amplitude a||HU||. Hence

Claim 23.3.3. For direct-sequence spread-spectrum based on pseudo noise sequence U, the probability of
error of (c) is

Q

(√
2
||U||2a2|H|2

σ2

)
= Q

(√
2||U||2SNR

)
. (c)

The projection on v and the reduction to a scalar problem is referred to as a matched filter.

Remark: If the bandwidth is W , the power of the noise σ2 is equal to N0W with N0 the spectral density of
the Gaussian white noise. In the three formulas given so far for the bit error probability, namely (c), (c) and
(c), the argument of the square root is twice the so called Eb/N0 ratio, with Eb the energy per bit (i.e. either
a2|H[m]|2/W in (c) or a2||H||2/W in (c) or a2||U||2|H|2/W in (c)) and with N0 the spectral density of
the noise.

As already explained, the general aim of repetition coding is to decrease the error probability at the
expense of a lower rate (compared to the setting of Claim 23.3.1). In the direct-sequence spread-spectrum
case, we will consider below scenarios where ||U||2 ≈ n; since the noise power ought to beN0W = N0nW ,
it follows that Eb/N0 has exactly the same value as in Claim 23.3.1, so that the bit error probability is the
same. Since the bit rate is the same in both cases too (namely W ), we gain nothing at all for one user. The
interest of the method will only become apparent in the case where a collection of users share the same
medium; this is considered next.

23.3.4 Interference as Noise

Consider now the scenario where K simultaneous transmissions take place. Transmission k is from trans-
mitter k to receiver k.

Assume all transmissions use the same direct-sequence spread-spectrum technique with processing gain
n. Let Uk denote the pseudo-noise signature sequence of transmitter k. Assume that the signal received by
receiver k is of the form

Yk = H(k, k)Xk +
∑

j=1,...,K,j 6=k
H(j, k)Xj + Wk (c)

with

• Yk the complex–valued vector (Yk[1], . . . , Yk[n]) of dimension n;
• Xj the complex–valued vector +ajUj or −ajUj with aj a positive real number;
• Wk the complex–valued vector (Wk[1], . . . ,Wk[n]) of dimension n with i.i.d. N C(0, σ2

k) com-
ponents;
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• H(j, k) the fading from transmitter j to receiver k. 2

Assume that the coordinates of Uk are i.i.d. N C(0, 1), and that the vectors Uk are independent. Assume
also that the fading variables, the Gaussian noise and the signatures are independent.

Conditionally on the fading variables Hj,k, the random vector

Vk =
∑
j 6=k

H(j, k)Xj + Wk

has i.i.d. N C(0, σ2
k +

∑
j 6=k a

2
j |H(j, k)|2) components. Hence we get from (c) that:

Claim 23.3.4. Under the foregoing assumptions, the conditional error probability of the channel from trans-
mitter k to receiver k, given the fading H(k, k) and Uk is

Q
(√

2||Uk||2SINRk
)
, (c)

with

SINRk =
a2
k|H(k, k)|2

σ2
k +

∑
j 6=k a

2
j |H(j, k)|2

(c)

the ratio of the power of the signal to the power of interference plus that of noise for this channel.

A few observations are in order:

• The strong law of large number shows that ||Uk||2 ≈ n. Hence,

pek ≈ Q
(√

2nSINRk
)
. (c)

• If σ2
k = WNk

0 , the argument of the square root is now twice the ratio of the energy per bit
(Eb ≈ na2

k|H(k, k)|2/W ) and of the sum of the spectral density of the noise (Nk
0 ) and the

energy of the interference per chip (
∑

j 6=k a
2
j |H(j, k)|2/W ).

• In the case of Rayleigh fading, for all j and k, |H(j, k)|2 is an exponential random variable with
parameter g2

j,k.

Remark: What we have described above is not what is done in practice. To show the robustness of the
general idea, consider the case where the components of Uk are still i.i.d. but instead of beingN C(0, 1) they
are of the form eiθ with θ uniform on [0, 2π]; then the projection of (c) on vk = H(k, k)Uk/||H(k, k)Uk||
leads to the equation

v∗k ·Yk = |H(k, k)|xk||Uk||+
∑
j 6=k

H(j, k)xj
H(k, k)∗U∗k ·Uj

||H(k, k)Uk||
+ wk, (c)

where wk = v∗k ·Wk is N C(0, σ2
k) thanks to isotropy. The conditional law of the random variable

H(k, k)∗U∗k ·Uj

||H(k, k)Uk||
=
H(k, k)∗

|H(k, k)|
U∗k ·Uj√

n

2For instance H(j, k) could beNC(0, g2
j,k) with g2

j,k equal to d(j, k)−β where d(j, k) is the distance between transmitter j and receiver k and β
is the path loss exponent.
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given Uk and H(k, k) is circular symmetric (because it is a linear combination of independent circular-
symmetric random variables) and approximately Gaussian provided n is large enough (because of the central
limit theorem). This together with arguments similar to those given above lead to the same conclusion as in
Claim 23.3.4 concerning the error probability.

One can go further along these lines and take the components of Uk i.i.d. and e.g. equal to +1 or −1.
Another variant consists in using orthogonal sequences rather than pseudo-noise sequences for the sig-

natures. In this case the weight of the interference term in the definition of SINR is different.

Interference cancellation factor Consider a collection of direct-sequence spread-spectrum systems
where one increases the bandwidth W and the processing gain n while keeping the bit rate W = W/n

constant. Since σ2
k = WNk

0 , the error probability for channel k equals Q(
√

2Ak ), where

Ak =
||Uk||2a2

k|H(k, k)|2

WNk
0 +

∑
j 6=k

a2
j |H(j, k)|2

≈
na2

k|H(k, k)|2

WNk
0 +

∑
j 6=k

a2
j |H(j, k)|2

=
a2
k|H(k, k)|2

WNk
0 + 1

n

∑
j 6=k

a2
j |H(j, k)|2

. (c)

So, within this setting, when changing the spread-spectrum bandwidth W and the processing gain n while
keeping the bit rate W = W/n constant, we see that the relevant ratio for estimating the error probability
(and hence guaranteeing some goodput, defined as the mean number of error-less bits transmitted per unit of
time) is the ratio of two terms: the numerator is the power of the received signal; the denominator is a linear
function of the spectral density of the noise and of the power of the interference, namely

∑
j 6=k a

2
j |H(j, k)|2.

Within this framework, the factor 1
n multiplying the interference power decreases to 0 when n increases (in

what follows, this factor will be referred to as the interference cancellation factor), whereas the factor
multiplying the noise spectral density is a constant in n.

Rephrased differently, as long as the interference created by the other users is small compared to n (e.g.
as long as there are fewer than n users in a scenario with appropriate symmetry), the system accommodates
a rate of W and an error probability which is approximately that of the case of Claim 23.3.4 to each user.
Hence this scheme does almost as well as a frequency division multiple access (FDMA) scenario where one
would reserve a bandwidth of W per user.

23.4 Conclusion

We conclude this chapter by stating that whenever the coherence time is large enough for fading to remain
constant over sufficiently many symbols, the error probability (and hence the goodput or the effective rate
at which bits are successfully transmitted) at a given time is determined by the instantaneous SNR at that
time. In the case of direct-sequence spread–spectrum, the error probability is determined by the SINR.
These results were obtained in the flat Rayleigh channel case. However similar conclusions hold for more
general situations, and in particular for non-flat channels of the form (c), provided the coherence time is
large enough, and for other kinds of fading models. See e.g. Chapter 3 of (Tse and Viswanath 2005).
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24
Wireless Network Architectures and Protocols

24.1 Medium Access Control

Consider a wireless medium shared by a collection of transmitter–receiver pairs, all located in some domain.
Medium Access Control (MAC) is in charge of organizing the simultaneous access of these transmitter–
receiver pairs over time and space. The need for such a control stems from the basic observation that when
two (or more) neighboring transmissions access the shared medium simultaneously, they might jam each
other. To give a precise definition of jamming, we ought to describe precisely the nature of the channel and
of the detection procedure. Consider for example the setting of § 23.3.4 where the interference created by
other transmitters can be seen as noise. If the SINR of each receiver is above some threshold T , then a
sufficiently small probability of error can be guaranteed and we say that the two transmissions do not jam
each other. If the SINR is below T ′ < T , then the probability of error is high and we say that the two
transmissions jam each other or collide.

Within this context, one defines the contention domain of a reference receiver as the set of locations such
that if one adds a transmitter there, then the transmission to the reference receiver is jammed (e.g. the signal
to interference ratio and hence the SINR at the reference node is below T ′). Note that with such a definition,
it is possible for a receiver to have no transmitter in its contention domain and to be jammed nevertheless.

We now give a few examples of MAC used in this book. In these examples, time is slotted and the
duration of the slot could for instance be that of the transmission of a fixed number of symbols that we will
call a packet.

24.1.1 Time Division Multiple Access (TDMA)

TDMA is based on a division of time into slots and on an appropriate scheduling of the access of nodes to
the shared medium. The role of the scheduling is to ensure that nodes which transmit in the same time slot
do not jam each other. Note that this is compatible with some spatial reuse in that transmitters which are far
away can use the same time slot provided the power of interference they create at each receiver is such that
SINR is above T . The main drawback of TDMA is that the collision free schedule ought to be computed
and then made known to all nodes. If nodes move or join and leave, this schedule has to be re-computed and
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communicated and this may be quite inefficient.

24.1.2 Aloha

At each time slot, each node tosses a coin with bias p, independently of everything else. Only the nodes
tossing heads transmit during this time slot; The idea is that for appropriate p, there will be at the same
time a large enough random exclusion zone around any node (and in particular any receiver), and hence a
small enough interference at the receiver. Because of the random nature of the algorithm, collisions may take
place. Acknowledgments are used to cope with this problem. One of the main advantages of this scheme
(also shared by the other schemes described below) is that it is fully decentralized. One can in particular add
or delete transmitters or let nodes move without altering the access mechanism.

24.1.3 Carrier sense multiple access (CSMA)

Each node has a timer which indicates its back-off time, namely the number of time slots it should wait
before transmission. Each node senses the medium continuously; if the medium is sensed busy, namely if
the node detects a transmitter in its contention domain, the node freezes its timer until the medium becomes
free. When the timer expires, the node starts its transmission and samples a new random back-off time.
There are several variants depending on whether carrier sensing is performed at the receiver (which is best)
or by the transmitter (which is simpler to implement). Nevertheless, collisions can occur (either because
two nodes in the contention domain of each other have sampled timers that expire at the same time slot,
or because the SINR at the receiver is smaller than T in spite of the fact that there is no transmitter in its
contention domain. Again acknowledgements are used to face this situation.

24.1.4 Code Division Multiple Access (CDMA)

All nodes transmit simultaneously, so that SINR may be feared to be small. To alleviate this, each node uses
a direct-sequence spread-spectrum mechanism with a signature of length n (see § 23.3.3). If the receiver
of transmission k knows the signature Uk of transmitter k, then it can use the matched filter described in
§ 23.3.3 to detect the symbols sent by this transmitter by considering the other transmissions as noise. Taking
as above a definition of collision based on the error probability, we see from (c) that it is enough for the SINR
at the receiver to be more than T/n to have no collision. On the more practical side, note that the receiver
has to know the signature of the sender.

24.2 Power Control

Consider K simultaneous transmissions under the setting of § 23.3.4. Assume that transmission k requires a
probability of error pk or equivalently a SINR of Tk with pk = Q(

√
2nTk) – see (c). Two natural questions

arise:

(1) Is this vector of error probabilities feasible, namely do there exist transmission powers ak, k =
1, . . . ,K, such that the probability of error is less than pk for all k = 1, . . . ,K?

(2) If it is feasible, what are the minimal elements of the set of powers such that the probability of
error is less than pk for all k = 1, . . . ,K?
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In view of (c) one can rephrase this question as follows: does the linear system

Pk ≥
Tkσ

2
k

n|H(k, k)|2
+
∑
j 6=k

Pj
Tk|H(j, k)|2

n|H(k, k)|2
, k = 1, . . . ,K (c)

admit a positive solution Pk = a2
k, and if so what are the minimal elements of the set of solutions?

One can rewrite this system as
P ≥ AP + B,

where A is the square matrix of dimension K with entries A(k, j) = Tk|H(j,k)|2
n|H(k,k)|2 for j 6= k and 0 otherwise,

and where B is the vector of dimension K with entries B(k) = Tkσ
2
k

n|H(k,k)|2 .

Claim 24.2.1. Under the assumption that all the variables |H(j, k)| are positive, there exists a finite positive
solution to (c) if and only if the spectral radius ρ of A is strictly less than 1, in which case, all solutions are
bounded from below by

P0 =
∞∑
l=0

AlB. (c)

Proof. If ρ < 1, then the last series converges and

P0 =
∞∑
l=0

AlB = B +
∞∑
l=1

AlB = B + A
∞∑
l=0

AlB = B + AP0,

so that P0 is a solution. If P is a solution, then P ≥ B, so that P ≥ B + AB, which in turn implies by
induction that

P ≥ B +
L∑
l=1

AlB,

for all L.

In other words, once the path gains and the fading variables are given, certain error probabilities are jointly
attainable (those leading to a matrix gain A with a spectral radius less than 1) and others are not. In the
former case, there is a best choice for the amplitude (or the power) of the transmitted signals, and it is given
by (c).

24.3 Examples of Network Architectures

24.3.1 Mobile Ad Hoc Networks

Mobile ad hoc networks (MANETs) are wireless networks made of only one type of nodes; each node
can either transmit or receive on a common frequency band, and there is no fixed infrastructure at all. Such
networks use multihop routing: the nodes located between the source and the destination are possibly used
as relays: a relay can receive symbols, buffer them and transmit them to further nodes. Each node can hence
at the same time be a terminal (namely either the source or the destination of some traffic) and a router
(namely a relay for traffic between other source–destination pairs). An important consequence is that the
success of each hop by hop transmission and hence the connectivity between some source and destination
nodes depend on the presence and the location of intermediate relay nodes.
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24.3.1.1 Medium Access Control

Aloha, along with TDMA, was one of the first MAC protocols used in such radio networks. Today CSMA
is one of the most popular schemes within the context of the IEEE 802.11 norm (better known as WiFi).

24.3.1.2 Point-to-point Routing

A major question within the setting of MANETs is that of routing. Point to point routing protocols are
distributed algorithms that compute a route between all pairs of source and destination nodes. Usually the
computation of this route is based on the exchange of control packets containing topology information and
sent by the routing protocol. Distance vector and link state routing protocols are the most common within
this framework (see e.g. (Keshav 1997)). We will not discuss here the problem of building and maintaining
routing state/tables but rather focus on the construction of routes in two types of routing protocols used in
such networks.

Minimal weight routing Consider a MANET with nodes located in the Euclidean plane. In minimal
weight multihop routing, one first defines (i) a graph on the set of nodes where edges are potential wireless
links, (ii) a weight for each edge of this graph. For each source–destination (S–D) pair, one selects the
path(s) with minimal weight between S and D (if there are such paths). This path can be found by dynamic
programming (see Djikstra’s algorithm below). Here are a few examples:

• transmission range graph, minimal number of hops: there are edges between all pairs of nodes
and the weight of the edge between nodes x and y is 1 if |x− y| ≤ Rmax and∞ otherwise; the
parameter Rmax is the transmission range. This model assumes that it is possible to maintain a
wireless link to each node at distance less than or equal to Rmax. Notice that with this definition,
there may be no path with finite weight from certain sources.
• transmission range graph, minimal Euclidean distance: much the same as above except that the

weight between nodes x and y is |x− y| if |x− y| ≤ Rmax and∞ otherwise.
• Delaunay graph, minimal number of hops: there is an edge between all pairs of nodes and the

weight of the edge between nodes x and y is 1 if they are neighbors in the Voronoi sense (see
Chapter 4 in Volume I) and∞ otherwise. Within this setting, there is a finite weight path for any
S–D pair.
• Delaunay graph, minimal Euclidean distance: the same as above excepts that the weight of the

edge between nodes x and y equals |x− y| if they are Voronoi neighbors and∞ otherwise.

This minimal weight path is then used for routing all packets of this S–D pair.

Dijkstra’s algorithm The setting features a connected graph with a positive weight associated with each
edge. Denote by N (x) the neighbors of node x in the graph. If for all y ∈ N (x), one knows a/the minimal
weight path p∗(y,D) from y to D and its total weight |p∗(y,D)|, then the next hop from x to D in the
minimal weight path is any element z in the set

arg min
y∈N (x)

(w(x, y) + |p∗(y,D)|)

and the optimal path from y to D is the concatenation of (y, z) and p∗(z,D).
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Dijkstra’s algorithm (Dijkstra 1959), which is recalled below, constructs optimal paths to D using this
dynamic programming principle in an inductive way, starting from the neighbors x ∈ N (D) ofD (for which
p∗(x,D) = (x,D) and |p∗(x,D)| = w(x,D)).

At each step n ≥ 0 of the procedure, the nodes are subdivided into three sets:

A = A(n) is the set of nodes for which a path of minimum weight to D is already known;
B = B(n) is the set of nodes that are connected in one hop to at least one node of A but do not
yet belong to A;
C = C(n) is the set of nodes that do not belong to A ∪B.

The paths are also subdivided into three sets:

P1 = P1(n) is the set of shortest paths p∗(x,D) connecting the nodes x ∈ A to D (one path per
node);
P2 = P2(n) a set of paths connecting the nodes of B to D (one path per node);
P3 = P3(n) is the set of all paths to D not yet considered.

INITIALISATION: At step 1, A(1) = {D}, B(1) = N (D) and C(1) the set of all other nodes,
whereas P2 is the set of one hop paths (y,D), y ∈ N (D). Let x1 = arg miny∈N (D)w(x,D) (if there are
multiple edges with the same weight, we choose one of them arbitrarily); node x1 is moved to A and the
edge (x1, D) is added to P1(1).

LOOP: Suppose we are given A(n − 1), B(n − 1), C(n),Pi(n) (i = 1, 2, 3) and denote by xn the node
added to A in step n. At step n+ 1, one performs the following operations:

(1) For all y ∈ N (xn) \A(n):

• If y belongs to set C(n), it is moved to B and the path p, made of the edge (y, xn−1)
concatenated to the path from xn to D that belongs to P1, is added to P2.

• If y belongs to set B(n), we check whether the use of the edge (y, xn) gives a path from
y to D with a weight smaller than that in P2(n). If it is so then the former path replaces
the path initially in P2. Otherwise nothing is done.

Note that this update is such that B now contains the 1-hop neighborhood of A(n) and P2 now
contains exactly one path to D for each node in B.

(2) Let xn+1 be the node in B with a path to D in P2 with minimal weight. Denote this path by
pn+1, with any tie-breaking rule. Move it from B to A and move the path pn+1 from P2 to P1.
The sets of remaining nodes and paths are denoted by C(n+ 1) and P3(n+ 1) respectively.

The above procedure terminates when all the nodes in the connected component of D are placed in A.
The following result is proved by induction on n:

Proposition 24.3.1. For all n ≥ 1,

• for all x ∈ A(n), the path from x in P1(n) is the/a minimal weight path from x to D.
• for all x ∈ B(n), after operation (2), the path from x in P2 is the/a minimal weight path from x

to D among the set of paths that only contain nodes of A ∪B;
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• the minimal weight paths toD are discovered in order of their weights, starting from the smallest.

The last statement of Proposition 24.3.1 shows that:

Corollary 24.3.2. For graphs defined on point patterns in the Euclidean space, for weights equal to Eu-
clidean distance, the Dijkstra algorithm places any x in A in a finite number of steps provided x belongs to
the connected component of D and the point pattern is locally finite. The same holds true for the number of
hops provided the graph of the connected component of D to which x belongs has locally finite degree.

Remark: Note that the search of the minimal weight path from x to D which was described above has to
be initiated by the destination D and terminates when x is discovered. In fact by symmetry, this path is the
reverse of the minimal weight path from D to x, so that x can find it by initiating Dijkstra’s algorithm and
waiting until D is discovered.

Typically, once this algorithm has been applied, one can construct routing tables to any destination D
which tell each node which neighbor is the next hop to D. Once such routing tables are built, the rout-
ing algorithm is hence quite local. However, the construction of the routing table (and more generally the
construction of solutions to the dynamic programming equations) is a non-local procedure.

Geographic Routing In geographic routing, node positions are used to determine the route to the desti-
nation. Geographic routing is often thought of as a way to reduce the routing state of each node. A typical
situation is that where one selects the next relay of a node n for a given packet as the node which is the
nearest to the destination within a set which contains n. This set could be e.g. the set of nodes which receive
the transmitted packets without error, or the set of nodes which are within some transmission range Rmax
of node n. The general principle of choosing the closest node to the destination as next relay among such a
set is referred to as radial routing in this monograph.

24.3.1.3 Multicast Routing

In the one-to-many setting, multicasting consists in broadcasting some common symbols from a source
node to a collection of destination nodes. Multicast routing then aims at building a tree rooted in the source
node and spanning all destination nodes. Such a tree can be used to alleviate significantly the network load
compared to the point-to-point setting: in the latter case, one establishes a point-to-point route from the
source to each destination and one sends the symbols on each such route, whereas in the multicast setting,
one sends the symbols once on each wireless link of the multicast tree: each node of the tree sends the
symbols it receives from its parent node to each of its offspring nodes.

The simplest way of building a multicast spanning tree consists in taking the union of the point-to-point
paths between the source and each destination.

Remark 24.3.3. Of course, such a spanning tree is also a central object for situations where a collection of
nodes have to send information to a single sink node. This situation shows up in a variety of contexts:

• In sensor networks, terminal nodes have both sensing and relaying capacities. These nodes typi-
cally behave like a MANET for transferring information, but all send the information they sense
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to some special node called a cluster head with enhanced communication capacity (say to a
satellite).
• On the uplink of WiFi mesh networks where only a subset of the nodes have a wired Internet

connection and where the other WiFi nodes have to send their uplink data to these wired nodes.

24.3.2 Third Generation Cellular Networks

Cellular architectures involve a collection of nodes that belong to two types: concentrator nodes and terminal
nodes. Concentrator nodes are assumed to be interconnected by a wired network which will not be discussed
here. Wireless links connect certain terminals to certain concentrators (uplink) and certain concentrators to
certain terminals (downlink). There are no direct wireless links between terminals. In the simplest scenario,
each terminal is served by one concentrator for both the uplink and the downlink - for instance the clos-
est. More general situations can be considered where the uplink concentrator of a terminal differs from its
downlink concentrator, or where several concentrators serve the same terminal.

In cellular networks of third generation (3G), concentrators are called base stations . The uplink and the
downlink have separated channels and CDMA is used on both the uplink and the downlink.

24.3.3 Wavelans

Wavelan networks can be seen as some kind of cellular architectures which are made of a collection of
IEEE 802.11 (better known as WIFI) access points which play the role of concentrators and to which users
associate. These access points are assumed to have wired connections to the Internet. In such networks,
the uplink and the downlink are not separated and all nodes (access point and users) access the channel
according to a CSMA mechanism.
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Bibliographical notes

Chapters 22 and 23 follow (Tse and Viswanath 2005). Chapter 24 borrows ideas from several sources among
which (Keshav 1997). The vision of power control which is described there is due to (Hanly 1999). Prim’s
algorithm was discovered in (Jarnı́k 1930) and later independently in (Prim 1957). The main idea was redis-
covered in (Dijkstra 1959).
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Table of Mathematical Notation and Abbreviations

|X| Euclidean norm of vector X .
\ set difference.
< X,Y > scalar product of vectors X and Y .
A parameter of the OPL attenuation models.
a.s. almost surely.
A(X) (resp. An(X)) radial point map at X (resp. time-space point map at X and at

time n).
Ad(X) (resp. Ad,n(X)) d-directional point map at X (resp. time-space point map at X

and at time n).
BX(r) ball of center X and radius r.
β attenuation exponent of the OPL attenuation models.
CX(Φ) Voronoi cell of point X w.r.t. the p.p. Φ.
C(X,M)(Φ) SINR cell of point X w.r.t. the marks (fading, threshold, power,

etc.) M and the p.p. Φ.
D the destination node (in routing context; Part V in Volume II).
e (resp. e(n)) indicator of MAC channel access (resp. at time n).
E expectation.
EX expectation w.r.t. the Palm probability at X .
εx Dirac measure at x.
F (resp. F (n)) fading variable (resp. at time n).
GSINR the SINR graph.
GSINR the time-space SINR graph.
GI General fading.

GI
W+GI/GI Kendall-like notation for a wireless cell or network.
iff if and only if.
i.i.d. independently and identically distributed.
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IΦ shot noise field associated with the point process Φ.
K(β) constant associated with Rayleigh fading SN. See (2.26 in Vol-

ume I) and (16.9 in Volume II)
L(X) length to the next hop from point X in a routing algorithm.
L(X) local delay at node X .
l(.) attenuation function of the OPL models.
LΦ Laplace functional of the p.p. Φ.
LV Laplace transform of the random variable V .
λ the intensity parameter of a homogeneous Poisson p.p.
Λ(.) the intensity measure of a Poisson p.p.
L.H.S. left hand side.
M exponential random variable (or Rayleigh fading).
M space of point measures.
µ the mean fading is µ−1.
N the non-negative integers.
N (µ, σ2) the Gaussian law of mean µ and variance σ2 on R.
N C(0, σ2) the complex vauled Gaussian law.
O the origin of the Euclidean plane (in routing context; Part V in

Volume II).
p medium access probability in Aloha.
P (X) progress from point X towards destination in a routing algo-

rithm.
P probability.
PX Palm probability at X .
pc probability of coverage.
Φ point process.
Rd Euclidean space of dimension d.
S the source node (in routing context; Part V in Volume II).
R.H.S. right hand side.
T threshold for SINR.
Var Variance.
V (X) (resp. V (X,n)) set of neighbors of X in GSINR (resp. of (X,n) in GSINR).
W (resp. W (n)) thermal noise (resp. at time n).
Z the relative integers.
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Index

3G, see third generation cellular network

access point, 187
adaptive coding, 6, 9, 26, 36, 59
admission control, 77, 84
Aloha, 75, 127, 128, 182

opportunistic, 21, 128
spatial, 3

antenna
azimuth beam-width, 162

antipodal signaling, 174
attenuation

omnidirectional, 160
azimuth, 160, 162

ball property, 132, 145
base station, 77, 187
baseband signal, 167, 172
beam-width of antenna, 162
bipolar model, 4, 74
BM, 97

percolation, 97
Boolean model (BM)

time-space, 65
broadcast, 32
BS, see base station

Campbell
formula, 13

capture, 6
CDMA, 77, see code division multiple access

admission control, 84
power control, 78
rate control, 84
virtual load, 81

cell rejection probability, 87
chip, 176
cluster head, 123, 187
coherence

bandwidth, 173
distance, 163
time, 164, 173

collision, 181
concentrator, 187
contention domain, 181
coverage probability

CSMA, 74
CPR, see cell rejection probability
CSMA, 67, see carrier sense multiple access

back-off, 67, 182
busy medium, 67
contention domain, 67, 182
detection threshold, 67, 68, 74
idle medium, 67

data rate, 176
dead end, 135
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dead end problem, 111
Delaunay

graph, 96, 110, 184
delay, 99

end-to-end, 132, 136, 148, 153
local, 46, 130, 132

delay spread, 163
density

of progress, 38
of successful transmissions, 2, 74, 75
of throughput, 2

digital communication model, viii, 9, 99
Dijkstra’s algorithm, 100, 146, 184
direct-sequence spread-spectrum, 176
directed spanning forest, 114
directional

progress, 37
distribution

circular-symmetric, 171
complex-valued Gaussian, 171
Gaussian, 168, 174
isotropic, 171

diversity, 57
DL, see downlink
Doppler

shift, 164
spread, 164, 173

downlink, 79, 187
DSF, see directed spanning forest, see directed

spanning forest
dynamic programming, 100, 185

ergodicity, 115
error probability, 175
Euclidean distance approximation, 106, 122
exclusion zone, 182

fading
fast, viii, 47, 128, 135, 148
flat, 173–176
heavy tailed, 57
lognormal, 58
Nakagami, 93, 169
Rayleigh, 24, 135, 158, 168

Rician, 24, 158, 169
slow, viii, 47, 128, 148
Weibull, 57

far-field, 11, 160, 165
forest, 123

Gaussian vector, 171
goodput, 179
graph

Delaunay, 96, 102, 104, 106, 110, 123, 184
random geometric, 97, 106, 110, 146
SINR, 91, 97, 107

connectivity, 32, 91
time-space, 129, 145

strip, 114, 135
transmission range, 97, 184

graph distance, 99

Hex, see honeycomb model
honeycomb model, 83

i.m.p.p., 68
independent nearest receiver, 29
independent receiver model, 27
infinite connected component, 97, 107
INR, see independent nearest receiver
interference, 6

cancellation factor, 78, 179

jump vector, 96

Kendall-like notation, 7
Kingman’s theorem, 102, 137, 140

Lambert function, 42
local delay, 46, 130, 132

multicast, 61
phase transition, 48, 51
Shannon, 59

MAC, 98, see medium access control
Aloha, 3

MANET, 3, 183
Aloha, 4
nearest neighbor, 30
nearest receiver, 30
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Poisson bipolar model, 4, 74
MANET receiver model, 28, 128
MAP, see medium access probability, 22
mark of a point process, 115
mass transport principle, 33, 36, 131
Matérn p.p.

CSMA, 68
matched filter, 177, 182
medium access

control, 181
probability, 3

minimal spanning tree, 107
MNN, see MANET nearest neighbor
MNR, see MANET nearest receiver
mobile ad hoc network, 183
mobility, ix, 58

high, 47
MST, 107
multi-layer coding, 36
multicast, 32, 36, 61, 113, 186

one-to-many, 186
multipath fading, 163
multiple access

carrier sense, 182
code division, 182
frequency division, 179
time division, 181

MWR, see minimal weight routing, 112

Nakagami fading, 93, 169
near-field, 11
nearest neighbor

in a cone, 56
nearest receiver

in a cone, 44
network

cellular, 83, 187
third generation, 187

delay tolerant, ix, 155
interference limited, 54, 136
mobile ad hoc, 183
noise limited, 53, 135
sensor, 109, 123, 186
with periodic infrastructure, 58, 128

non-outage, 6
NR, see routing; nearest receiver routing
number of hops, 96, 130, 153

omnidirectional path-loss, 160
OPL

3, 5
opportunism, 21, 98
opportunistic

Aloha, 21, 128
choice of receiver, 37
routing, 128, 145

orthogonal signature sequence, 179

packet, 3, 181
capture, viii, 127
velocity, 133, 135, 140

packet model, viii, 46, 127
Palm

distribution, 115
paradox

Feller’s, 97
routing, 98, 155

passband signal, 167
path-gain

distance and angle dependent, 160
level-set, 162

path-loss
exponent, 161
omnidirectional, 160

percolation
Boolean, 111
first passage, 130, 136, 156
of bonds, 104
of sites, 102
SINR, 91, 107

phase transition
wireless contention, 48, 51, 54

point map, 96, 109, 110, 133, 145
directional, 113, 114, 119, 132, 150
radial, 113, 132, 145
time-space, 98, 131, 133, 145, 150

point process
ergodic, 7, 33
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Poisson p.p.
Palm distribution
k fold, 71

Poisson-Voronoi model, 83
pole capacity, 34
power control, 2, 77, 182

cellular network, 78
feasibility, 78
feasibility probability, 86

price of anarchy, 98, 123
processing gain, 176
progress, 3, 12, 29, 96, 98, 114, 132

directional, 37, 38, 122, 150
modified, 40
radial, 116

pseudo-noise signature sequence, 176
PV, see Poisson-Voronoi model

QAM, see quadrature amplitude modulation
quadrature amplitude modulation, 167

radial spanning tree, 109
radiation pattern, 160
random

cross-fading model, 6, 37, 82
waypoint, 156

rate control, 77, 84, 88
Rayleigh fading, 24, 158, 168, 174–176
Restart algorithm, 51, 57, 59
Rician fading, 24, 158, 169
route average, 97, 99, 121, 135, 153

time-space, 127, 132
routing, 96

best hop, 27, 110, 113, 145
cross-layer, 27, 37, 127, 145
directional, 119, 150, 152
geographic, 109, 112, 155, 186
greedy, 98, 109, 145
largest bottleneck, 107
layer-aware, 127, 133
minimal delay, 105
minimal weight, 100, 184
multicast, 27, 117, 186
multihop, 96, 183

nearest receiver, 28–30
next-in-strip, 110, 114, 135
opportunistic, 27, 37, 98, 128, 145
point-to-point, 109, 184, 186
radial, 115, 186
shortest path, 98, 100, 184
smallest hop, 27, 30, 44, 110, 113, 117, 153
time-space, 98, 127, 132

routing paradox, 98, 122, 155
routing table, 109, 186
RP, see radiation pattern
RST, see radial spanning tree, 113, 117, 121

internal, 123
local, 123

S–D, see source–destination pair
scale invariance, 106, 115
scaling law

Gupta–Kumar, 12, 152
scaling laws, 11, 35, 36
scatterer, 163
self-avoidance, 130, 136, 140
shadowing, 47
Shannon

capacity, viii, 9, 18, 26, 93
multicast, 36

formula, 9
shot-noise, 6, 47, 129

extremal, 41, 70, 72
signature, 176, 177, 179
SINR, 178

connectivity graph, 32
coverage, 6
graph, 91, 97, 107
modified, 78, 82
neighbor, 32, 129, 133, 140
target, 78

slow fading, 128
small scale fading, 164
SNR, 175
source–destination pair, 184
spatial

average, 33, 48, 59, 70, 97, 121, 122, 127
reuse, 3, 181
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spectral radius, 79, 183
standard stochastic scenario

for SN, 99
stopping set, 103
strip graph, 114, 135
subadditive process, 101, 137, 140
successful reception, 6

TDMA, see Time Division multiple access
theorem

Kingman’s, 102, 137, 140
Slivnyak’s, 115

thermal noise, 5, 45, 78
thinning, 15, 68

independent, 5
throughput, 93, 107, 153
tilt, 160
time average, 59
time constant, 130, 156
time slot, viii
time-space

graph, 140
path, 129
routing, 98, 132
shot-noise, 46
SINR graph, 129

traffic
constant bit rate, 9
elastic, 9, 84

transmission range, 97, 106, 146, 184
transport, 12, 29
tree

spanning, 186
radial, 109

typical node, 6

UL, see uplink
uplink, 80, 187

virtual power, 4, 32, 74
Voronoi

cell, 83, 123
flower, 111
neighbor, 96, 112, 184
tessellation, 90, 111

WiFi, 74, 75, 184
mesh, 109, 187
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