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Abstract. We study absolute-continuity relationships for a class of stochastic pro-
cesses, including the gamma and the Dirichlet processes. We prove that the laws of a
general class of non-linear transformations of such processes are locally equivalent to
the law of the original process and we compute explicitly the associated Radon-Nikodym
densities. This work unifies and generalizes to random non-linear transformations several
previous quasi-invariance results for gamma and Dirichlet processes.
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1. Introduction

In this paper we present several absolute-continuity results concerning, among others,
the gamma process and the Dirichlet processes. We recall that the gamma process (γt)t≥0

is a subordinator, i.e. a non-decreasing Lévy process, with gamma marginals, i.e. γ0 = 0
and

P(γt ∈ dx) = pt(x)dx, pt(x) := 1[0,∞)(x)
1

Γ(t)
xt−1 e−x, t > 0, x ∈ R.

Moreover for any T > 0, we define the Dirichlet process over [0, T ] as D
(T )
t := γt/γT ,

t ∈ [0, T ]; we recall that γT is independent of (γt/γT , t ∈ [0, T ]) and that, therefore,

(D
(T )
t , t ∈ [0, T ]) is equal in law to the gamma process conditioned on {γT = 1}. See [14]

for a survey of the main properties of the gamma process.
The gamma process has been the object of intensive research activity in recent years,

both from pure and applied perspectives, such as in representation theory of infinite
dimensional groups, in mathematical finance and in mathematical biology (see e.g. [12, 3,
5]). Quasi-invariance properties of the associated probability measure on path or measure
space with respect to canonical transformations often play a central role. We recall that,
given a measure µ on a space X and a measurable map T : X 7→ X, quasi-invariance of µ
under T means that µ and the image measure T∗µ are equivalent, i.e. mutually absolutely
continuous. A classical example is the Girsanov formula for additive perturbations of
Brownian motion (see, e.g., [9], Chap. VIII, and [11]).

In this paper we study quasi-invariance properties for a class of subordinators which we
denote by (L) and define below, with respect to a large class of non-linear sample path
transformations. In particular, we unify and extend previous results on the real valued
gamma and Dirichlet processes.

1



2 MAX-K. VON RENESSE, MARC YOR, AND LORENZO ZAMBOTTI

Quasi-invariance properties of Lévy processes have been studied for quite some time, see
e.g. Sato [10, p. 217-218]. In the case of the gamma process, for any measurable function

a : R+ 7→ R+ with a and 1/a bounded, the laws of (
∫ t

0
as dγs, t ≥ 0) and (γt, t ≥ 0) are

locally equivalent, see [12]. By local equivalence of two real-valued processes (ηt, t ≥ 0)
and (ζt, t ≥ 0), we mean that for all T > 0 the laws of (ηt, t ∈ [0, T ]) and (ζt, t ∈ [0, T ])
are equivalent.

Here, we show the same property for a much wider class of path transformations of a
(L)-subordinator ξ, e.g.

(ξt)t≥0 7→
(
K(t, ξt)−

∫ t

0

∂K

∂s
(s, ξs) ds

)
t≥0

and (ξt)t≥0 7→ (
∑
s≤t

K(s,∆ξs))t≥0,

where, for some α ∈]0, 1[, K(s, ·) is a C1,α-isomorphism of R+ for each s ≥ 0. We also
establish analogous quasi-invariance results for transformations D(T ) 7→ K(D(T )) of the
Dirichlet process, e.g.

(D
(T )
t )t∈[0,T ] 7→ (K(D

(T )
t ))t∈[0,T ], and (D

(T )
t )t∈[0,T ] 7→ (

∑
s≤t

H(s,∆D(T )
s ))t∈[0,T ],

where K(·) and H(s, ·) are increasing C1,α-homeomorphisms of [0, 1] for each s ∈ [0, T ].
In all these cases, we compute the Radon-Nikodym density and study its martingale

structure. We note that our approach allows to treat the previously mentioned results
by Vershik-Tsilevich-Yor [12, 13], together with Handa’s [5] and the recent work by von
Renesse-Sturm [7] on Dirichlet processes, within a unified framework.

The paper ends with an application to SDEs driven by (L)-subordinators. Finally we
point out that, in the same spirit as in [7], each quasi-invariance property we show yields
easily an integration by parts formula on the path space; such formulae can be used
in order to study an appropriate Dirichlet form and the associated infinite-dimensional
diffusion process. These applications will be developed in a future work.

1.1. The main result. Throughout our paper we fix a standard Borel space (Ω,F), in
the sense of [6], endowed with a probability measure P. All stochastic processes below will
be defined on (Ω,F ,P).

Let (ξt)t≥0 be a subordinator, i.e. an increasing Lévy process with ξ0 = 0. In this paper
we consider subordinators in the class (L), meaning with logarithmic singularity, i.e. we
assume that ξ has zero drift and Lévy measure

ν(dx) = g(x) dx, x > 0,

where g :]0,∞[7→ R+ is measurable and satisfies

(H1) g > 0 and

∫ ∞

1

g(x) dx <∞;

(H2) there exist g0 ≥ 0 and ζ : [0, 1] 7→ R measurable such that

g(x) =
g0

x
+ ζ(x), ∀x ∈ ]0, 1], and

∫ 1

0

|ζ(x)| dx < +∞.
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We recall that for all t ≥ 0, λ > 0

E
(
e−λξt

)
= exp (−tΨ(λ)) , Ψ(λ) :=

∫ ∞

0

(
1− e−λx

)
g(x) dx.

For the general theory of subordinators, see [4]. We denote by Ft := σ(ξs : s ≤ t), t ≥ 0,
the filtration generated by ξ. We denote the space of càdlàg functions on [0, t] by D([0, t]),
endowed with the Skorohod topology.

Remark 1.1. In the particular case of the gamma process (γt)t≥0, mentioned above, we
have

g(x) =
e−x

x
, x > 0, Ψ(λ) = log(1 + λ), λ ≥ 0.

Another remarkable example is the following:

g(x) =
e−ax(1− e−bx)

x(1− e−x)
, x > 0,

where a, b > 0. If ξ is the associated subordinator, then e−ξ1 is a Beta(a, b)-random
variable: see [15]. If a = 1, the explicit value

Ψ(λ) = log
Γ(1 + λ)Γ(1 + b)

Γ(1 + λ+ b)

has been obtained in [8]. On the other hand, the stable subordinator of index α ∈]0, 1[
does not belong to the class (L), since in this case the Lévy measure is ν(dx) = Cx−1−α dx
on R+.

We consider a measurable function h : R+ × Ω× R+ 7→ R+ such that

(1) h is P ⊗B(R+)-measurable, where P denotes the predictable σ-algebra generated
by ξ;

(2) denoting h(s, a) = h(s, ω, a), there exist finite constants κ > 1 and α ∈]0, 1[, such
that almost surely

|h(s, x)− h(s, y)| ≤ κ|x− y|α, ∀x, y ∈ R+, s ≥ 0, (1.1)

0 < κ−1 ≤ h(s, x) ≤ κ <∞, ∀x ∈ R+, s ≥ 0. (1.2)

Then we set

H(s, x) =

∫ x

0

h(s, y) dy, ∀x ≥ 0, s ≥ 0.

Note that a.s. H(s, ·) : R+ 7→ R+ is necessarily a C1-diffeomorphism for all s ≥ 0. We set

∆ξs := ξs − ξs−, s ≥ 0,

and we denote by J ξ
t the set of jump times of ξ up to time t ≥ 0:

J ξ
t := {s ∈ [0, t] : ∆ξs 6= 0}. (1.3)

We can now state the main result of this paper
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Theorem 1.2.

(1) The process MH
t ,

MH
t := exp

(
g0

∫ t

0

log h(s, 0) ds

) ∏
s∈J ξ

t

[
h(s,∆ξs) ·

g(H(s,∆ξs))

g(∆ξs)

]
, t ≥ 0,

is a (Ft,P)-martingale with E(MH
t ) = 1 and a.s. MH

t > 0. We can uniquely define
a probability measure PH such that PH

|Ft
= MH

t · P|Ft for all t ≥ 0.

(2) Setting

ξH
t :=

∑
s≤t

H(s,∆ξs), t ≥ 0, (1.4)

then ξH is distributed under PH as ξ under P.

Note that Theorem 1.2 presents a local equivalence result for the laws of ξ and ξH , since
a.s. MH

t > 0. The theorem is stated for general subordinators in the class (L) defined
above and for a general random transformation; in section 3 we consider some special
cases of the general result, and in section 4 we consider the case of the Dirichlet process.

Once the equivalence result of Theorem 1.2 is proven, it is interesting to study the
associated Radon-Nikodym density. Note that the density MH

t is by construction σ(ξs, s ∈
[0, t])-measurable for all t ≥ 0.

We denote by Xt : D([0,+∞)) 7→ R the coordinate process: Xt(w) = wt, t ≥ 0, and
by Gt = σ(Xs, s ∈ [0, t]) the natural filtration of X. Our main purpose in stating the
following lemma is to fix notations for important quantities in the sequel of this paper.

Lemma 1.3.

(1) For all t ∈ R+ let

Nt := E
(
MH

t |σ(ξH
s , s ∈ [0, t])

)
= ρt(ξ

H
s , s ∈ [0, t]) a.s.,

where ρt : D([0, t]) 7→ R+ is some Borel functional. Then the Radon-Nikodym
density of the law of (ξH

s , s ∈ [0, t]) with respect to the law of (ξs, s ∈ [0, t]) is 1/ρt,
i.e.

P(ξH ∈ A) = E
(

1A(ξ)
1

ρt(ξ)

)
, ∀A ∈ Gt. (1.5)

(2) If, for all t ≥ 0, (ξs, s ∈ [0, t]) is σ(ξH
s , s ∈ [0, t])-measurable, i.e. (ξs, s ∈ [0, t]) =

Ft(ξ
H
s , s ∈ [0, t]) a.s. for some measurable Ft : D([0, t]) 7→ D([0, t]), then

Nt = MH
t (ξs, s ∈ [0, t]) = MH

t (Ft(ξ
H
s , s ∈ [0, t]))

and (1.5) can be rewritten as

P(ξH ∈ A) = E
(

1A(ξ)
1

Mt(Ft(ξ·))

)
, ∀A ∈ Gt. (1.6)

We remark that (ξH
s , s ∈ [0, t]) is σ(ξs, s ∈ [0, t])-measurable for all t ≥ 0 by the

definition of ξH . The converse statement (2) in Lemma 1.3 can be proven in several cases
of interest, but might not be true in the most general setting of Theorem 1.2. An explicit
computation of the Radon-Nikodym density of the law of ξH with respect to the law of ξ
depends on the explicit computation of the functionals ρt or Ft defined in Lemma 1.3.
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1.2. A parallel between the gamma process and Brownian motion. The absolute-
continuity results presented in this paper can be better understood by comparison with
some analogous properties of Brownian motion.

The Girsanov theorem for a Brownian motion (Bt, t ≥ 0) states the following property:
if (as, s ≥ 0) is an adapted and (say) bounded process, then the law of the process

t 7→ Bt +

∫ t

0

as ds, t ≥ 0,

is locally equivalent to that of (Bt, t ≥ 0), with explicit Radon-Nikodym density. We call
this property quasi-invariance by addition.

As a byproduct case of our Theorem 1.2, the gamma process γ has an analogous prop-
erty of quasi-invariance by multiplication (see also [12]): if (as, s ≥ 0) is a predictable
process such that a and 1/a are bounded, then the law of

t 7→
∫ t

0

as dγs, t ≥ 0,

is locally equivalent to that of (γt, t ≥ 0), and we compute explicitly the Radon-Nikodym
density. In fact, we can prove the same quasi-invariance property for all (L)-subordinators.

The Girsanov theorem for Brownian motion has important applications in the study of
stochastic differential equations (SDEs) driven by a Wiener process; likewise, our Theorem
1.2 allows to give analogous applications to SDEs driven by (L)-subordinators, e.g. to
compute explicitly laws of solutions; see section 5.

1.3. A look at the bibliography. . In the following sections we prove Theorem 1.2 and
we give applications to quasi-invariance properties of (L)-subordinators, the γ process
and the Dirichlet process.

Some particular examples of our applications have been already studied in the literature:
necessary and sufficient conditions for two subordinators to have equivalent laws are given
in Sato [10, p. 217-218]; we have already mentioned the result of Tsilevich-Vershik-Yor in

[12] about local equivalence of γ and (
∫ t

0
as dγs, t ≥ 0), for any deterministic measurable

function a : R+ 7→ R+ with a and 1/a bounded, with explicit Radon-Nikodym density;
in the case of the Dirichlet process, two distinct quasi-invariance properties have been
studied by Handa in [5] and von Renesse-Sturm in [7]. We refer to the remarks after each
result in sections 3 and 4, where these results are recalled in detail.

2. A generalization of a formula of Tsilevich-Vershik-Yor

Within the framework of subsection 1.1, the law of ξ with ξ0 = 0 is characterized by its
Laplace transform, i.e. for any measurable bounded λ : R+ 7→ R+

E
[
exp

(
−
∫ t

0

λs dξs

)]
= exp

(
−
∫ t

0

Ψ(λs) ds

)
.

In order to prove Theorem 1.2, we shall show that ξH has, under PH , the same Laplace
transform as ξ under P, namely for all measurable bounded λ : R+ 7→ R+

EH

[
exp

(
−
∫ t

0

λs dξ
H
s

)]
= exp

(
−
∫ t

0

Ψ(λs) ds

)
.
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To do that, we shall show that the process

exp

(
−
∫ t

0

λs dξ
H
s +

∫ t

0

Ψ(λs) ds

)
, t ≥ 0,

is a ((Ft),PH)-martingale, which is equivalent to prove the following

Proposition 2.1. We set for all t ≥ 0

MH,λ
t := exp

(∫ t

0

(g0 log h(s, 0) + Ψ(λs)) ds

)
·

·
∏

s∈J ξ
t

[
h(s,∆ξs)

g(H(s,∆ξs))

g(∆ξs)
exp (−λsH(s,∆ξs))

]
.

(2.1)

Then MH,λ is a (Ft,P)-martingale with E(MH,λ
t ) = 1 and a.s. MH,λ

t > 0.

Tsilevich-Vershik-Yor prove in [12] the same result for ξ a gamma process and H(s, x) =
c(s)x, for c : R+ 7→ R+ measurable and deterministic.

We say that a real-valued process (ζt, t ≥ 0) has bounded variation, if a.s. for all T > 0
the real-valued function [0, T ] 3 t 7→ ζt has bounded variation.

Lemma 2.2. Let F : R+ × Ω× R+ 7→]− 1,∞[ such that

• F is P ⊗BR+-measurable, where P denotes the predictable σ-algebra generated by
ξ;

• there exists a finite constant CF such that a.s. for almost every s ≥ 0

F (s, 0) = 0,

∫
ν(dx) E

[∣∣∣F (s, x)
∣∣∣] ≤ CF <∞. (2.2)

Then

(1) the process

xF
t :=

∑
s≤t

F (s,∆ξs)−
∫ t

0

ds

∫
ν(dx)F (s, x), t ≥ 0

is a martingale with bounded variation;
(2) the process

EF
t := exp

(
−
∫ t

0

ds

∫
ν(dx)F (s, x)

) ∏
s≤t

(
1 + F (s,∆ξs)

)
satisfies

EF
t = 1 +

∫ t

0

EF
s− dx

F
s , t ≥ 0. (2.3)

Moreover (EF
t ) is a martingale with bounded variation which satisfies

E
(∫ t

0

∣∣dEF
u

∣∣) ≤ 2CF t.

(3) for all t ≥ 0, a.s. EF
t > 0.
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Proof. Note first that xF is well defined, since by (2.2)

E

[∑
s≤t

|F (s,∆ξs)|

]
=

∫ t

0

ds

∫
ν(dx) E

[∣∣∣F (s, x)
∣∣∣] ≤ CF t <∞.

Since {(s,∆ξs), s ≥ 0} is a Poisson point process with intensity measure ds ν(dx), it
follows immediately that xF is a local martingale. Furthermore, a.s. the paths of xF have
bounded variation, since

E
(∫

(s,t]

∣∣dxF
u

∣∣ ∣∣∣Fs

)
≤ 2CF (t− s), t > s ≥ 0. (2.4)

Therefore, (xF
t , t ≥ 0) is a true martingale; indeed, for any t > 0, sups≤t |xF

s | ≤
∫ t

0

∣∣dxF
s

∣∣,
and therefore

E
(

sup
s≤t

|xF
s |
)
≤ 2CF t, t ≥ 0;

by Proposition IV.1.7 of [9] we obtain the claim.
Since EF is the Doléans exponential associated with the martingale xF , i.e. it satisfies

(2.3), it is clear that EF is a local martingale (see chapter 5 of [1]). Moreover, since EF

is non-negative, then it is a super-martingale and in particular E
(
EF

t

)
≤ E

(
EF

0

)
= 1.

Furthermore, by (2.4)

E
(∫ t

0

∣∣dEF
u

∣∣) = E
(∫ t

0

EF
u−
∣∣dxF

u

∣∣) ≤ ∫ t

0

E
(
EF

u

)
2CF du ≤ 2CF t.

The same argument as for xF yields:

E
(

sup
s≤t

∣∣EF
s

∣∣) ≤ 2CF t, t ≥ 0,

and therefore EF is a martingale.
In order to prove that EF

t > 0 a.s., by (2.2) it is enough to show that

log
∏
s≤t

(
1 + F (s,∆ξs)

)
=
∑
s≤t

log
(
1 + F (s,∆ξs)

)
> −∞.

Since F (s,∆ξs) = ∆xF
s = xF

s − xF
s− > −1, and xF has a.s. bounded variation, then

there is a.s. only a finite number of s ∈ [0, t] such that ∆xF
s < −1/2 and therefore a.s.

infs≤t ∆xF
s =: Ct > −1. It follows that∑

s≤t

log
(
1 + ∆xF

s

)
≥ − 1

Ct + 1

∑
s≤t

∣∣∆xF
s

∣∣ = − 1

Ct + 1

∫ t

0

∣∣dxF
u

∣∣ > −∞, a.s. �

The main steps in the proofs of Proposition 2.1 and Theorem 1.2 are the estimate (2.6)
and the identity (2.7) below, which allow to apply Lemma 2.2 to

F (s, 0) := 0, F (s, x) := h(s, x) · g(H(s, x))

g(x)
· e−λsH(s,x) − 1, x > 0. (2.5)

These two important points are gathered in the following
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Lemma 2.3. Let φ : R+ 7→ R+ a C1 function such that φ(0) = 0,

0 < κ−1 ≤ φ′(x) ≤ κ <∞, |φ′(x)− φ′(y)| ≤ κ|x− y|α, ∀x, y ∈ R+,

where κ > 1 and α ∈]0, 1[. We set for all a ≥ 0

Fa,φ :]0,∞[7→ R, Fa,φ := φ′ · g(φ)

g
· e−aφ − 1.

Then ∫ ∞

0

∣∣∣Fa,φ(x)
∣∣∣ g(x) dx ≤ C(κ, α, a), (2.6)

and ∫ ∞

0

Fa,φ(x) g(x) dx = −Ψ(a)− g0 log φ′(0), (2.7)

where

C(κ, α, a) = ag0 +
g0 κ

2

α(1 + α)
+ 2

∫ ∞

κ−2

g dx+ 3

∫ 1

0

|ζ| dx < +∞.

Remark 2.4. Since formula (2.7) is crucial in our discussion, we would like to give some
intuition about it. By a formal differentiation we find

∂

∂a

∫ ∞

0

Fa,φ(x) g(x) dx = −
∫ ∞

0

φ(x) e−aφ(x) g(φ(x))φ′(x) dx.

With the change of variable y = φ(x) we obtain from the last expression

∂

∂a

∫ ∞

0

Fa,φ(x) g(x) dx = −
∫ ∞

0

y e−ay g(y) dy = −Ψ′(a).

Therefore, the function a 7→
∫∞

0
Fa,φ(x) g(x) dx + Ψ(a) is constant. In fact, (2.7) shows

that this constant only depends on φ′(0).

Proof of Lemma 2.3. Notice that φ : R+ 7→ R+ is a diffeomorphism. First we have∫ ∞

κ−1

∣∣∣Fa,φ

∣∣∣ g dx ≤ ∫ ∞

κ−1

φ′ g(φ) dx+

∫ ∞

κ−1

g dx

=

∫ ∞

φ(κ−1)

g(y) dy +

∫ ∞

κ−1

g dx ≤ 2

∫ ∞

κ−2

g(x) dx <∞.

Now ∫ κ−1

0

∣∣∣Fa,φ

∣∣∣ g dx =

∫ κ−1

0

∣∣∣φ′ g(φ) e−aφ − g
∣∣∣ dx

≤
∫ κ−1

0

φ′ g(φ)
(
1− e−aφ

)
dx+

∫ κ−1

0

φ′
∣∣∣∣g(φ)− g0

φ

∣∣∣∣ dx+

∫ 1

0

g0

∣∣∣∣φ′(x)φ(x)
− 1

x

∣∣∣∣ dx
+

∫ κ−1

0

∣∣∣g0

x
− g(x)

∣∣∣ dx =: I0 + I1 + I2 + I3.
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First we estimate I2.

I2 =

∫ 1

0

g0

∣∣∣∣φ′(x)φ(x)
− 1

x

∣∣∣∣ dx = g0

∫ 1

0

∣∣∣∣φ(x)− xφ′(x)

xφ(x)

∣∣∣∣ dx
≤
∫ 1

0

g0

κ−1x2

∣∣∣∣∫ x

0

[φ′(y)− φ′(x)] dy

∣∣∣∣ dx ≤ g0 κ
2

∫ 1

0

1

x2

∫ x

0

yαdy dx =
g0 κ

2

α(1 + α)
.

Recall now that g(x) = g0

x
+ ζ(x) by (H2) above. Then I3 can be estimated by

I3 =

∫ κ−1

0

∣∣∣g0

x
− g(x)

∣∣∣ dx ≤ ∫ 1

0

|ζ| dx.

Then I0 and I1 can be estimated similarly by changing variable

I1 =

∫ κ−1

0

φ′
∣∣∣∣g(φ)− g0

φ

∣∣∣∣ dx =

∫ φ(κ−1)

0

∣∣∣g(x)− g0

x

∣∣∣ dx ≤ ∫ 1

0

|ζ| dx,

and

I0 =

∫ κ−1

0

φ′ g(φ)
(
1− e−aφ

)
dx =

∫ φ(κ−1)

0

g(x) (1− e−ax) dx ≤ ag0 +

∫ 1

0

|ζ| dx,

since φ(κ−1) ≤ 1. Therefore, we have obtained∫ ∞

0

∣∣∣Fa,φ

∣∣∣ g dx ≤ ag0 +
g0 κ

2

α(1 + α)
+ 2

∫ ∞

κ−2

g(y) dy + 3

∫ 1

0

|ζ(x)| dx,

and (2.6) is proven.
We turn now to the proof of (2.7). By (2.6) and dominated convergence∫ ∞

0

Fa,φ g dx = lim
ε↘0

∫ ∞

ε

Fa,φ g dx.

For all ε > 0 we have by the change of variable y = φ(x)∫ ∞

ε

φ′ g(φ) e−aφ dx =

∫ ∞

φ(ε)

g(y) e−ay dy.

Then we want to compute the limit as ε↘ 0 of∫ ∞

ε

Fa,φ g dx =

∫ ∞

φ(ε)

g(x) e−ax dx−
∫ ∞

ε

g(x) dx

=

∫ ∞

φ(ε)

g(x)
(
e−ax − 1

)
dx+

∫ 1

φ(ε)

g(x) dx−
∫ 1

ε

g(x) dx.

Clearly, by assumptions (H1)-(H2) and by dominated convergence

lim
ε↘0

∫ ∞

φ(ε)

g(x)
(
e−ax − 1

)
dx =

∫ ∞

0

g(x)
(
e−ax − 1

)
dx = −Ψ(a).
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Now, by assumption (H2)

lim
ε↘0

[∫ 1

φ(ε)

g(x) dx−
∫ 1

ε

g(x) dx

]
= g0 lim

ε↘0

[∫ 1

φ(ε)

1

x
dx−

∫ 1

ε

1

x
dx

]
= g0 lim

ε↘0
log

ε

φ(ε)
= −g0 log φ′(0).

Then we have obtained (2.7). �

Proof of Proposition 2.1. It is enough to apply the results of Lemma 2.2 and Lemma 2.3
to φ(x) := H(s, x), a = λs and F defined in (2.5). Positivity of EF

t = MH,λ
t follows from

point (3) of Lemma 2.2. �

Proof of Theorem 1.2. Notice that MH = MH,λ for λ ≡ 0. By Proposition 2.1, MH is
a martingale with expectation 1. Then, for any bounded measurable λ : R+ 7→ R+, by
Proposition 2.1 we obtain

E
(

exp

(
−
∫ t

0

λs dξ
H
s

)
MH

t

)
= exp

(
−
∫ t

0

Ψ(λs) ds

)
, t ≥ 0.

The desired result now follows by uniqueness of the Laplace transform. �

3. Quasi-invariance properties of (L)-subordinators

In this section we point out two special cases of Theorem 1.2. Throughout the paper
we consider a measurable function k : R+ × R+ 7→ R+ which satisfies, for some finite
constants κ ≥ 1 and α ∈]0, 1[

|k(s, x)− k(s, y)| ≤ κ|x− y|α, ∀ s, x, y ∈ R+, (3.1)

0 < κ−1 ≤ k(s, x) ≤ κ <∞, ∀ s, x ∈ R+, (3.2)

and we set

K(s, x) :=

∫ x

0

k(s, y) dy, ∀x, s ≥ 0, (3.3)

Notice that K(s, ·) : R+ 7→ R+ is necessarily bijective for all s ≥ 0, so that there exists
an inverse

R(s, ·) : R+ 7→ R+, K(s, R(s, x)) = x, ∀ x ∈ R+. (3.4)

Notice that R satisfies analogs of (3.1), (3.2), (3.3). For any increasing function w : R+ 7→
R+ we define

wK
t :=

∑
s≤t

K(s, ws − ws−), t ≥ 0. (3.5)

Note that (
wK
)R

t
:= wt, t ≥ 0. (3.6)
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3.1. Quasi-invariance of ξ under composition with a diffeomorphism. In this
subsection we also assume

for all x ∈ R+, K(·, x) ∈ C1(R+). (3.7)

Then for any increasing function w : R+ 7→ R+ we define

(K ◦ w)t := K(t, wt)−
∫ t

0

∂K

∂s
(s, ws) ds, t ≥ 0. (3.8)

We set H : R+ × Ω× R+ 7→ [0,∞[,

H(s, x) := K(s, ξs− + x)−K(s, ξs−), h(s, x) := k(s, ξs− + x), s, x ≥ 0,

and we notice that H is P ⊗BR+-measurable. By the chain rule (Proposition 0.4.6 in [9])

K(t, ξt) =

∫ t

0

∂K

∂s
(s, ξs) ds+

∑
s≤t

[K(s, ξs)−K(s, ξs−)] , ∀t ≥ 0.

Since K(s, ξs)−K(s, ξs−) = H(s,∆ξs) for all s ≥ 0, we obtain that

(K ◦ ξ)t =
∑
s≤t

H(s,∆ξs), t ≥ 0.

Moreover (1.1) and (1.2) are satisfied and Theorem 1.2 and Lemma 1.3 yield

Corollary 3.1.

(1) The process

GK
t (ξ) := exp

(
g0

∫ t

0

log k(s, ξs) ds

) ∏
s∈J ξ

t

[
k(s, ξs) ·

g(K(s, ξs)−K(s, ξs−))

g(∆ξs)

]
, t ≥ 0,

is a non-negative (Ft)-martingale with E(GK
t (ξ)) = 1 and a.s. GK

t (ξ) > 0.
(2) Let PK be the unique probability measure on (Ω,F) such that PK

|Ft
= GK

t (ξ) · P|Ft

for all t ≥ 0. Under PK, the process

(K ◦ ξ)t = K(t, ξt)−
∫ t

0

∂K

∂s
(s, ξs) ds, t ≥ 0

is distributed as (ξt, t ≥ 0) under P.
(3) If moreover we assume that for all t ≥ 0 there exists a positive constant κt such

that

for all s ∈ [0, t],
∂K

∂s
(s, ·) is κt-Lipschitz continuous, (3.9)

then (ξs, s ∈ [0, t]) = Ft((K◦ξ)s, s ∈ [0, t]) a.s. for some measurable Ft : D([0, t]) 7→
D([0, t]). Then the Radon-Nikodym density of the law of ((K ◦ ξ)s, s ∈ [0, t]) with
respect to the law of (ξs, s ∈ [0, t]) is 1/GK

t (Ft), i.e.

P(K ◦ ξ ∈ A) = E
(

1A(ξ)
1

GK
t (Ft(ξ))

)
, ∀A ∈ Gt. (3.10)
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This result can be interpreted by saying that the law of (ξt) is quasi-invariant under
(deterministic) non-linear transformations ξ 7→ K ◦ ξ. In the particular case K(·, x) ≡
K(x) for some time-independent K, (3.7) and (3.9) are automatically satisfied and we
have:

Corollary 3.2. Suppose moreover that k(s, x) = k(x) and K(s, x) = K(x), for all s, x ≥
0. Then

(1) The process

GK
t (ξ) = exp

(
g0

∫ t

0

log k(ξs) ds

) ∏
s∈J ξ

t

[
k(ξs) ·

g(K(ξs)−K(ξs−))

g(∆ξs)

]
, t ≥ 0,

is a non-negative (Ft)-martingale with E(GK
t (ξ)) = 1 and a.s. GK

t (ξ) > 0.
(2) Let PK be the unique probability measure on (Ω,F) such that PK

|Ft
= GK

t (ξ) · P|Ft

for all t ≥ 0. Under PK, the process (K(ξt), t ≥ 0) is distributed as (ξt, t ≥ 0)
under P.

(3) The Radon-Nikodym density of the law of (K−1(ξs), s ∈ [0, t]) with respect to the
law of (ξs, s ∈ [0, t]) is GK

t a.s.

Therefore, the law of (ξt) is quasi-invariant under (deterministic) non-linear transforma-
tions (ξt, t ≥ 0) 7→ (K(ξt), t ≥ 0).

Proof of Corollary 3.1. It only remains to prove assertion (3). For all s ∈ [0, t] let
gs := K(s, ξs) and R(s, ·) the inverse of K(s, ·) defined in (3.4). Then g satisfies the
equation:

gu = (K ◦ ξ)u +

∫ u

0

∂K

∂s
(s, R(s, gs)) ds, u ∈ [0, t].

Since the map x 7→ ∂K
∂s

(s, R(s, x)) is Lipschitz-continuous, uniformly in s ∈ [0, t], then such
an equation has a unique solution in D([0, t]). By the classical Picard iteration procedure
we obtain that (gs = K(s, ξs), s ∈ [0, t]), and therefore (ξs, s ∈ [0, t]) itself, is a measurable
functional of ((K ◦ ξ)s, s ∈ [0, t]). �

3.2. Quasi-invariance of ξ under transformations of jumps. Setting

H(s, x) := K(s, x), h(s, x) := k(s, x), s, x ≥ 0,

we find that (1.1) and (1.2) are satisfied and Theorem 1.2 and Lemma 1.3 yield

Corollary 3.3.

(1) The process

NK
t (ξ) := exp

(
g0

∫ t

0

log k(s, 0) ds

) ∏
s∈J ξ

t

[
k(s,∆ξs) ·

g(K(s,∆ξs))

g(∆ξs)

]
, t ≥ 0,

is a non-negative (Ft)-martingale with E(NK
t (ξ)) = 1 and a.s. NK

t (ξ) > 0.
(2) Let PK be the unique probability measure on (Ω,F) such that PK

|Ft
= NK

t (ξ) · P|Ft

for all t ≥ 0. Under PK, the process

ξK
t =

∑
s≤t

K(s,∆ξs), t ≥ 0,
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is distributed as ξ under P.
(3) For all t ≥ 0 we have

ξt =
∑
s≤t

R(s,∆ξK
s ) =

(
ξK
)R

t
, t ≥ 0.

Then the Radon-Nikodym density of the law of (ξK
s , s ∈ [0, t]) with respect to the

law of (ξs, s ∈ [0, t]) is 1/NK
t (ξR), i.e.

P(ξK ∈ A) = E
(

1A(ξ)
1

NK
t (ξR)

)
, ∀A ∈ Gt. (3.11)

This result can be interpreted by saying that the law of (ξt) is quasi-invariant under a non-
linear (deterministic) transformation of the jumps of ξ: (∆ξt, t ≥ 0) 7→ (K(t,∆ξt), t ≥ 0).

Remark 3.4. In Corollary 3.3, if k(s, x) = k(x) (and therefore K(s, x) = K(x)), then
ξK is a subordinator with Lévy measure νK equal to the image measure of ν under K; in
this case, the local equivalence result of Corollary 3.3 is a particular case of Sato [10, p.
217-218].

3.3. Quasi-invariance properties of the gamma process. We now write the results
of Corollaries 3.1, 3.2 and 3.3 for the special case of the gamma process (γt). We assume
(3.7). Here

g(x) =
e−x

x
, x > 0, g0 = 1, Ψ(λ) = log(1 + λ).

Corollary 3.5. Assume (3.7). We set for all t ≥ 0

Y K
t (γ) := exp

(
γt −K(t, γt) +

∫ t

0

(
∂K

∂s
+ log k

)
(s, γs)ds

) ∏
s∈J γ

t

[
k(s, γs) ·∆γs

K(s, γs)−K(s, γs−)

]
.

(3.12)

(1) Then (Y K
t (γ)) is a martingale with E(Y K

t (γ)) = 1 and a.s. Y K
t (γ) > 0.

(2) Let PK be the unique probability measure on (Ω,F) such that PK
|Ft

= Y K
t (γ) · P|Ft

for all t ≥ 0. Under PK, the process

(K ◦ γ)t := K(t, γt)−
∫ t

0

∂K

∂s
(s, γs) ds, t ≥ 0

is distributed as (γt, t ≥ 0) under P.
(3) Under the additional assumption (3.9), (γs, s ∈ [0, t]) = Ft((K ◦ γ)s, s ∈ [0, t]) a.s.

for some measurable Ft : D([0, t]) 7→ D([0, t]). Then the Radon-Nikodym density of
the law of ((K ◦γ)s, s ∈ [0, t]) with respect to the law of (γs, s ∈ [0, t]) is 1/Y K

t (Ft),
i.e.

P(K ◦ γ ∈ A) = E
(

1A(γ)
1

Y K
t (Ft(γ))

)
, ∀A ∈ Gt. (3.13)

Corollary 3.6. Suppose that k(s, x) = k(x) and K(s, x) = K(x), for all s, x ≥ 0. Then
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(1) The process

Y K
t (γ) := exp

(
γt −K(γt) +

∫ t

0

log k(γs) ds

) ∏
s∈J γ

t

[
k(γs) ·∆γs

K(γs)−K(γs−)

]
, t ≥ 0 (3.14)

is a martingale with E(Y K
t (γ)) = 1 and a.s. Y K

t (γ) > 0.
(2) Let PK be the unique probability measure on (Ω,F) such that PK

|Ft
= Y K

t (γ) · P|Ft

for all t ≥ 0. Under PK, the process (K(γt), t ≥ 0) is distributed as (γt, t ≥ 0)
under P.

(3) The Radon-Nikodym density of the law of (K−1(γs), s ∈ [0, t]) with respect to the
law of (γs, s ∈ [0, t]) is Y K

t .

Corollary 3.7.

(1) The process

ZK
t (γ) := exp

(
γt −

∑
s≤t

K(s,∆γs) +

∫ t

0

log k(s, 0) ds

) ∏
s∈J γ

t

[
k(s,∆γs) ·

∆γs

K(s,∆γs)

]
,

t ≥ 0, is a non-negative (Ft)-martingale with E(ZK
t (γ)) = 1 and a.s. ZK

t (γ) > 0.
(2) Let PK be the unique probability measure on (Ω,F) such that PK

|Ft
= ZK

t (γ) · P|Ft

for all t ≥ 0. Under PK, the process

γK
t =

∑
s≤t

K(s,∆γs), t ≥ 0,

is distributed as (γt, t ≥ 0) under P.
(3) For all t ≥ 0 we have

γt =
∑
s≤t

R(s,∆γK
s ) =

(
γK
)R

t
, t ≥ 0.

Then the Radon-Nikodym density of the law of (γK
s , s ∈ [0, t]) with respect to the

law of (γs, s ∈ [0, t]) is 1/ZK
t (γR), i.e.

P(γK ∈ A) = E
(

1A(γ)
1

ZK
t (γR)

)
, ∀A ∈ Gt. (3.15)

Remark 3.8. If K(s, x) = asx for a measurable function a : R+ 7→ R+ with a and 1/a
bounded, then the result of Corollary 3.1 has been obtained in [12]; our main result, The-
orem 1.2, yields a much more general statement, which holds for a predictable (although
in the general case the Radon-Nikodym density is not always explicit). In Corollary 3.7,
if k(s, x) = k(x) (and therefore K(s, x) = K(x)), then γK is a subordinator with Lévy

measure νK equal to the image measure of e−x

x
1(x>0) dx under K; in this case, the local

equivalence result of Corollary 3.3 is a particular case of Sato [10, p. 217-218].
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4. Quasi-invariance properties of the Dirichlet Process

We fix T > 0 and we denote by (D
(T )
t : t ∈ [0, T ]) the Dirichlet process over the time

interval [0, T ], i.e. D
(T )
t := γt/γT , t ∈ [0, T ], where (γt) is a gamma process. Since T is

fixed we omit the superscript (T ). We consider measurable functions K and k satisfying
(3.1)-(3.2)-(3.3).

4.1. Quasi-invariance of D under composition with a diffeomorphism. We want
to give a martingale proof of a relation originally obtained by von Renesse-Sturm in [7].
In this subsection we also assume that k(·, y) = k(y) is time-independent for all y ∈ R+

and satisfies ∫ 1

0

k(y) dy = 1,

so that K(s, x) = K(x) =
∫ x

0
k(y) dy, x ∈ [0, 1], also satisfies

K(0) = 0, K(1) = 1.

Notice that K(·) : [0, 1] 7→ [0, 1] is necessarily bijective. We set for t < T

LK,T
t :=

(
1−K(Dt)

1−Dt

)T−t−1

exp

(∫ t

0

log k(Ds) ds

) ∏
s∈JD

t

[
k(Ds) ·∆Ds

K(Ds)−K(Ds−)

]
,

LK,T
T :=

1

k(1)
exp

(∫ T

0

log k(Ds) ds

) ∏
s∈JD

T

[
k(Ds) ·∆Ds

K(Ds)−K(Ds−)

]
.

Theorem 4.1.

(1) (LK,T
t , t ∈ [0, T ]) is a martingale with respect to the natural filtration of D, such

that E(LK,T
t ) = 1 and a.s. LK,T

t > 0, for all t ∈ [0, T ].

(2) Under PK,T := LK,T
T · P, the process (K(Dt), t ∈ [0, T ]) has the same law as

(Dt, t ∈ [0, T ]) under P.
(3) The Radon-Nikodym density of the law of (K−1(Dt), t ∈ [0, T ]) with respect to the

law of (Dt, t ∈ [0, T ]) is LK,T
T .

This theorem expresses the quasi-invariance of the law of D under non-linear transforma-
tions (Ds, s ∈ [0, T ]) 7→ (K(Ds), s ∈ [0, T ]).

Remark 4.2. In [7], von Renesse-Sturm prove the result of Theorem 4.1 using explicit
computations on the finite-dimensional distributions ofD. Our proof clarifies the structure
of the Radon-Nikodym density and shows its links with more general quasi-invariance
phenomena.

Proof of Theorem 4.1. Let first t < T . By the Markov property, for all bounded Borel
Φ : D([0, t]) 7→ R+

E (Φ(Ds, s ≤ t)) = E
(

Φ(γs, s ≤ t) 1(γt<1)
pT−t(1− γt)

pT (1)

)
= E

(
Φ(γs, s ≤ t) 1(γt<1) (1− γt)

T−t−1 eγt
) Γ(T )

Γ(T − t)
.
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Let us consider the process (Y K
t ) as defined in (3.12). In the time-independent case we

have the simpler expression

Y K
t := exp

(
γt −K(γt) +

∫ t

0

log k(γs) ds

) ∏
s∈J γ

t

[
k(γs) ·∆γs

K(γs)−K(γs−)

]
.

Notice that K(·) is strictly increasing and K(1) = 1, so that K(γt) < 1 iff γt < 1. Then,
for all bounded Borel Φ : D([0, t]) 7→ R+, t < T , by Corollary 3.5

E
(
Φ(K(D·))L

K,T
t

)
=

Γ(T )

Γ(T − t)
E
(
1(γt<1) (1−K(γt))

T−t−1 Φ(K(γ·)) e
K(γt) Y K

t

)
=

Γ(T )

Γ(T − t)
E
(
1(γt<1) (1− γt)

T−t−1 Φ(γ) eγt

)
= E (Φ(D·)) ,

and this concludes the proof for t < T .
We consider now the case t = T . For all bounded Borel Φ : D([0, T ]) 7→ R+ and

ϕ : R+ 7→ R+, by Corollary 3.5

E
(
Φ(K(γ·)) ϕ(K(γT )) Y K

T

)
= E (Φ(γ) ϕ(γT )) . (4.1)

We set for all x > 0

Y K,x
T := exp

(
x−K(x) +

∫ T

0

log k(xDs) ds

) ∏
s∈JD

T

[
k(xDs) · x∆Ds

K(xDs)−K(xDs−)

]
.

On the right hand side of (4.1) we condition on the value of γT , obtaining

E (Φ(γ·)ϕ(γT )) =

∫ ∞

0

pT (y) E (Φ(yD·))ϕ(y) dy. (4.2)

On the left hand side of (4.1), conditioning on the value of γT , we obtain

E
(
Φ(K(γ·)) ϕ(K(γT ))Y K

T

)
=

∫ ∞

0

pT (x) E
(
Φ(K(xD·))Y

K,x
T

)
ϕ(K(x)) dx. (4.3)

In order to compare (4.2) and (4.3), we use the change of variable x = K(y). To this aim,
we denote by C : R+ 7→ R+ the inverse of K(·), i.e. we suppose that K(C(x)) = x for all
x ≥ 0. Then we have

E
(
Φ(K(γ·)) ϕ(K(γT ))Y K

T

)
=

∫ ∞

0

pT (x) E
(
Φ(K(xD·))Y

K,x
T

)
ϕ(K(x)) dx

=

∫ ∞

0

pT (C(y)) E
(
Φ(K(C(y)D·))Y

K,C(y)
T

)
ϕ(y)C ′(y) dy.

Since this is true for any bounded measurable ϕ : R+ 7→ R+, we obtain for all y > 0

pT (C(y))C ′(y)

pT (y)
E
(
Φ(K(C(y)D·)) Y

K,C(y)
T

)
= E (Φ(yD·)) .

For y = 1, since K(1) = 1 = C(1) and C ′(1) = 1/k(1), we obtain the desired result

E
(
Φ(K(D·)) L

K,T
T

)
= E (Φ(D·)) .
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In particular, applying this formula to the inverse R of K we obtain the last assertion:

E (Φ(K(D·))) = E
(
Φ(D·) L

R,T
T

)
. �

4.2. Quasi-invariance of D under transformation of the jumps. Again, we consider

the Dirichlet process (D
(T )
t , t ∈ [0, T ]), and we drop the superscript (T ), since T is fixed.

We set

∆Ds := Ds −Ds−, DK
t :=

∑
s≤tK(s,∆Ds)∑
s≤T K(s,∆Ds)

=
DK

t

DK
T

, t ∈ [0, T ].

Theorem 4.3. The laws of (DK
t , t ∈ [0, T ]) and (Dt, t ∈ [0, T ]) are equivalent.

Remark 4.4. Handa [5] proves Theorem 4.3 in the particular caseK(s, x) = c(s)x, where
c : [0, T ] 7→ R+ is measurable. An expression for the Radon-Nikodym density might be
obtained from the proof of Theorem 4.3: see (4.7) below.

Proof. Since (Dt, t ∈ [0, T ]) is a gamma bridge, then the law of (DK
t , t ∈ [0, T ]) coincides

with the law of (γK
t /γ

K
T , t ∈ [0, T ]) under the conditioning {γT = 1}.

Consider now R, defined in (3.4) and recall that(
γK
)R

= γ.

By Corollary 3.7, for all Φ : D([0, T ]) 7→ R bounded and Borel

E
(

Φ

(
γK

s

γK
T

, s ≤ T

)
ϕ(γT )ZK

T

)
= E

(
Φ

(
γs

γT

, s ≤ T

)
ϕ(γR

T )

)
. (4.4)

Note that
γR

T =
∑
s≤T

R(s,∆γs) =
∑
s≤T

R (s, γT ·∆Ds) =: ψD(γT ),

where Dt := γt/γT , t ∈ [0, T ], is independent of γT and

ψD(x) :=
∑
s≤T

R (s, x ·∆Ds) , x ≥ 0.

Note that ψD : R+ 7→ R+ is C1 and by dominated convergence

ψ′D(x) =
∑
s≤T

∆Ds ·
∂R

∂x
(s, x ·∆Ds) ≥ κ−1 > 0, ∀ x ≥ 0,

since ∆Ds ≥ 0 and
∑

s≤T ∆Ds = 1. Also by dominated convergence, ψ′D is continuous.

Therefore ψD : R+ 7→ R+ is invertible, with C1 inverse ζD := ψ−1
D . In the sequel, we may

write ζK
D for ζD, in order to stress that it also depends on K. Then, for all ϕ : R+ 7→ R

bounded and Borel, we obtain by (4.4)

E
(

Φ

(
γK

s

γK
T

, s ≤ T

)
ϕ(γT )ZK

T

)
= E (Φ (Ds, s ≤ T ) ϕ(ψD(γT )))

= E
(

Φ (Ds, s ≤ T )

∫ ∞

0

pT (y)ϕ(ψD(y)) dy

)
=

∫ ∞

0

ϕ(x) E
(
Φ (Ds, s ≤ T ) pT (ζD(x)) ζ ′D(x)

)
dx, (4.5)
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after performing the change of variable x = ψD(y). Now, setting for all t ∈ [0, T ]

DK,x
t :=

∑
s≤tK(s, x ·∆Ds)∑
s≤T K(s, x ·∆Ds)

,

UK,x
T := exp

(
x−

∑
s≤T

K(s, x∆Ds) +

∫ T

0

log k(s, 0) ds

) ∏
s∈JD

T

[
k(s, x∆Ds) · x∆Ds

K(s, x∆Ds)

]
,

we obtain

E
(

Φ

(
γK

s

γK
T

, s ≤ T

)
ϕ(γT )ZK

T

)
=

∫ ∞

0

ϕ(x) E
(
Φ
(
DK,x

s , s ≤ T
)
· UK,x

T

)
pT (x) dx. (4.6)

Since DK,1 = DK , setting

UK
T (D) := UK,1

T = exp

(
1−DK

T +

∫ T

0

log k(s, 0) ds

) ∏
s∈JD

T

[
k(s,∆Ds) ·∆Ds

K(s,∆Ds)

]
,

we obtain by (4.5) and (4.6) for x = 1

E
(
Φ
(
DK

s , s ≤ T
)
· UK

T

)
= E

(
Φ (Ds, s ≤ T )

pT (ζK
D (1))

pT (1)
(ζK

D )′(1)

)
. � (4.7)

5. Stochastic differential equations driven by (L)-subordinators

In this section we give an application of the previous results to stochastic differential
equations driven by a (L)-subordinator ξ. See [2] for a survey of SDEs driven by Lévy
processes.

We consider the SDE
dxt = m(t, xt−) dξt, x0 = 0, (5.1)

where

(1) m : R+ × R+ 7→]0,+∞[ is measurable;
(2) m and 1/m are bounded
(3) R+ 3 a 7→ m(s, a) is Lipschitz, uniformly in s ≥ 0.

Then we have

Theorem 5.1. There exists a pathwise-unique solution of (5.1) and the law of (x, ξ)
under P coincides with the law of (ξ, ξH) under PH , where

H(s, x) :=
x

m(s, ξs−)
, s ≥ 0, x ≥ 0. (5.2)

Proof. For any interval J ⊂ R, denote by I(J) the set of all bounded increasing functions
ω : J 7→ R+.

We prove now that there exists a.s. a unique pathwise solution of (5.1). Let L be the
Lipschitz constant of m(s, ·), which exists by the uniformity assumption (3) above. We
define the sequence of random times:

T0 := 0, Ti+1 := sup

{
t ∈ ]Ti, T ] : ξt− − ξTi

<
1

2L

}
, sup ∅ := T.
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If Ti < T , then ξT ≥ ξTi
≥ i

2L
, so that the cardinality N of {i : Ti−1 < Ti} is bounded

above by 2LξT <∞ a.s.
Now we set x0 := x. Suppose that we have proven existence and uniqueness of the solu-

tion x of (5.1) over [0, Ti−1] for i ∈ {1, . . . , N}. We define the map ΛTi−1,Ti
: I([Ti−1, Ti[) 7→

I([Ti−1, Ti[)

ΛTi−1,Ti
(ω)(t) := xTi−1

+

∫
[Ti−1,t]

m(s, ωs−) dξs, t ∈ [Ti−1, Ti[.

Then ΛTi−1,Ti
is a contraction in I([Ti−1, Ti[) with respect to the sup-metric:

|ΛTi−1,Ti
(ω)(t)− ΛTi−1,Ti

(ω′)(t)| ≤ sup
s∈[Ti−1,Ti[

|m(s, ωs)−m(s, ω′s)| ·
(
ξTi− − ξTi−1

)
,

for all t ∈ [Ti−1, Ti[, which yields

sup
[Ti−1,Ti[

|ΛTi−1,Ti
(ω)− ΛTi−1,Ti

(ω′)| ≤ L · 1

2L
sup

[Ti−1,Ti[

|ω − ω′| = 1

2
sup

[Ti−1,Ti[

|ω − ω′|.

Then the solution x of (5.1) over [0, Ti[ coincides over [Ti−1, Ti[ with the unique fixed point
x of ΛTi−1,Ti

. Now, for t = Ti we have necessarily by (5.1):

xTi
= xTi− +m(Ti, xTi−) (ξTi

− ξTi−).

By recurrence, we obtain existence and uniqueness of a pathwise solution of (5.1) over
[0, T ]. Moreover, there exists a measurable map WT : I([0, T ]) 7→ I([0, T ]), such that
x = WT (ξ|[0,T ]).

Let us define H as in (5.2), and set ξH as in (1.4)

ξH
t :=

∑
s≤t

H(s,∆ξs) =

∫ t

0

1

m(s, ξs−)
dξs

Note that

dξH
t =

1

m(t, ξt−)
dξt =⇒ dξt = m(t, ξt−) dξH

t .

Then, ξ|[0,T ] = WT (ξH
|[0,T ]) for any T > 0. On the other hand, by Theorem 1.2, ξH under

PH has the same law as ξ under P, and this concludes the proof. �
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